131 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | 
						|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// @Authors
 | 
						|
//    Fangfang Bai, fangfang@multicorewareinc.com
 | 
						|
//    Jin Ma,       jin@multicorewareinc.com
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors as is and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "perf_precomp.hpp"
 | 
						|
 | 
						|
using namespace perf;
 | 
						|
using namespace cv;
 | 
						|
using std::tr1::get;
 | 
						|
 | 
						|
///////////// blend ////////////////////////
 | 
						|
 | 
						|
template <typename T>
 | 
						|
static void blendLinearGold(const Mat &img1, const Mat &img2,
 | 
						|
                            const Mat &weights1, const Mat &weights2,
 | 
						|
                            Mat &result_gold)
 | 
						|
{
 | 
						|
    CV_Assert(img1.size() == img2.size() && img1.type() == img2.type());
 | 
						|
    CV_Assert(weights1.size() == weights2.size() && weights1.size() == img1.size() &&
 | 
						|
              weights1.type() == CV_32FC1 && weights2.type() == CV_32FC1);
 | 
						|
 | 
						|
    result_gold.create(img1.size(), img1.type());
 | 
						|
 | 
						|
    int cn = img1.channels();
 | 
						|
    int step1 = img1.cols * img1.channels();
 | 
						|
 | 
						|
    for (int y = 0; y < img1.rows; ++y)
 | 
						|
    {
 | 
						|
        const float * const weights1_row = weights1.ptr<float>(y);
 | 
						|
        const float * const weights2_row = weights2.ptr<float>(y);
 | 
						|
        const T * const img1_row = img1.ptr<T>(y);
 | 
						|
        const T * const img2_row = img2.ptr<T>(y);
 | 
						|
        T * const result_gold_row = result_gold.ptr<T>(y);
 | 
						|
 | 
						|
        for (int x = 0; x < step1; ++x)
 | 
						|
        {
 | 
						|
            int x1 = x / cn;
 | 
						|
            float w1 = weights1_row[x1], w2 = weights2_row[x1];
 | 
						|
            result_gold_row[x] = saturate_cast<T>(((float)img1_row[x] * w1
 | 
						|
                                                 + (float)img2_row[x] * w2) / (w1 + w2 + 1e-5f));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef void (*blendFunction)(const Mat &img1, const Mat &img2,
 | 
						|
                              const Mat &weights1, const Mat &weights2,
 | 
						|
                              Mat &result_gold);
 | 
						|
 | 
						|
typedef Size_MatType BlendLinearFixture;
 | 
						|
 | 
						|
OCL_PERF_TEST_P(BlendLinearFixture, BlendLinear,
 | 
						|
                ::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32FC1, CV_32FC4)))
 | 
						|
{
 | 
						|
    Size_MatType_t params = GetParam();
 | 
						|
    const Size srcSize = get<0>(params);
 | 
						|
    const int srcType = get<1>(params);
 | 
						|
    const double eps = CV_MAT_DEPTH(srcType) <= CV_32S ? 1.0 : 0.2;
 | 
						|
 | 
						|
    Mat src1(srcSize, srcType), src2(srcSize, srcType), dst(srcSize, srcType);
 | 
						|
    Mat weights1(srcSize, CV_32FC1), weights2(srcSize, CV_32FC1);
 | 
						|
 | 
						|
    declare.in(src1, src2, WARMUP_RNG).out(dst);
 | 
						|
    randu(weights1, 0.0f, 1.0f);
 | 
						|
    randu(weights2, 0.0f, 1.0f);
 | 
						|
 | 
						|
    if (RUN_OCL_IMPL)
 | 
						|
    {
 | 
						|
        ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst;
 | 
						|
        ocl::oclMat oclWeights1(weights1), oclWeights2(weights2);
 | 
						|
 | 
						|
        OCL_TEST_CYCLE() ocl::blendLinear(oclSrc1, oclSrc2, oclWeights1, oclWeights2, oclDst);
 | 
						|
 | 
						|
        oclDst.download(dst);
 | 
						|
 | 
						|
        SANITY_CHECK(dst, eps);
 | 
						|
    }
 | 
						|
    else if (RUN_PLAIN_IMPL)
 | 
						|
    {
 | 
						|
        blendFunction funcs[] = { (blendFunction)blendLinearGold<uchar>, (blendFunction)blendLinearGold<float> };
 | 
						|
        int funcIdx = CV_MAT_DEPTH(srcType) == CV_8UC1 ? 0 : 1;
 | 
						|
 | 
						|
        TEST_CYCLE() (funcs[funcIdx])(src1, src2, weights1, weights2, dst);
 | 
						|
 | 
						|
        SANITY_CHECK(dst, eps);
 | 
						|
    }
 | 
						|
    else
 | 
						|
        OCL_PERF_ELSE
 | 
						|
}
 |