186 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| CV_SLMLTest::CV_SLMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
 | |
| {
 | |
|     validationFN = "slvalidation.xml";
 | |
| }
 | |
| 
 | |
| int CV_SLMLTest::run_test_case( int testCaseIdx )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
|     code = prepare_test_case( testCaseIdx );
 | |
| 
 | |
|     if( code == cvtest::TS::OK )
 | |
|     {
 | |
|             data.mix_train_and_test_idx();
 | |
|             code = train( testCaseIdx );
 | |
|             if( code == cvtest::TS::OK )
 | |
|             {
 | |
|                 get_error( testCaseIdx, CV_TEST_ERROR, &test_resps1 );
 | |
|                 fname1 = tempfile(".yml.gz");
 | |
|                 save( fname1.c_str() );
 | |
|                 load( fname1.c_str() );
 | |
|                 get_error( testCaseIdx, CV_TEST_ERROR, &test_resps2 );
 | |
|                 fname2 = tempfile(".yml.gz");
 | |
|                 save( fname2.c_str() );
 | |
|             }
 | |
|             else
 | |
|                 ts->printf( cvtest::TS::LOG, "model can not be trained" );
 | |
|     }
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| int CV_SLMLTest::validate_test_results( int testCaseIdx )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
| 
 | |
|     // 1. compare files
 | |
|     FILE *fs1 = fopen(fname1.c_str(), "rb"), *fs2 = fopen(fname2.c_str(), "rb");
 | |
|     size_t sz1 = 0, sz2 = 0;
 | |
|     if( !fs1 || !fs2 )
 | |
|         code = cvtest::TS::FAIL_MISSING_TEST_DATA;
 | |
|     if( code >= 0 )
 | |
|     {
 | |
|         fseek(fs1, 0, SEEK_END); fseek(fs2, 0, SEEK_END);
 | |
|         sz1 = ftell(fs1);
 | |
|         sz2 = ftell(fs2);
 | |
|         fseek(fs1, 0, SEEK_SET); fseek(fs2, 0, SEEK_SET);
 | |
|     }
 | |
| 
 | |
|     if( sz1 != sz2 )
 | |
|         code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
| 
 | |
|     if( code >= 0 )
 | |
|     {
 | |
|         const int BUFSZ = 1024;
 | |
|         uchar buf1[BUFSZ], buf2[BUFSZ];
 | |
|         for( size_t pos = 0; pos < sz1;  )
 | |
|         {
 | |
|             size_t r1 = fread(buf1, 1, BUFSZ, fs1);
 | |
|             size_t r2 = fread(buf2, 1, BUFSZ, fs2);
 | |
|             if( r1 != r2 || memcmp(buf1, buf2, r1) != 0 )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG,
 | |
|                            "in test case %d first (%s) and second (%s) saved files differ in %d-th kb\n",
 | |
|                            testCaseIdx, fname1.c_str(), fname2.c_str(),
 | |
|                            (int)pos );
 | |
|                 code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|                 break;
 | |
|             }
 | |
|             pos += r1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(fs1)
 | |
|         fclose(fs1);
 | |
|     if(fs2)
 | |
|         fclose(fs2);
 | |
| 
 | |
|     // delete temporary files
 | |
|     if( code >= 0 )
 | |
|     {
 | |
|         remove( fname1.c_str() );
 | |
|         remove( fname2.c_str() );
 | |
|     }
 | |
| 
 | |
|     // 2. compare responses
 | |
|     CV_Assert( test_resps1.size() == test_resps2.size() );
 | |
|     vector<float>::const_iterator it1 = test_resps1.begin(), it2 = test_resps2.begin();
 | |
|     for( ; it1 != test_resps1.end(); ++it1, ++it2 )
 | |
|     {
 | |
|         if( fabs(*it1 - *it2) > FLT_EPSILON )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "in test case %d responses predicted before saving and after loading is different", testCaseIdx );
 | |
|             code = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|         }
 | |
|     }
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); }
 | |
| //CV_SLMLTest lsmlknearest( CV_KNEAREST, "slknearest" ); // does not support save!
 | |
| TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); }
 | |
| //CV_SLMLTest lsmlem( CV_EM, "slem" ); // does not support save!
 | |
| TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); }
 | |
| TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
 | |
| TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }
 | |
| TEST(ML_RTrees, save_load) { CV_SLMLTest test( CV_RTREES ); test.safe_run(); }
 | |
| TEST(ML_ERTrees, save_load) { CV_SLMLTest test( CV_ERTREES ); test.safe_run(); }
 | |
| 
 | |
| 
 | |
| TEST(DISABLED_ML_SVM, linear_save_load)
 | |
| {
 | |
|     CvSVM svm1, svm2, svm3;
 | |
|     svm1.load("SVM45_X_38-1.xml");
 | |
|     svm2.load("SVM45_X_38-2.xml");
 | |
|     string tname = tempfile("a.xml");
 | |
|     svm2.save(tname.c_str());
 | |
|     svm3.load(tname.c_str());
 | |
| 
 | |
|     ASSERT_EQ(svm1.get_var_count(), svm2.get_var_count());
 | |
|     ASSERT_EQ(svm1.get_var_count(), svm3.get_var_count());
 | |
| 
 | |
|     int m = 10000, n = svm1.get_var_count();
 | |
|     Mat samples(m, n, CV_32F), r1, r2, r3;
 | |
|     randu(samples, 0., 1.);
 | |
| 
 | |
|     svm1.predict(samples, r1);
 | |
|     svm2.predict(samples, r2);
 | |
|     svm3.predict(samples, r3);
 | |
| 
 | |
|     double eps = 1e-4;
 | |
|     EXPECT_LE(norm(r1, r2, NORM_INF), eps);
 | |
|     EXPECT_LE(norm(r1, r3, NORM_INF), eps);
 | |
| 
 | |
|     remove(tname.c_str());
 | |
| }
 | |
| 
 | |
| /* End of file. */
 | 
