opencv/tests/cxcore/src/asolvepoly.cpp

169 lines
5.0 KiB
C++

// 2008-05-14, Xavier Delacour <xavier.delacour@gmail.com>
#include "cxcoretest.h"
#include <algorithm>
#include <complex>
#include <vector>
#include <iostream>
typedef std::complex<double> complex_type;
struct pred_complex
{
bool operator() (const complex_type& lhs, const complex_type& rhs) const
{
return fabs(lhs.real() - rhs.real()) > fabs(rhs.real())*FLT_EPSILON ? lhs.real() < rhs.real() : lhs.imag() < rhs.imag();
}
};
struct pred_double
{
bool operator() (const double& lhs, const double& rhs) const
{
return lhs < rhs;
}
};
class CV_SolvePolyTest : public CvTest
{
public:
CV_SolvePolyTest();
~CV_SolvePolyTest();
protected:
virtual void run( int start_from );
};
CV_SolvePolyTest::CV_SolvePolyTest() : CvTest( "solve-poly", "cvSolvePoly" ) {}
CV_SolvePolyTest::~CV_SolvePolyTest() {}
void CV_SolvePolyTest::run( int )
{
CvRNG rng = cvRNG();
int fig = 100;
double range = 50;
double err_eps = 1e-4;
for (int idx = 0, max_idx = 1000, progress = 0; idx < max_idx; ++idx)
{
progress = update_progress(progress, idx-1, max_idx, 0);
int n = cvRandInt(&rng) % 13 + 1;
std::vector<complex_type> r(n), ar(n), c(n + 1, 0);
std::vector<double> a(n + 1), u(n * 2), ar1(n), ar2(n);
int rr_odds = 3; // odds that we get a real root
for (int j = 0; j < n;)
{
if (cvRandInt(&rng) % rr_odds == 0 || j == n - 1)
r[j++] = cvRandReal(&rng) * range;
else
{
r[j] = complex_type(cvRandReal(&rng) * range,
cvRandReal(&rng) * range + 1);
r[j + 1] = std::conj(r[j]);
j += 2;
}
}
for (int j = 0, k = 1 << n, jj, kk; j < k; ++j)
{
int p = 0;
complex_type v(1);
for (jj = 0, kk = 1; jj < n && !(j & kk); ++jj, ++p, kk <<= 1)
;
for (; jj < n; ++jj, kk <<= 1)
{
if (j & kk)
v *= -r[jj];
else
++p;
}
c[p] += v;
}
bool pass = false;
double div = 0, s = 0;
int cubic_case = idx & 1;
for (int maxiter = 100; !pass && maxiter < 10000; maxiter *= 2, cubic_case = (cubic_case + 1) % 2)
{
for (int j = 0; j < n + 1; ++j)
a[j] = c[j].real();
CvMat amat, umat;
cvInitMatHeader(&amat, n + 1, 1, CV_64FC1, &a[0]);
cvInitMatHeader(&umat, n, 1, CV_64FC2, &u[0]);
cvSolvePoly(&amat, &umat, maxiter, fig);
for (int j = 0; j < n; ++j)
ar[j] = complex_type(u[j * 2], u[j * 2 + 1]);
std::sort(r.begin(), r.end(), pred_complex());
std::sort(ar.begin(), ar.end(), pred_complex());
pass = true;
if( n == 3 )
{
ar2.resize(n);
cv::Mat _umat2(3, 1, CV_64F, &ar2[0]), umat2 = _umat2;
cvFlip(&amat, &amat, 0);
int nr2;
if( cubic_case == 0 )
nr2 = cv::solveCubic(cv::Mat(&amat),umat2);
else
nr2 = cv::solveCubic(cv::Mat_<float>(cv::Mat(&amat)), umat2);
cvFlip(&amat, &amat, 0);
if(nr2 > 0)
std::sort(ar2.begin(), ar2.begin()+nr2, pred_double());
ar2.resize(nr2);
int nr1 = 0;
for(int j = 0; j < n; j++)
if( fabs(r[j].imag()) < DBL_EPSILON )
ar1[nr1++] = r[j].real();
pass = pass && nr1 == nr2;
if( nr2 > 0 )
{
div = s = 0;
for(int j = 0; j < nr1; j++)
{
s += fabs(ar1[j]);
div += fabs(ar1[j] - ar2[j]);
}
div /= s;
pass = pass && div < err_eps;
}
}
div = s = 0;
for (int j = 0; j < n; ++j)
{
s += fabs(r[j].real()) + fabs(r[j].imag());
div += sqrt(pow(r[j].real() - ar[j].real(), 2) + pow(r[j].imag() - ar[j].imag(), 2));
}
div /= s;
pass = pass && div < err_eps;
}
if (!pass)
{
ts->set_failed_test_info(CvTS::FAIL_INVALID_OUTPUT);
ts->printf( CvTS::LOG, "too big diff = %g\n", div );
for (size_t j=0;j<ar2.size();++j)
ts->printf( CvTS::LOG, "ar2[%d]=%g\n", j, ar2[j]);
ts->printf(CvTS::LOG, "\n");
for (size_t j=0;j<r.size();++j)
ts->printf( CvTS::LOG, "r[%d]=(%g, %g)\n", j, r[j].real(), r[j].imag());
ts->printf( CvTS::LOG, "\n" );
for (size_t j=0;j<ar.size();++j)
ts->printf( CvTS::LOG, "ar[%d]=(%g, %g)\n", j, ar[j].real(), ar[j].imag());
break;
}
}
}
CV_SolvePolyTest solve_poly_test;