176 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			176 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| using namespace cv;
 | |
| using namespace std;
 | |
| 
 | |
| CV_AMLTest::CV_AMLTest( const char* _modelName ) : CV_MLBaseTest( _modelName )
 | |
| {
 | |
|     validationFN = "avalidation.xml";
 | |
| }
 | |
| 
 | |
| int CV_AMLTest::run_test_case( int testCaseIdx )
 | |
| {
 | |
|     int code = cvtest::TS::OK;
 | |
|     code = prepare_test_case( testCaseIdx );
 | |
| 
 | |
|     if (code == cvtest::TS::OK)
 | |
|     {
 | |
|         //#define GET_STAT
 | |
| #ifdef GET_STAT
 | |
|         const char* data_name = ((CvFileNode*)cvGetSeqElem( dataSetNames, testCaseIdx ))->data.str.ptr;
 | |
|         printf("%s, %s      ", name, data_name);
 | |
|         const int icount = 100;
 | |
|         float res[icount];
 | |
|         for (int k = 0; k < icount; k++)
 | |
|         {
 | |
| #endif
 | |
|             data->shuffleTrainTest();
 | |
|             code = train( testCaseIdx );
 | |
| #ifdef GET_STAT
 | |
|             float case_result = get_error();
 | |
| 
 | |
|             res[k] = case_result;
 | |
|         }
 | |
|         float mean = 0, sigma = 0;
 | |
|         for (int k = 0; k < icount; k++)
 | |
|         {
 | |
|             mean += res[k];
 | |
|         }
 | |
|         mean = mean /icount;
 | |
|         for (int k = 0; k < icount; k++)
 | |
|         {
 | |
|             sigma += (res[k] - mean)*(res[k] - mean);
 | |
|         }
 | |
|         sigma = sqrt(sigma/icount);
 | |
|         printf("%f, %f\n", mean, sigma);
 | |
| #endif
 | |
|     }
 | |
|     return code;
 | |
| }
 | |
| 
 | |
| int CV_AMLTest::validate_test_results( int testCaseIdx )
 | |
| {
 | |
|     int iters;
 | |
|     float mean, sigma;
 | |
|     // read validation params
 | |
|     FileNode resultNode =
 | |
|         validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["result"];
 | |
|     resultNode["iter_count"] >> iters;
 | |
|     if ( iters > 0)
 | |
|     {
 | |
|         resultNode["mean"] >> mean;
 | |
|         resultNode["sigma"] >> sigma;
 | |
|         model->save(format("/Users/vp/tmp/dtree/testcase_%02d.cur.yml", testCaseIdx));
 | |
|         float curErr = get_test_error( testCaseIdx );
 | |
|         const int coeff = 4;
 | |
|         ts->printf( cvtest::TS::LOG, "Test case = %d; test error = %f; mean error = %f (diff=%f), %d*sigma = %f\n",
 | |
|                                 testCaseIdx, curErr, mean, abs( curErr - mean), coeff, coeff*sigma );
 | |
|         if ( abs( curErr - mean) > coeff*sigma )
 | |
|         {
 | |
|             ts->printf( cvtest::TS::LOG, "abs(%f - %f) > %f - OUT OF RANGE!\n", curErr, mean, coeff*sigma, coeff );
 | |
|             return cvtest::TS::FAIL_BAD_ACCURACY;
 | |
|         }
 | |
|         else
 | |
|             ts->printf( cvtest::TS::LOG, ".\n" );
 | |
| 
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "validation info is not suitable" );
 | |
|         return cvtest::TS::FAIL_INVALID_TEST_DATA;
 | |
|     }
 | |
|     return cvtest::TS::OK;
 | |
| }
 | |
| 
 | |
| TEST(ML_DTree, regression) { CV_AMLTest test( CV_DTREE ); test.safe_run(); }
 | |
| TEST(ML_Boost, regression) { CV_AMLTest test( CV_BOOST ); test.safe_run(); }
 | |
| TEST(ML_RTrees, regression) { CV_AMLTest test( CV_RTREES ); test.safe_run(); }
 | |
| TEST(DISABLED_ML_ERTrees, regression) { CV_AMLTest test( CV_ERTREES ); test.safe_run(); }
 | |
| 
 | |
| TEST(ML_NBAYES, regression_5911)
 | |
| {
 | |
|     int N=12;
 | |
|     Ptr<ml::NormalBayesClassifier> nb = cv::ml::NormalBayesClassifier::create();
 | |
| 
 | |
|     // data:
 | |
|     Mat_<float> X(N,4);
 | |
|     X << 1,2,3,4,  1,2,3,4,   1,2,3,4,    1,2,3,4,
 | |
|          5,5,5,5,  5,5,5,5,   5,5,5,5,    5,5,5,5,
 | |
|          4,3,2,1,  4,3,2,1,   4,3,2,1,    4,3,2,1;
 | |
| 
 | |
|     // labels:
 | |
|     Mat_<int> Y(N,1);
 | |
|     Y << 0,0,0,0, 1,1,1,1, 2,2,2,2;
 | |
|     nb->train(X, ml::ROW_SAMPLE, Y);
 | |
| 
 | |
|     // single prediction:
 | |
|     Mat R1,P1;
 | |
|     for (int i=0; i<N; i++)
 | |
|     {
 | |
|         Mat r,p;
 | |
|         nb->predictProb(X.row(i), r, p);
 | |
|         R1.push_back(r);
 | |
|         P1.push_back(p);
 | |
|     }
 | |
| 
 | |
|     // bulk prediction (continuous memory):
 | |
|     Mat R2,P2;
 | |
|     nb->predictProb(X, R2, P2);
 | |
| 
 | |
|     EXPECT_EQ(sum(R1 == R2)[0], 255 * R2.total());
 | |
|     EXPECT_EQ(sum(P1 == P2)[0], 255 * P2.total());
 | |
| 
 | |
|     // bulk prediction, with non-continuous memory storage
 | |
|     Mat R3_(N, 1+1, CV_32S),
 | |
|         P3_(N, 3+1, CV_32F);
 | |
|     nb->predictProb(X, R3_.col(0), P3_.colRange(0,3));
 | |
|     Mat R3 = R3_.col(0).clone(),
 | |
|         P3 = P3_.colRange(0,3).clone();
 | |
| 
 | |
|     EXPECT_EQ(sum(R1 == R3)[0], 255 * R3.total());
 | |
|     EXPECT_EQ(sum(P1 == P3)[0], 255 * P3.total());
 | |
| }
 | |
| 
 | |
| /* End of file. */
 | 
