406 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			406 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| 
 | |
| #ifdef HAVE_CUDA
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // FGDStatModel
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
|     template<> void Ptr<CvBGStatModel>::delete_obj()
 | |
|     {
 | |
|         cvReleaseBGStatModel(&obj);
 | |
|     }
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string, Channels)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     std::string inputFile;
 | |
|     int out_cn;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
 | |
| 
 | |
|         out_cn = GET_PARAM(2);
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(FGDStatModel, Update)
 | |
| {
 | |
|     cv::VideoCapture cap(inputFile);
 | |
|     ASSERT_TRUE(cap.isOpened());
 | |
| 
 | |
|     cv::Mat frame;
 | |
|     cap >> frame;
 | |
|     ASSERT_FALSE(frame.empty());
 | |
| 
 | |
|     IplImage ipl_frame = frame;
 | |
|     cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
 | |
| 
 | |
|     cv::gpu::GpuMat d_frame(frame);
 | |
|     cv::gpu::FGDStatModel d_model(out_cn);
 | |
|     d_model.create(d_frame);
 | |
| 
 | |
|     cv::Mat h_background;
 | |
|     cv::Mat h_foreground;
 | |
|     cv::Mat h_background3;
 | |
| 
 | |
|     cv::Mat backgroundDiff;
 | |
|     cv::Mat foregroundDiff;
 | |
| 
 | |
|     for (int i = 0; i < 5; ++i)
 | |
|     {
 | |
|         cap >> frame;
 | |
|         ASSERT_FALSE(frame.empty());
 | |
| 
 | |
|         ipl_frame = frame;
 | |
|         int gold_count = cvUpdateBGStatModel(&ipl_frame, model);
 | |
| 
 | |
|         d_frame.upload(frame);
 | |
| 
 | |
|         int count = d_model.update(d_frame);
 | |
| 
 | |
|         ASSERT_EQ(gold_count, count);
 | |
| 
 | |
|         cv::Mat gold_background(model->background);
 | |
|         cv::Mat gold_foreground(model->foreground);
 | |
| 
 | |
|         if (out_cn == 3)
 | |
|             d_model.background.download(h_background3);
 | |
|         else
 | |
|         {
 | |
|             d_model.background.download(h_background);
 | |
|             cv::cvtColor(h_background, h_background3, cv::COLOR_BGRA2BGR);
 | |
|         }
 | |
|         d_model.foreground.download(h_foreground);
 | |
| 
 | |
|         ASSERT_MAT_NEAR(gold_background, h_background3, 1.0);
 | |
|         ASSERT_MAT_NEAR(gold_foreground, h_foreground, 0.0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, FGDStatModel, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(std::string("768x576.avi")),
 | |
|     testing::Values(Channels(3), Channels(4))));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // MOG
 | |
| 
 | |
| namespace
 | |
| {
 | |
|     IMPLEMENT_PARAM_CLASS(UseGray, bool)
 | |
|     IMPLEMENT_PARAM_CLASS(LearningRate, double)
 | |
| }
 | |
| 
 | |
| PARAM_TEST_CASE(MOG, cv::gpu::DeviceInfo, std::string, UseGray, LearningRate, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     std::string inputFile;
 | |
|     bool useGray;
 | |
|     double learningRate;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
 | |
| 
 | |
|         useGray = GET_PARAM(2);
 | |
| 
 | |
|         learningRate = GET_PARAM(3);
 | |
| 
 | |
|         useRoi = GET_PARAM(4);
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MOG, Update)
 | |
| {
 | |
|     cv::VideoCapture cap(inputFile);
 | |
|     ASSERT_TRUE(cap.isOpened());
 | |
| 
 | |
|     cv::Mat frame;
 | |
|     cap >> frame;
 | |
|     ASSERT_FALSE(frame.empty());
 | |
| 
 | |
|     cv::gpu::MOG_GPU mog;
 | |
|     cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
 | |
| 
 | |
|     cv::BackgroundSubtractorMOG mog_gold;
 | |
|     cv::Mat foreground_gold;
 | |
| 
 | |
|     for (int i = 0; i < 10; ++i)
 | |
|     {
 | |
|         cap >> frame;
 | |
|         ASSERT_FALSE(frame.empty());
 | |
| 
 | |
|         if (useGray)
 | |
|         {
 | |
|             cv::Mat temp;
 | |
|             cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
 | |
|             cv::swap(temp, frame);
 | |
|         }
 | |
| 
 | |
|         mog(loadMat(frame, useRoi), foreground, (float)learningRate);
 | |
| 
 | |
|         mog_gold(frame, foreground_gold, learningRate);
 | |
| 
 | |
|         ASSERT_MAT_NEAR(foreground_gold, foreground, 0.0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, MOG, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(std::string("768x576.avi")),
 | |
|     testing::Values(UseGray(true), UseGray(false)),
 | |
|     testing::Values(LearningRate(0.0), LearningRate(0.01)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // MOG2
 | |
| 
 | |
| PARAM_TEST_CASE(MOG2, cv::gpu::DeviceInfo, std::string, UseGray, UseRoi)
 | |
| {
 | |
|     cv::gpu::DeviceInfo devInfo;
 | |
|     std::string inputFile;
 | |
|     bool useGray;
 | |
|     bool useRoi;
 | |
| 
 | |
|     virtual void SetUp()
 | |
|     {
 | |
|         devInfo = GET_PARAM(0);
 | |
|         cv::gpu::setDevice(devInfo.deviceID());
 | |
| 
 | |
|         inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
 | |
| 
 | |
|         useGray = GET_PARAM(2);
 | |
| 
 | |
|         useRoi = GET_PARAM(3);
 | |
|     }
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(MOG2, Update)
 | |
| {
 | |
|     cv::VideoCapture cap(inputFile);
 | |
|     ASSERT_TRUE(cap.isOpened());
 | |
| 
 | |
|     cv::Mat frame;
 | |
|     cap >> frame;
 | |
|     ASSERT_FALSE(frame.empty());
 | |
| 
 | |
|     cv::gpu::MOG2_GPU mog2;
 | |
|     cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
 | |
| 
 | |
|     cv::BackgroundSubtractorMOG2 mog2_gold;
 | |
|     cv::Mat foreground_gold;
 | |
| 
 | |
|     for (int i = 0; i < 10; ++i)
 | |
|     {
 | |
|         cap >> frame;
 | |
|         ASSERT_FALSE(frame.empty());
 | |
| 
 | |
|         if (useGray)
 | |
|         {
 | |
|             cv::Mat temp;
 | |
|             cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
 | |
|             cv::swap(temp, frame);
 | |
|         }
 | |
| 
 | |
|         mog2(loadMat(frame, useRoi), foreground);
 | |
| 
 | |
|         mog2_gold(frame, foreground_gold);
 | |
| 
 | |
|         double norm = cv::norm(foreground_gold, cv::Mat(foreground), cv::NORM_L1);
 | |
| 
 | |
|         norm /= foreground_gold.size().area();
 | |
| 
 | |
|         ASSERT_LE(norm, 0.09);
 | |
|     }
 | |
| }
 | |
| 
 | |
| GPU_TEST_P(MOG2, getBackgroundImage)
 | |
| {
 | |
|     if (useGray)
 | |
|         return;
 | |
| 
 | |
|     cv::VideoCapture cap(inputFile);
 | |
|     ASSERT_TRUE(cap.isOpened());
 | |
| 
 | |
|     cv::Mat frame;
 | |
| 
 | |
|     cv::gpu::MOG2_GPU mog2;
 | |
|     cv::gpu::GpuMat foreground;
 | |
| 
 | |
|     cv::BackgroundSubtractorMOG2 mog2_gold;
 | |
|     cv::Mat foreground_gold;
 | |
| 
 | |
|     for (int i = 0; i < 10; ++i)
 | |
|     {
 | |
|         cap >> frame;
 | |
|         ASSERT_FALSE(frame.empty());
 | |
| 
 | |
|         mog2(loadMat(frame, useRoi), foreground);
 | |
| 
 | |
|         mog2_gold(frame, foreground_gold);
 | |
|     }
 | |
| 
 | |
|     cv::gpu::GpuMat background = createMat(frame.size(), frame.type(), useRoi);
 | |
|     mog2.getBackgroundImage(background);
 | |
| 
 | |
|     cv::Mat background_gold;
 | |
|     mog2_gold.getBackgroundImage(background_gold);
 | |
| 
 | |
|     ASSERT_MAT_NEAR(background_gold, background, 0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, MOG2, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     testing::Values(std::string("768x576.avi")),
 | |
|     testing::Values(UseGray(true), UseGray(false)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // VIBE
 | |
| 
 | |
| PARAM_TEST_CASE(VIBE, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi)
 | |
| {
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(VIBE, Accuracy)
 | |
| {
 | |
|     const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
 | |
|     cv::gpu::setDevice(devInfo.deviceID());
 | |
|     const cv::Size size = GET_PARAM(1);
 | |
|     const int type = GET_PARAM(2);
 | |
|     const bool useRoi = GET_PARAM(3);
 | |
| 
 | |
|     const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
 | |
| 
 | |
|     cv::Mat frame = randomMat(size, type, 0.0, 100);
 | |
|     cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
 | |
| 
 | |
|     cv::gpu::VIBE_GPU vibe;
 | |
|     cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
 | |
|     vibe.initialize(d_frame);
 | |
| 
 | |
|     for (int i = 0; i < 20; ++i)
 | |
|         vibe(d_frame, d_fgmask);
 | |
| 
 | |
|     frame = randomMat(size, type, 160, 255);
 | |
|     d_frame = loadMat(frame, useRoi);
 | |
|     vibe(d_frame, d_fgmask);
 | |
| 
 | |
|     // now fgmask should be entirely foreground
 | |
|     ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, VIBE, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatType(CV_8UC1), MatType(CV_8UC3), MatType(CV_8UC4)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| //////////////////////////////////////////////////////
 | |
| // GMG
 | |
| 
 | |
| PARAM_TEST_CASE(GMG, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
 | |
| {
 | |
| };
 | |
| 
 | |
| GPU_TEST_P(GMG, Accuracy)
 | |
| {
 | |
|     const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
 | |
|     cv::gpu::setDevice(devInfo.deviceID());
 | |
|     const cv::Size size = GET_PARAM(1);
 | |
|     const int depth = GET_PARAM(2);
 | |
|     const int channels = GET_PARAM(3);
 | |
|     const bool useRoi = GET_PARAM(4);
 | |
| 
 | |
|     const int type = CV_MAKE_TYPE(depth, channels);
 | |
| 
 | |
|     const cv::Mat zeros(size, CV_8UC1, cv::Scalar::all(0));
 | |
|     const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
 | |
| 
 | |
|     cv::Mat frame = randomMat(size, type, 0, 100);
 | |
|     cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
 | |
| 
 | |
|     cv::gpu::GMG_GPU gmg;
 | |
|     gmg.numInitializationFrames = 5;
 | |
|     gmg.smoothingRadius = 0;
 | |
|     gmg.initialize(d_frame.size(), 0, 255);
 | |
| 
 | |
|     cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
 | |
| 
 | |
|     for (int i = 0; i < gmg.numInitializationFrames; ++i)
 | |
|     {
 | |
|         gmg(d_frame, d_fgmask);
 | |
| 
 | |
|         // fgmask should be entirely background during training
 | |
|         ASSERT_MAT_NEAR(zeros, d_fgmask, 0);
 | |
|     }
 | |
| 
 | |
|     frame = randomMat(size, type, 160, 255);
 | |
|     d_frame = loadMat(frame, useRoi);
 | |
|     gmg(d_frame, d_fgmask);
 | |
| 
 | |
|     // now fgmask should be entirely foreground
 | |
|     ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
 | |
| }
 | |
| 
 | |
| INSTANTIATE_TEST_CASE_P(GPU_Video, GMG, testing::Combine(
 | |
|     ALL_DEVICES,
 | |
|     DIFFERENT_SIZES,
 | |
|     testing::Values(MatType(CV_8U), MatType(CV_16U), MatType(CV_32F)),
 | |
|     testing::Values(Channels(1), Channels(3), Channels(4)),
 | |
|     WHOLE_SUBMAT));
 | |
| 
 | |
| #endif // HAVE_CUDA
 | 
