205 lines
6.6 KiB
C++
205 lines
6.6 KiB
C++
#include <iostream> // for standard I/O
|
|
#include <string> // for strings
|
|
#include <iomanip> // for controlling float print precision
|
|
#include <sstream> // string to number conversion
|
|
|
|
#include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
|
|
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
|
|
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
double getPSNR ( const Mat& I1, const Mat& I2);
|
|
Scalar getMSSIM( const Mat& I1, const Mat& I2);
|
|
|
|
void help()
|
|
{
|
|
cout
|
|
<< "\n--------------------------------------------------------------------------" << endl
|
|
<< "This program shows how to read a video file with OpenCV. In addition, it tests the"
|
|
<< " similarity of two input videos first with PSNR, and for the frames below a PSNR " << endl
|
|
<< "trigger value, also with MSSIM."<< endl
|
|
<< "Usage:" << endl
|
|
<< "./video-source referenceVideo useCaseTestVideo PSNR_Trigger_Value Wait_Between_Frames " << endl
|
|
<< "--------------------------------------------------------------------------" << endl
|
|
<< endl;
|
|
}
|
|
int main(int argc, char *argv[], char *window_name)
|
|
{
|
|
help();
|
|
if (argc != 5)
|
|
{
|
|
cout << "Not enough parameters" << endl;
|
|
return -1;
|
|
}
|
|
stringstream conv;
|
|
|
|
const string sourceReference = argv[1],sourceCompareWith = argv[2];
|
|
int psnrTriggerValue, delay;
|
|
conv << argv[3] << endl << argv[4]; // put in the strings
|
|
conv >> psnrTriggerValue >> delay;// take out the numbers
|
|
|
|
char c;
|
|
int frameNum = -1; // Frame counter
|
|
|
|
VideoCapture captRefrnc(sourceReference),
|
|
captUndTst(sourceCompareWith);
|
|
|
|
if ( !captRefrnc.isOpened())
|
|
{
|
|
cout << "Could not open reference " << sourceReference << endl;
|
|
return -1;
|
|
}
|
|
|
|
if( !captUndTst.isOpened())
|
|
{
|
|
cout << "Could not open case test " << sourceCompareWith << endl;
|
|
return -1;
|
|
}
|
|
|
|
Size refS = Size((int) captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH),
|
|
(int) captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)),
|
|
uTSi = Size((int) captUndTst.get(CV_CAP_PROP_FRAME_WIDTH),
|
|
(int) captUndTst.get(CV_CAP_PROP_FRAME_HEIGHT));
|
|
|
|
if (refS != uTSi)
|
|
{
|
|
cout << "Inputs have different size!!! Closing." << endl;
|
|
return -1;
|
|
}
|
|
|
|
const char* WIN_UT = "Under Test";
|
|
const char* WIN_RF = "Reference";
|
|
|
|
// Windows
|
|
namedWindow(WIN_RF, CV_WINDOW_AUTOSIZE );
|
|
namedWindow(WIN_UT, CV_WINDOW_AUTOSIZE );
|
|
cvMoveWindow(WIN_RF, 400 , 0); //750, 2 (bernat =0)
|
|
cvMoveWindow(WIN_UT, refS.width, 0); //1500, 2
|
|
|
|
cout << "Reference frame resolution: Width=" << refS.width << " Height=" << refS.height
|
|
<< " of nr#: " << captRefrnc.get(CV_CAP_PROP_FRAME_COUNT) << endl;
|
|
|
|
cout << "PSNR trigger value " <<
|
|
setiosflags(ios::fixed) << setprecision(3) << psnrTriggerValue << endl;
|
|
|
|
Mat frameReference, frameUnderTest;
|
|
double psnrV;
|
|
Scalar mssimV;
|
|
|
|
while( true) //Show the image captured in the window and repeat
|
|
{
|
|
captRefrnc >> frameReference;
|
|
captUndTst >> frameUnderTest;
|
|
|
|
if( frameReference.empty() || frameUnderTest.empty())
|
|
{
|
|
cout << " < < < Game over! > > > ";
|
|
break;
|
|
}
|
|
|
|
++frameNum;
|
|
cout <<"Frame:" << frameNum <<"# ";
|
|
|
|
///////////////////////////////// PSNR ////////////////////////////////////////////////////
|
|
psnrV = getPSNR(frameReference,frameUnderTest); //get PSNR
|
|
cout << setiosflags(ios::fixed) << setprecision(3) << psnrV << "dB";
|
|
|
|
//////////////////////////////////// MSSIM /////////////////////////////////////////////////
|
|
if (psnrV < psnrTriggerValue && psnrV)
|
|
{
|
|
mssimV = getMSSIM(frameReference,frameUnderTest);
|
|
|
|
cout << " MSSIM: "
|
|
<< " R " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[2] * 100 << "%"
|
|
<< " G " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[1] * 100 << "%"
|
|
<< " B " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[0] * 100 << "%";
|
|
}
|
|
|
|
cout << endl;
|
|
|
|
////////////////////////////////// Show Image /////////////////////////////////////////////
|
|
imshow( WIN_RF, frameReference);
|
|
imshow( WIN_UT, frameUnderTest);
|
|
|
|
c = cvWaitKey(delay);
|
|
if (c == 27) break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
double getPSNR(const Mat& I1, const Mat& I2)
|
|
{
|
|
Mat s1;
|
|
absdiff(I1, I2, s1); // |I1 - I2|
|
|
s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
|
|
s1 = s1.mul(s1); // |I1 - I2|^2
|
|
|
|
Scalar s = sum(s1); // sum elements per channel
|
|
|
|
double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
|
|
|
|
if( sse <= 1e-10) // for small values return zero
|
|
return 0;
|
|
else
|
|
{
|
|
double mse =sse /(double)(I1.channels() * I1.total());
|
|
double psnr = 10.0*log10((255*255)/mse);
|
|
return psnr;
|
|
}
|
|
}
|
|
|
|
Scalar getMSSIM( const Mat& i1, const Mat& i2)
|
|
{
|
|
const double C1 = 6.5025, C2 = 58.5225;
|
|
/***************************** INITS **********************************/
|
|
int d = CV_32F;
|
|
|
|
Mat I1, I2;
|
|
i1.convertTo(I1, d); // cannot calculate on one byte large values
|
|
i2.convertTo(I2, d);
|
|
|
|
Mat I2_2 = I2.mul(I2); // I2^2
|
|
Mat I1_2 = I1.mul(I1); // I1^2
|
|
Mat I1_I2 = I1.mul(I2); // I1 * I2
|
|
|
|
/*************************** END INITS **********************************/
|
|
|
|
Mat mu1, mu2; // PRELIMINARY COMPUTING
|
|
GaussianBlur(I1, mu1, Size(11, 11), 1.5);
|
|
GaussianBlur(I2, mu2, Size(11, 11), 1.5);
|
|
|
|
Mat mu1_2 = mu1.mul(mu1);
|
|
Mat mu2_2 = mu2.mul(mu2);
|
|
Mat mu1_mu2 = mu1.mul(mu2);
|
|
|
|
Mat sigma1_2, sigma2_2, sigma12;
|
|
|
|
GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
|
|
sigma1_2 -= mu1_2;
|
|
|
|
GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
|
|
sigma2_2 -= mu2_2;
|
|
|
|
GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
|
|
sigma12 -= mu1_mu2;
|
|
|
|
///////////////////////////////// FORMULA ////////////////////////////////
|
|
Mat t1, t2, t3;
|
|
|
|
t1 = 2 * mu1_mu2 + C1;
|
|
t2 = 2 * sigma12 + C2;
|
|
t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
|
|
|
|
t1 = mu1_2 + mu2_2 + C1;
|
|
t2 = sigma1_2 + sigma2_2 + C2;
|
|
t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
|
|
|
|
Mat ssim_map;
|
|
divide(t3, t1, ssim_map); // ssim_map = t3./t1;
|
|
|
|
Scalar mssim = mean( ssim_map ); // mssim = average of ssim map
|
|
return mssim;
|
|
} |