857 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			857 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "precomp.hpp"
 | |
| 
 | |
| #define PATH_TO_E       1
 | |
| #define PATH_TO_SE      2
 | |
| #define PATH_TO_S       3
 | |
| 
 | |
| #define K_S         2
 | |
| #define E_S         2
 | |
| #define C_S         .01
 | |
| #define K_Z         5000
 | |
| #define K_NM        50000
 | |
| #define K_B         40
 | |
| #define NULL_EDGE   0.001f
 | |
| #define inf         DBL_MAX
 | |
| 
 | |
| typedef struct __CvWork
 | |
| {
 | |
|     double w_east;
 | |
|     double w_southeast;
 | |
|     double w_south;
 | |
|     char path_e;
 | |
|     char path_se;
 | |
|     char path_s;
 | |
| }_CvWork;
 | |
| 
 | |
| 
 | |
| double _cvBendingWork(  CvPoint2D32f* B0,
 | |
|                         CvPoint2D32f* F0,
 | |
|                         CvPoint2D32f* B1,
 | |
|                         CvPoint2D32f* F1/*,
 | |
|                         CvPoint* K */);
 | |
| 
 | |
| double _cvStretchingWork(CvPoint2D32f* P1,
 | |
|                          CvPoint2D32f* P2);
 | |
| 
 | |
| void _cvWorkEast     (int i, int j, _CvWork** W, CvPoint2D32f* edges1, CvPoint2D32f* edges2);
 | |
| void _cvWorkSouthEast(int i, int j, _CvWork** W, CvPoint2D32f* edges1, CvPoint2D32f* edges2);
 | |
| void _cvWorkSouth    (int i, int j, _CvWork** W, CvPoint2D32f* edges1, CvPoint2D32f* edges2);
 | |
| 
 | |
| static CvPoint2D32f null_edge = {0,0};
 | |
| 
 | |
| double _cvStretchingWork(CvPoint2D32f* P1,
 | |
|                          CvPoint2D32f* P2)
 | |
| {
 | |
|     double L1,L2, L_min, dL;
 | |
| 
 | |
|     L1 = sqrt( (double)P1->x*P1->x + P1->y*P1->y);
 | |
|     L2 = sqrt( (double)P2->x*P2->x + P2->y*P2->y);
 | |
| 
 | |
|     L_min = MIN(L1, L2);
 | |
|     dL = fabs( L1 - L2 );
 | |
| 
 | |
|     return K_S * pow( dL, E_S ) / ( L_min + C_S*dL );
 | |
| }
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////////
 | |
| CvPoint2D32f Q( CvPoint2D32f q0, CvPoint2D32f q1, CvPoint2D32f q2, double t );
 | |
| double angle( CvPoint2D32f A, CvPoint2D32f B );
 | |
| 
 | |
| double _cvBendingWork(  CvPoint2D32f* B0,
 | |
|                         CvPoint2D32f* F0,
 | |
|                         CvPoint2D32f* B1,
 | |
|                         CvPoint2D32f* F1/*,
 | |
|                         CvPoint* K*/)
 | |
| {
 | |
|     CvPoint2D32f Q0, Q1, Q2;
 | |
|     CvPoint2D32f Q1_nm = { 0, 0 }, Q2_nm = { 0, 0 };
 | |
|     double d0, d1, d2, des, t_zero;
 | |
|     double k_zero, k_nonmon;
 | |
|     CvPoint2D32f center;
 | |
|     double check01, check02;
 | |
|     char check_origin;
 | |
|     double d_angle, d_nm_angle;
 | |
| /*
 | |
|     if( (B0->x==0) && (B0->y==0) )
 | |
|     {
 | |
|         if( (F0->x==0) && (F0->y==0) )
 | |
|         {
 | |
|             B1->x = -B1->x;
 | |
|             B1->y = -B1->y;
 | |
| 
 | |
|             d_angle = acos( (B1->x*F1->x + B1->y*F1->y)/sqrt( (B1->x*B1->x + B1->y*B1->y)*(F1->x*F1->x + F1->y*F1->y) ) );
 | |
|             d_angle = CV_PI - d_angle;
 | |
| 
 | |
|             B1->x = -B1->x;
 | |
|             B1->y = -B1->y;
 | |
| 
 | |
|             //return d_angle*K_B;
 | |
|             return 100;
 | |
|         }
 | |
|         K->x = -K->x;
 | |
|         K->y = -K->y;
 | |
|         B1->x = -B1->x;
 | |
|         B1->y = -B1->y;
 | |
| 
 | |
|         d_angle = acos( (B1->x*F1->x + B1->y*F1->y)/sqrt( (B1->x*B1->x + B1->y*B1->y)*(F1->x*F1->x + F1->y*F1->y) ) );
 | |
|         d_angle = d_angle - acos( (F0->x*K->x + F0->y*K->y)/sqrt( (F0->x*F0->x + F0->y*F0->y)*(K->x*K->x + K->y*K->y) ) );
 | |
|         d_angle = d_angle - CV_PI*0.5;
 | |
|         d_angle = fabs(d_angle);
 | |
| 
 | |
| 
 | |
|         K->x = -K->x;
 | |
|         K->y = -K->y;
 | |
|         B1->x = -B1->x;
 | |
|         B1->y = -B1->y;
 | |
| 
 | |
|         //return d_angle*K_B;
 | |
|         return 100;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if( (F0->x==0) && (F0->y==0) )
 | |
|         {
 | |
|             K->x = -K->x;
 | |
|             K->y = -K->y;
 | |
|             B1->x = -B1->x;
 | |
|             B1->y = -B1->y;
 | |
| 
 | |
|             d_angle = acos( (B1->x*F1->x + B1->y*F1->y)/sqrt( (B1->x*B1->x + B1->y*B1->y)*(F1->x*F1->x + F1->y*F1->y) ) );
 | |
|             d_angle = d_angle - acos( (B0->x*K->x + B0->y*K->y)/sqrt( (B0->x*B0->x + B0->y*B0->y)*(K->x*K->x + K->y*K->y) ) );
 | |
|             d_angle = d_angle - CV_PI*0.5;
 | |
|             d_angle = fabs(d_angle);
 | |
| 
 | |
|             K->x = -K->x;
 | |
|             K->y = -K->y;
 | |
|             B1->x = -B1->x;
 | |
|             B1->y = -B1->y;
 | |
| 
 | |
|             //return d_angle*K_B;
 | |
|             return 100;
 | |
|         }
 | |
| ///////////////
 | |
| 
 | |
|     if( (B1->x==0) && (B1->y==0) )
 | |
|     {
 | |
|         if( (F1->x==0) && (F1->y==0) )
 | |
|         {
 | |
|             B0->x = -B0->x;
 | |
|             B0->y = -B0->y;
 | |
| 
 | |
|             d_angle = acos( (B0->x*F0->x + B0->y*F0->y)/sqrt( (B0->x*B0->x + B0->y*B0->y)*(F0->x*F0->x + F0->y*F0->y) ) );
 | |
|             d_angle = CV_PI - d_angle;
 | |
| 
 | |
|             B0->x = -B0->x;
 | |
|             B0->y = -B0->y;
 | |
| 
 | |
|             //return d_angle*K_B;
 | |
|             return 100;
 | |
|         }
 | |
|         K->x = -K->x;
 | |
|         K->y = -K->y;
 | |
|         B0->x = -B0->x;
 | |
|         B0->y = -B0->y;
 | |
| 
 | |
|         d_angle = acos( (B0->x*F0->x + B0->y*F0->y)/sqrt( (B0->x*B0->x + B0->y*B0->y)*(F0->x*F0->x + F0->y*F0->y) ) );
 | |
|         d_angle = d_angle - acos( (F1->x*K->x + F1->y*K->y)/sqrt( (F1->x*F1->x + F1->y*F1->y)*(K->x*K->x + K->y*K->y) ) );
 | |
|         d_angle = d_angle - CV_PI*0.5;
 | |
|         d_angle = fabs(d_angle);
 | |
| 
 | |
|         K->x = -K->x;
 | |
|         K->y = -K->y;
 | |
|         B0->x = -B0->x;
 | |
|         B0->y = -B0->y;
 | |
| 
 | |
|         //return d_angle*K_B;
 | |
|         return 100;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     if( (F1->x==0) && (F1->y==0) )
 | |
|         {
 | |
|             K->x = -K->x;
 | |
|             K->y = -K->y;
 | |
|             B0->x = -B0->x;
 | |
|             B0->y = -B0->y;
 | |
| 
 | |
|             d_angle = acos( (B0->x*F0->x + B0->y*F0->y)/sqrt( (B0->x*B0->x + B0->y*B0->y)*(F0->x*F0->x + F0->y*F0->y) ) );
 | |
|             d_angle = d_angle - acos( (B1->x*K->x + B1->y*K->y)/sqrt( (B1->x*B1->x + B1->y*B1->y)*(K->x*K->x + K->y*K->y) ) );
 | |
|             d_angle = d_angle - CV_PI*0.5;
 | |
|             d_angle = fabs(d_angle);
 | |
| 
 | |
|             K->x  = -K->x;
 | |
|             K->y  = -K->y;
 | |
|             B0->x = -B0->x;
 | |
|             B0->y = -B0->y;
 | |
| 
 | |
|             //return d_angle*K_B;
 | |
|             return 100;
 | |
|         }
 | |
| 
 | |
| */
 | |
| 
 | |
| /*
 | |
|     B0->x = -B0->x;
 | |
|     B0->y = -B0->y;
 | |
|     B1->x = -B1->x;
 | |
|     B1->y = -B1->y;
 | |
| */
 | |
|     Q0.x = F0->x * (-B0->x) + F0->y * (-B0->y);
 | |
|     Q0.y = F0->x * (-B0->y) - F0->y * (-B0->x);
 | |
| 
 | |
|     Q1.x = 0.5f*( (F1->x * (-B0->x) + F1->y * (-B0->y)) + (F0->x * (-B1->x) + F0->y * (-B1->y)) );
 | |
|     Q1.y = 0.5f*( (F1->x * (-B0->y) - F1->y * (-B0->x)) + (F0->x * (-B1->y) - F0->y * (-B1->x)) );
 | |
| 
 | |
|     Q2.x = F1->x * (-B1->x) + F1->y * (-B1->y);
 | |
|     Q2.y = F1->x * (-B1->y) - F1->y * (-B1->x);
 | |
| 
 | |
|     d0 = Q0.x * Q1.y - Q0.y * Q1.x;
 | |
|     d1 = 0.5f*(Q0.x * Q2.y - Q0.y * Q2.x);
 | |
|     d2 = Q1.x * Q2.y - Q1.y * Q2.x;
 | |
| 
 | |
|     // Check angles goes to zero
 | |
|     des = Q1.y*Q1.y - Q0.y*Q2.y;
 | |
| 
 | |
|     k_zero = 0;
 | |
| 
 | |
|     if( des >= 0 )
 | |
|     {
 | |
|         t_zero = ( Q0.y - Q1.y + sqrt(des) )/( Q0.y - 2*Q1.y + Q2.y );
 | |
| 
 | |
|         if( (0 < t_zero) && (t_zero < 1) && ( Q(Q0, Q1, Q2, t_zero).x > 0 ) )
 | |
|         {
 | |
|             k_zero = inf;
 | |
|         }
 | |
| 
 | |
|         t_zero = ( Q0.y - Q1.y - sqrt(des) )/( Q0.y - 2*Q1.y + Q2.y );
 | |
| 
 | |
|         if( (0 < t_zero) && (t_zero < 1) && ( Q(Q0, Q1, Q2, t_zero).x > 0 ) )
 | |
|         {
 | |
|             k_zero = inf;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Check nonmonotonic
 | |
|     des = d1*d1 - d0*d2;
 | |
| 
 | |
|     k_nonmon = 0;
 | |
| 
 | |
|     if( des >= 0 )
 | |
|     {
 | |
|         t_zero = ( d0 - d1 - sqrt(des) )/( d0 - 2*d1 + d2 );
 | |
| 
 | |
|         if( (0 < t_zero) && (t_zero < 1) )
 | |
|         {
 | |
|             k_nonmon = 1;
 | |
|             Q1_nm = Q(Q0, Q1, Q2, t_zero);
 | |
|         }
 | |
| 
 | |
|         t_zero = ( d0 - d1 + sqrt(des) )/( d0 - 2*d1 + d2 );
 | |
| 
 | |
|         if( (0 < t_zero) && (t_zero < 1) )
 | |
|         {
 | |
|             k_nonmon += 2;
 | |
|             Q2_nm = Q(Q0, Q1, Q2, t_zero);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Finde origin lie in Q0Q1Q2
 | |
|     check_origin = 1;
 | |
| 
 | |
|     center.x = (Q0.x + Q1.x + Q2.x)/3;
 | |
|     center.y = (Q0.y + Q1.y + Q2.y)/3;
 | |
| 
 | |
|     check01 = (center.x - Q0.x)*(Q1.y - Q0.y) + (center.y - Q0.y)*(Q1.x - Q0.x);
 | |
|     check02 = (-Q0.x)*(Q1.y - Q0.y) + (-Q0.y)*(Q1.x - Q0.x);
 | |
|     if( check01*check02 > 0 )
 | |
|     {
 | |
|         check01 = (center.x - Q1.x)*(Q2.y - Q1.y) + (center.y - Q1.y)*(Q2.x - Q1.x);
 | |
|         check02 = (-Q1.x)*(Q2.y - Q1.y) + (-Q1.y)*(Q2.x - Q1.x);
 | |
|         if( check01*check02 > 0 )
 | |
|         {
 | |
|             check01 = (center.x - Q2.x)*(Q0.y - Q2.y) + (center.y - Q2.y)*(Q0.x - Q2.x);
 | |
|             check02 = (-Q2.x)*(Q0.y - Q2.y) + (-Q2.y)*(Q0.x - Q2.x);
 | |
|             if( check01*check02 > 0 )
 | |
|             {
 | |
|                 check_origin = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Calculate angle
 | |
|     d_nm_angle = 0;
 | |
|     d_angle = angle(Q0,Q2);
 | |
|     if( k_nonmon == 0 )
 | |
|     {
 | |
|         if( check_origin == 0 )
 | |
|         {
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             d_angle = 2*CV_PI - d_angle;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if( k_nonmon == 1 )
 | |
|         {
 | |
|             d_nm_angle = angle(Q0,Q1_nm);
 | |
|             if(d_nm_angle > d_angle)
 | |
|             {
 | |
|                 d_nm_angle = d_nm_angle - d_angle;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if( k_nonmon == 2 )
 | |
|         {
 | |
|             d_nm_angle = angle(Q0,Q2_nm);
 | |
|             if(d_nm_angle > d_angle)
 | |
|             {
 | |
|                 d_nm_angle = d_nm_angle - d_angle;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if( k_nonmon == 3 )
 | |
|         {
 | |
|             d_nm_angle = angle(Q0,Q1_nm);
 | |
|             if(d_nm_angle > d_angle)
 | |
|             {
 | |
|                 d_nm_angle = d_nm_angle - d_angle;
 | |
|                 d_nm_angle = d_nm_angle + angle(Q0, Q2_nm);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 d_nm_angle = d_nm_angle + angle(Q2,Q2_nm);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| /*
 | |
|     B0->x = -B0->x;
 | |
|     B0->y = -B0->y;
 | |
|     B1->x = -B1->x;
 | |
|     B1->y = -B1->y;
 | |
| */
 | |
|     return d_angle*K_B + d_nm_angle*K_NM + k_zero*K_Z;
 | |
|     //return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /////////////////////////////////////////////////////////////////////////////////
 | |
| void _cvWorkEast(int i, int j, _CvWork** W, CvPoint2D32f* edges1, CvPoint2D32f* edges2)
 | |
| {
 | |
|     double w1,w2;
 | |
|     CvPoint2D32f small_edge;
 | |
| 
 | |
|     //W[i,j].w_east
 | |
|     w1 = W[i-1][j].w_east /*+ _cvBendingWork(   &edges1[i-2],
 | |
|                                             &edges1[i-1],
 | |
|                                             &null_edge ,
 | |
|                                             &null_edge,
 | |
|                                             NULL)*/;
 | |
| 
 | |
|     small_edge.x = NULL_EDGE*edges1[i-1].x;
 | |
|     small_edge.y = NULL_EDGE*edges1[i-1].y;
 | |
| 
 | |
|     w2 = W[i-1][j].w_southeast + _cvBendingWork(&edges1[i-2],
 | |
|                                                 &edges1[i-1],
 | |
|                                                 &edges2[j-1],
 | |
|                                                 /*&null_edge*/&small_edge/*,
 | |
|                                                 &edges2[j]*/);
 | |
| 
 | |
|     if(w1<w2)
 | |
|     {
 | |
|         W[i][j].w_east = w1 + _cvStretchingWork( &edges1[i-1], &null_edge );
 | |
|         W[i][j].path_e = PATH_TO_E;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         W[i][j].w_east = w2 + _cvStretchingWork( &edges1[i-1], &null_edge );
 | |
|         W[i][j].path_e = PATH_TO_SE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////////
 | |
| void _cvWorkSouthEast(int i, int j, _CvWork** W, CvPoint2D32f* edges1, CvPoint2D32f* edges2)
 | |
| {
 | |
|     double w1,w2,w3;
 | |
|     CvPoint2D32f small_edge;
 | |
| 
 | |
|     //W[i,j].w_southeast
 | |
|     small_edge.x = NULL_EDGE*edges1[i-2].x;
 | |
|     small_edge.y = NULL_EDGE*edges1[i-2].y;
 | |
| 
 | |
|     w1 = W[i-1][j-1].w_east + _cvBendingWork(&edges1[i-2],
 | |
|                                             &edges1[i-1],
 | |
|                                             /*&null_edge*/&small_edge,
 | |
|                                             &edges2[j-1]/*,
 | |
|                                             &edges2[j-2]*/);
 | |
| 
 | |
|     w2 = W[i-1][j-1].w_southeast + _cvBendingWork(  &edges1[i-2],
 | |
|                                                     &edges1[i-1],
 | |
|                                                     &edges2[j-2],
 | |
|                                                     &edges2[j-1]/*,
 | |
|                                                     NULL*/);
 | |
| 
 | |
|     small_edge.x = NULL_EDGE*edges2[j-2].x;
 | |
|     small_edge.y = NULL_EDGE*edges2[j-2].y;
 | |
| 
 | |
|     w3 = W[i-1][j-1].w_south + _cvBendingWork(  /*&null_edge*/&small_edge,
 | |
|                                                 &edges1[i-1],
 | |
|                                                 &edges2[j-2],
 | |
|                                                 &edges2[j-1]/*,
 | |
|                                                 &edges1[i-2]*/);
 | |
| 
 | |
|     if( w1<w2 )
 | |
|     {
 | |
|         if(w1<w3)
 | |
|         {
 | |
|             W[i][j].w_southeast = w1 + _cvStretchingWork( &edges1[i-1], &edges2[j-1] );
 | |
|             W[i][j].path_se = PATH_TO_E;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             W[i][j].w_southeast = w3 + _cvStretchingWork( &edges1[i-1], &edges2[j-1] );
 | |
|             W[i][j].path_se = 3;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if( w2<w3)
 | |
|         {
 | |
|             W[i][j].w_southeast = w2 + _cvStretchingWork( &edges1[i-1], &edges2[j-1] );
 | |
|             W[i][j].path_se = PATH_TO_SE;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             W[i][j].w_southeast = w3 + _cvStretchingWork( &edges1[i-1], &edges2[j-1] );
 | |
|             W[i][j].path_se = 3;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////////////
 | |
| void _cvWorkSouth(int i, int j, _CvWork** W, CvPoint2D32f* edges1, CvPoint2D32f* edges2)
 | |
| {
 | |
|     double w1,w2;
 | |
|     CvPoint2D32f small_edge;
 | |
| 
 | |
|     //W[i,j].w_south
 | |
| 
 | |
|     small_edge.x = NULL_EDGE*edges2[j-1].x;
 | |
|     small_edge.y = NULL_EDGE*edges2[j-1].y;
 | |
| 
 | |
|     w1 = W[i][j-1].w_southeast + _cvBendingWork(&edges1[i-1],
 | |
|                                                 /*&null_edge*/&small_edge,
 | |
|                                                 &edges2[j-2],
 | |
|                                                 &edges2[j-1]/*,
 | |
|                                                 &edges1[i]*/);
 | |
| 
 | |
|     w2 = W[i][j-1].w_south /*+ _cvBendingWork(  &null_edge ,
 | |
|                                             &null_edge,
 | |
|                                             &edges2[j-2],
 | |
|                                             &edges2[j-1],
 | |
|                                             NULL)*/;
 | |
| 
 | |
|     if( w1<w2 )
 | |
|     {
 | |
|         W[i][j].w_south = w1 + _cvStretchingWork( &null_edge, &edges2[j-1] );
 | |
|         W[i][j].path_s = PATH_TO_SE;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         W[i][j].w_south = w2 + _cvStretchingWork( &null_edge, &edges2[j-1] );
 | |
|         W[i][j].path_s = 3;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===================================================
 | |
| CvPoint2D32f Q(CvPoint2D32f q0,CvPoint2D32f q1,CvPoint2D32f q2,double t)
 | |
| {
 | |
|     CvPoint2D32f q;
 | |
| 
 | |
|     q.x = (float)(q0.x*(1-t)*(1-t) + 2*q1.x*t*(1-t) + q2.x*t*t);
 | |
|     q.y = (float)(q0.y*(1-t)*(1-t) + 2*q1.y*t*(1-t) + q2.y*t*t);
 | |
| 
 | |
|     return q;
 | |
| }
 | |
| 
 | |
| double angle(CvPoint2D32f A, CvPoint2D32f B)
 | |
| {
 | |
|     return acos( (A.x*B.x + A.y*B.y)/sqrt( (double)(A.x*A.x + A.y*A.y)*(B.x*B.x + B.y*B.y) ) );
 | |
| }
 | |
| #if 0
 | |
| /***************************************************************************************\
 | |
| *
 | |
| *   This function compute intermediate polygon between contour1 and contour2
 | |
| *
 | |
| *   Correspondence between points of contours specify by corr
 | |
| *
 | |
| *   param = [0,1];  0 correspondence to contour1, 1 - contour2
 | |
| *
 | |
| \***************************************************************************************/
 | |
| static CvSeq* icvBlendContours(CvSeq* contour1,
 | |
|                         CvSeq* contour2,
 | |
|                         CvSeq* corr,
 | |
|                         double param,
 | |
|                         CvMemStorage* storage)
 | |
| {
 | |
|     int j;
 | |
| 
 | |
|     CvSeqWriter writer01;
 | |
|     CvSeqReader reader01;
 | |
| 
 | |
|     int Ni,Nj;              // size of contours
 | |
|     int i;                  // counter
 | |
| 
 | |
|     CvPoint* point1;        // array of first contour point
 | |
|     CvPoint* point2;        // array of second contour point
 | |
| 
 | |
|     CvPoint point_output;   // intermediate storage of ouput point
 | |
| 
 | |
|     int corr_point;
 | |
| 
 | |
|     // Create output sequence.
 | |
|     CvSeq* output = cvCreateSeq(0,
 | |
|                                 sizeof(CvSeq),
 | |
|                                 sizeof(CvPoint),
 | |
|                                 storage );
 | |
| 
 | |
|     // Find size of contours.
 | |
|     Ni = contour1->total + 1;
 | |
|     Nj = contour2->total + 1;
 | |
| 
 | |
|     point1 = (CvPoint* )malloc( Ni*sizeof(CvPoint) );
 | |
|     point2 = (CvPoint* )malloc( Nj*sizeof(CvPoint) );
 | |
| 
 | |
|     // Initialize arrays of point
 | |
|     cvCvtSeqToArray( contour1, point1, CV_WHOLE_SEQ );
 | |
|     cvCvtSeqToArray( contour2, point2, CV_WHOLE_SEQ );
 | |
| 
 | |
|     // First and last point mast be equal.
 | |
|     point1[Ni-1] = point1[0];
 | |
|     point2[Nj-1] = point2[0];
 | |
| 
 | |
|     // Initializes process of writing to sequence.
 | |
|     cvStartAppendToSeq( output, &writer01);
 | |
| 
 | |
|     i = Ni-1; //correspondence to points of contour1
 | |
|     for( ; corr; corr = corr->h_next )
 | |
|     {
 | |
|         //Initializes process of sequential reading from sequence
 | |
|         cvStartReadSeq( corr, &reader01, 0 );
 | |
| 
 | |
|         for(j=0; j < corr->total; j++)
 | |
|         {
 | |
|             // Read element from sequence.
 | |
|             CV_READ_SEQ_ELEM( corr_point, reader01 );
 | |
| 
 | |
|             // Compute point of intermediate polygon.
 | |
|             point_output.x = cvRound(point1[i].x + param*( point2[corr_point].x - point1[i].x ));
 | |
|             point_output.y = cvRound(point1[i].y + param*( point2[corr_point].y - point1[i].y ));
 | |
| 
 | |
|             // Write element to sequence.
 | |
|             CV_WRITE_SEQ_ELEM( point_output, writer01 );
 | |
|         }
 | |
|         i--;
 | |
|     }
 | |
|     // Updates sequence header.
 | |
|     cvFlushSeqWriter( &writer01 );
 | |
| 
 | |
|     return output;
 | |
| }
 | |
| 
 | |
| /**************************************************************************************************
 | |
| *
 | |
| *
 | |
| *
 | |
| *
 | |
| *
 | |
| *
 | |
| *
 | |
| *
 | |
| *
 | |
| *
 | |
| **************************************************************************************************/
 | |
| 
 | |
| 
 | |
| static void icvCalcContoursCorrespondence(CvSeq* contour1,
 | |
|                                    CvSeq* contour2,
 | |
|                                    CvSeq** corr,
 | |
|                                    CvMemStorage* storage)
 | |
| {
 | |
|     int i,j;                    // counter of cycles
 | |
|     int Ni,Nj;                  // size of contours
 | |
|     _CvWork** W;                // graph for search minimum of work
 | |
| 
 | |
|     CvPoint* point1;            // array of first contour point
 | |
|     CvPoint* point2;            // array of second contour point
 | |
|     CvPoint2D32f* edges1;       // array of first contour edge
 | |
|     CvPoint2D32f* edges2;       // array of second contour edge
 | |
| 
 | |
|     //CvPoint null_edge = {0,0};    //
 | |
|     CvPoint2D32f small_edge;
 | |
|     //double inf;                   // infinity
 | |
| 
 | |
|     CvSeq* corr01;
 | |
|     CvSeqWriter writer;
 | |
| 
 | |
|     char path;                  //
 | |
| 
 | |
|     // Find size of contours
 | |
|     Ni = contour1->total + 1;
 | |
|     Nj = contour2->total + 1;
 | |
| 
 | |
|     // Create arrays
 | |
|     W = (_CvWork**)malloc(sizeof(_CvWork*)*Ni);
 | |
|     for(i=0; i<Ni; i++)
 | |
|     {
 | |
|         W[i] = (_CvWork*)malloc(sizeof(_CvWork)*Nj);
 | |
|     }
 | |
| 
 | |
|     point1 = (CvPoint* )malloc( Ni*sizeof(CvPoint) );
 | |
|     point2 = (CvPoint* )malloc( Nj*sizeof(CvPoint) );
 | |
|     edges1 = (CvPoint2D32f* )malloc( (Ni-1)*sizeof(CvPoint2D32f) );
 | |
|     edges2 = (CvPoint2D32f* )malloc( (Nj-1)*sizeof(CvPoint2D32f) );
 | |
| 
 | |
|     // Initialize arrays of point
 | |
|     cvCvtSeqToArray( contour1, point1, CV_WHOLE_SEQ );
 | |
|     cvCvtSeqToArray( contour2, point2, CV_WHOLE_SEQ );
 | |
| 
 | |
|     point1[Ni-1] = point1[0];
 | |
|     point2[Nj-1] = point2[0];
 | |
| 
 | |
|     for(i=0;i<Ni-1;i++)
 | |
|     {
 | |
|         edges1[i].x = (float)( point1[i+1].x - point1[i].x );
 | |
|         edges1[i].y = (float)( point1[i+1].y - point1[i].y );
 | |
|     };
 | |
| 
 | |
|     for(i=0;i<Nj-1;i++)
 | |
|     {
 | |
|         edges2[i].x = (float)( point2[i+1].x - point2[i].x );
 | |
|         edges2[i].y = (float)( point2[i+1].y - point2[i].y );
 | |
|     };
 | |
| 
 | |
|     // Find infinity constant
 | |
|     //inf=1;
 | |
| /////////////
 | |
| 
 | |
| //Find min path in graph
 | |
| 
 | |
| /////////////
 | |
|     W[0][0].w_east      = 0;
 | |
|     W[0][0].w_south     = 0;
 | |
|     W[0][0].w_southeast = 0;
 | |
| 
 | |
|     W[1][1].w_southeast = _cvStretchingWork( &edges1[0], &edges2[0] );
 | |
|     W[1][1].w_east = inf;
 | |
|     W[1][1].w_south = inf;
 | |
|     W[1][1].path_se = PATH_TO_SE;
 | |
| 
 | |
|     W[0][1].w_south =  _cvStretchingWork( &null_edge, &edges2[0] );
 | |
|     W[0][1].path_s = 3;
 | |
|     W[1][0].w_east =  _cvStretchingWork( &edges2[0], &null_edge );
 | |
|     W[1][0].path_e = PATH_TO_E;
 | |
| 
 | |
|     for( i=1; i<Ni; i++ )
 | |
|     {
 | |
|         W[i][0].w_south     = inf;
 | |
|         W[i][0].w_southeast = inf;
 | |
|     }
 | |
| 
 | |
|     for(j=1; j<Nj; j++)
 | |
|     {
 | |
|         W[0][j].w_east      = inf;
 | |
|         W[0][j].w_southeast = inf;
 | |
|     }
 | |
| 
 | |
|     for(i=2; i<Ni; i++)
 | |
|     {
 | |
|         j=0;/////////
 | |
|         W[i][j].w_east = W[i-1][j].w_east;
 | |
|         W[i][j].w_east = W[i][j].w_east /*+
 | |
|             _cvBendingWork( &edges1[i-2], &edges1[i-1], &null_edge, &null_edge, NULL )*/;
 | |
|         W[i][j].w_east = W[i][j].w_east + _cvStretchingWork( &edges2[i-1], &null_edge );
 | |
|         W[i][j].path_e = PATH_TO_E;
 | |
| 
 | |
|         j=1;//////////
 | |
|         W[i][j].w_south = inf;
 | |
| 
 | |
|         _cvWorkEast (i, j, W, edges1, edges2);
 | |
| 
 | |
|         W[i][j].w_southeast = W[i-1][j-1].w_east;
 | |
|         W[i][j].w_southeast = W[i][j].w_southeast + _cvStretchingWork( &edges1[i-1], &edges2[j-1] );
 | |
| 
 | |
|         small_edge.x = NULL_EDGE*edges1[i-2].x;
 | |
|         small_edge.y = NULL_EDGE*edges1[i-2].y;
 | |
| 
 | |
|         W[i][j].w_southeast = W[i][j].w_southeast +
 | |
|             _cvBendingWork( &edges1[i-2], &edges1[i-1], /*&null_edge*/&small_edge, &edges2[j-1]/*, &edges2[Nj-2]*/);
 | |
| 
 | |
|         W[i][j].path_se = PATH_TO_E;
 | |
|     }
 | |
| 
 | |
|     for(j=2; j<Nj; j++)
 | |
|     {
 | |
|         i=0;//////////
 | |
|         W[i][j].w_south = W[i][j-1].w_south;
 | |
|         W[i][j].w_south = W[i][j].w_south + _cvStretchingWork( &null_edge, &edges2[j-1] );
 | |
|         W[i][j].w_south = W[i][j].w_south /*+
 | |
|             _cvBendingWork( &null_edge, &null_edge, &edges2[j-2], &edges2[j-1], NULL )*/;
 | |
|         W[i][j].path_s = 3;
 | |
| 
 | |
|         i=1;///////////
 | |
|         W[i][j].w_east= inf;
 | |
| 
 | |
|         _cvWorkSouth(i, j, W, edges1, edges2);
 | |
| 
 | |
|         W[i][j].w_southeast = W[i-1][j-1].w_south;
 | |
|         W[i][j].w_southeast = W[i][j].w_southeast + _cvStretchingWork( &edges1[i-1], &edges2[j-1] );
 | |
| 
 | |
|         small_edge.x = NULL_EDGE*edges2[j-2].x;
 | |
|         small_edge.y = NULL_EDGE*edges2[j-2].y;
 | |
| 
 | |
|         W[i][j].w_southeast = W[i][j].w_southeast +
 | |
|             _cvBendingWork( /*&null_edge*/&small_edge, &edges1[i-1], &edges2[j-2], &edges2[j-1]/*, &edges1[Ni-2]*/);
 | |
|         W[i][j].path_se = 3;
 | |
|     }
 | |
| 
 | |
|     for(i=2; i<Ni; i++)
 | |
|         for(j=2; j<Nj; j++)
 | |
|         {
 | |
|             _cvWorkEast     (i, j, W, edges1, edges2);
 | |
|             _cvWorkSouthEast(i, j, W, edges1, edges2);
 | |
|             _cvWorkSouth    (i, j, W, edges1, edges2);
 | |
|         }
 | |
| 
 | |
|     i=Ni-1;j=Nj-1;
 | |
| 
 | |
|     *corr = cvCreateSeq(0,
 | |
|                         sizeof(CvSeq),
 | |
|                         sizeof(int),
 | |
|                         storage );
 | |
| 
 | |
|     corr01 = *corr;
 | |
|     cvStartAppendToSeq( corr01, &writer );
 | |
|     if( W[i][j].w_east > W[i][j].w_southeast )
 | |
|         {
 | |
|             if( W[i][j].w_southeast > W[i][j].w_south )
 | |
|             {
 | |
|                 path = 3;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 path = PATH_TO_SE;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if( W[i][j].w_east < W[i][j].w_south )
 | |
|             {
 | |
|                 path = PATH_TO_E;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 path = 3;
 | |
|             }
 | |
|         }
 | |
|     do
 | |
|     {
 | |
|         CV_WRITE_SEQ_ELEM( j, writer );
 | |
| 
 | |
|         switch( path )
 | |
|         {
 | |
|         case PATH_TO_E:
 | |
|             path = W[i][j].path_e;
 | |
|             i--;
 | |
|             cvFlushSeqWriter( &writer );
 | |
|             corr01->h_next = cvCreateSeq(   0,
 | |
|                                             sizeof(CvSeq),
 | |
|                                             sizeof(int),
 | |
|                                             storage );
 | |
|             corr01 = corr01->h_next;
 | |
|             cvStartAppendToSeq( corr01, &writer );
 | |
|             break;
 | |
| 
 | |
|         case PATH_TO_SE:
 | |
|             path = W[i][j].path_se;
 | |
|             j--; i--;
 | |
|             cvFlushSeqWriter( &writer );
 | |
|             corr01->h_next = cvCreateSeq(   0,
 | |
|                                             sizeof(CvSeq),
 | |
|                                             sizeof(int),
 | |
|                                             storage );
 | |
|             corr01 = corr01->h_next;
 | |
|             cvStartAppendToSeq( corr01, &writer );
 | |
|             break;
 | |
| 
 | |
|         case 3:
 | |
|             path = W[i][j].path_s;
 | |
|             j--;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|     } while( (i>=0) && (j>=0) );
 | |
|     cvFlushSeqWriter( &writer );
 | |
| 
 | |
|     // Free memory
 | |
|     for(i=1;i<Ni;i++)
 | |
|     {
 | |
|         free(W[i]);
 | |
|     }
 | |
|     free(W);
 | |
|     free(point1);
 | |
|     free(point2);
 | |
|     free(edges1);
 | |
|     free(edges2);
 | |
| }
 | |
| #endif
 | 
