745 lines
34 KiB
C++
745 lines
34 KiB
C++
/*#******************************************************************************
|
||
** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
**
|
||
** By downloading, copying, installing or using the software you agree to this license.
|
||
** If you do not agree to this license, do not download, install,
|
||
** copy or use the software.
|
||
**
|
||
**
|
||
** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab.
|
||
** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping.
|
||
**
|
||
** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications)
|
||
**
|
||
** Creation - enhancement process 2007-2011
|
||
** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France
|
||
**
|
||
** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr).
|
||
** Refer to the following research paper for more information:
|
||
** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
|
||
** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book:
|
||
** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
|
||
**
|
||
** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
|
||
** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
|
||
** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
|
||
** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
|
||
** ====> more informations in the above cited Jeanny Heraults's book.
|
||
**
|
||
** License Agreement
|
||
** For Open Source Computer Vision Library
|
||
**
|
||
** Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
||
**
|
||
** For Human Visual System tools (hvstools)
|
||
** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved.
|
||
**
|
||
** Third party copyrights are property of their respective owners.
|
||
**
|
||
** Redistribution and use in source and binary forms, with or without modification,
|
||
** are permitted provided that the following conditions are met:
|
||
**
|
||
** * Redistributions of source code must retain the above copyright notice,
|
||
** this list of conditions and the following disclaimer.
|
||
**
|
||
** * Redistributions in binary form must reproduce the above copyright notice,
|
||
** this list of conditions and the following disclaimer in the documentation
|
||
** and/or other materials provided with the distribution.
|
||
**
|
||
** * The name of the copyright holders may not be used to endorse or promote products
|
||
** derived from this software without specific prior written permission.
|
||
**
|
||
** This software is provided by the copyright holders and contributors "as is" and
|
||
** any express or implied warranties, including, but not limited to, the implied
|
||
** warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
** In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
** indirect, incidental, special, exemplary, or consequential damages
|
||
** (including, but not limited to, procurement of substitute goods or services;
|
||
** loss of use, data, or profits; or business interruption) however caused
|
||
** and on any theory of liability, whether in contract, strict liability,
|
||
** or tort (including negligence or otherwise) arising in any way out of
|
||
** the use of this software, even if advised of the possibility of such damage.
|
||
*******************************************************************************/
|
||
|
||
#include "precomp.hpp"
|
||
|
||
#include "retinacolor.hpp"
|
||
|
||
// @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/
|
||
|
||
#include <iostream>
|
||
#include <ctime>
|
||
|
||
namespace cv
|
||
{
|
||
|
||
// init static values
|
||
static float _LMStoACr1Cr2[]={1.0, 1.0, 0.0, 1.0, -1.0, 0.0, -0.5, -0.5, 1.0};
|
||
//static double _ACr1Cr2toLMS[]={0.5, 0.5, 0.0, 0.5, -0.5, 0.0, 0.5, 0.0, 1.0};
|
||
static float _LMStoLab[]={0.5774f, 0.5774f, 0.5774f, 0.4082f, 0.4082f, -0.8165f, 0.7071f, -0.7071f, 0.f};
|
||
|
||
// constructor/desctructor
|
||
RetinaColor::RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const RETINA_COLORSAMPLINGMETHOD samplingMethod)
|
||
:BasicRetinaFilter(NBrows, NBcolumns, 3),
|
||
_colorSampling(NBrows*NBcolumns),
|
||
_RGBmosaic(NBrows*NBcolumns*3),
|
||
_tempMultiplexedFrame(NBrows*NBcolumns),
|
||
_demultiplexedTempBuffer(NBrows*NBcolumns*3),
|
||
_demultiplexedColorFrame(NBrows*NBcolumns*3),
|
||
_chrominance(NBrows*NBcolumns*3),
|
||
_colorLocalDensity(NBrows*NBcolumns*3),
|
||
_imageGradient(NBrows*NBcolumns*3)
|
||
{
|
||
// link to parent buffers (let's recycle !)
|
||
_luminance=&_filterOutput;
|
||
_multiplexedFrame=&_localBuffer;
|
||
|
||
_objectInit=false;
|
||
_samplingMethod=samplingMethod;
|
||
_saturateColors=false;
|
||
_colorSaturationValue=4.0;
|
||
|
||
// set default spatio-temporal filter parameters
|
||
setLPfilterParameters(0.0, 0.0, 1.5);
|
||
setLPfilterParameters(0.0, 0.0, 10.5, 1);// for the low pass filter dedicated to contours energy extraction (demultiplexing process)
|
||
setLPfilterParameters(0.f, 0.f, 0.9f, 2);
|
||
|
||
// init default value on image Gradient
|
||
_imageGradient=0.57f;
|
||
|
||
// init color sampling map
|
||
_initColorSampling();
|
||
|
||
// flush all buffers
|
||
clearAllBuffers();
|
||
}
|
||
|
||
RetinaColor::~RetinaColor()
|
||
{
|
||
|
||
}
|
||
|
||
/**
|
||
* function that clears all buffers of the object
|
||
*/
|
||
void RetinaColor::clearAllBuffers()
|
||
{
|
||
BasicRetinaFilter::clearAllBuffers();
|
||
_tempMultiplexedFrame=0;
|
||
_demultiplexedTempBuffer=0;
|
||
|
||
_demultiplexedColorFrame=0;
|
||
_chrominance=0;
|
||
_imageGradient=1;
|
||
}
|
||
|
||
/**
|
||
* resize retina color filter object (resize all allocated buffers)
|
||
* @param NBrows: the new height size
|
||
* @param NBcolumns: the new width size
|
||
*/
|
||
void RetinaColor::resize(const unsigned int NBrows, const unsigned int NBcolumns)
|
||
{
|
||
BasicRetinaFilter::clearAllBuffers();
|
||
_colorSampling.resize(NBrows*NBcolumns);
|
||
_RGBmosaic.resize(NBrows*NBcolumns*3);
|
||
_tempMultiplexedFrame.resize(NBrows*NBcolumns);
|
||
_demultiplexedTempBuffer.resize(NBrows*NBcolumns*3);
|
||
_demultiplexedColorFrame.resize(NBrows*NBcolumns*3);
|
||
_chrominance.resize(NBrows*NBcolumns*3);
|
||
_colorLocalDensity.resize(NBrows*NBcolumns*3);
|
||
_imageGradient.resize(NBrows*NBcolumns*3);
|
||
|
||
// link to parent buffers (let's recycle !)
|
||
_luminance=&_filterOutput;
|
||
_multiplexedFrame=&_localBuffer;
|
||
|
||
// init color sampling map
|
||
_initColorSampling();
|
||
|
||
// clean buffers
|
||
clearAllBuffers();
|
||
}
|
||
|
||
|
||
void RetinaColor::_initColorSampling()
|
||
{
|
||
|
||
// filling the conversion table for multiplexed <=> demultiplexed frame
|
||
srand((unsigned)time(NULL));
|
||
|
||
// preInit cones probabilities
|
||
_pR=_pB=_pG=0;
|
||
switch (_samplingMethod)
|
||
{
|
||
case RETINA_COLOR_RANDOM:
|
||
for (unsigned int index=0 ; index<this->getNBpixels(); ++index)
|
||
{
|
||
|
||
// random RGB sampling
|
||
unsigned int colorIndex=rand()%24;
|
||
|
||
if (colorIndex<8){
|
||
colorIndex=0;
|
||
|
||
++_pR;
|
||
}else
|
||
{
|
||
if (colorIndex<21){
|
||
colorIndex=1;
|
||
++_pG;
|
||
}else{
|
||
colorIndex=2;
|
||
++_pB;
|
||
}
|
||
}
|
||
_colorSampling[index] = colorIndex*this->getNBpixels()+index;
|
||
}
|
||
_pR/=(float)this->getNBpixels();
|
||
_pG/=(float)this->getNBpixels();
|
||
_pB/=(float)this->getNBpixels();
|
||
std::cout<<"Color channels proportions: pR, pG, pB= "<<_pR<<", "<<_pG<<", "<<_pB<<", "<<std::endl;
|
||
break;
|
||
case RETINA_COLOR_DIAGONAL:
|
||
for (unsigned int index=0 ; index<this->getNBpixels(); ++index)
|
||
{
|
||
_colorSampling[index] = index+((index%3+(index%_filterOutput.getNBcolumns()))%3)*_filterOutput.getNBpixels();
|
||
}
|
||
_pR=_pB=_pG=1.f/3;
|
||
break;
|
||
case RETINA_COLOR_BAYER: // default sets bayer sampling
|
||
for (unsigned int index=0 ; index<_filterOutput.getNBpixels(); ++index)
|
||
{
|
||
//First line: R G R G
|
||
_colorSampling[index] = index+((index/_filterOutput.getNBcolumns())%2)*_filterOutput.getNBpixels()+((index%_filterOutput.getNBcolumns())%2)*_filterOutput.getNBpixels();
|
||
//First line: G R G R
|
||
//_colorSampling[index] = 3*index+((index/_filterOutput.getNBcolumns())%2)+((index%_filterOutput.getNBcolumns()+1)%2);
|
||
}
|
||
_pR=_pB=0.25;
|
||
_pG=0.5;
|
||
break;
|
||
default:
|
||
#ifdef RETINACOLORDEBUG
|
||
std::cerr<<"RetinaColor::No or wrong color sampling method, skeeping"<<std::endl;
|
||
#endif
|
||
return;
|
||
break;//.. not useful, yes
|
||
|
||
}
|
||
// feeling the mosaic buffer:
|
||
_RGBmosaic=0;
|
||
for (unsigned int index=0 ; index<_filterOutput.getNBpixels(); ++index)
|
||
// the RGB _RGBmosaic buffer contains 1 where the pixel corresponds to a sampled color
|
||
_RGBmosaic[_colorSampling[index]]=1.0;
|
||
|
||
// computing photoreceptors local density
|
||
_spatiotemporalLPfilter(&_RGBmosaic[0], &_colorLocalDensity[0]);
|
||
_spatiotemporalLPfilter(&_RGBmosaic[0]+_filterOutput.getNBpixels(), &_colorLocalDensity[0]+_filterOutput.getNBpixels());
|
||
_spatiotemporalLPfilter(&_RGBmosaic[0]+_filterOutput.getDoubleNBpixels(), &_colorLocalDensity[0]+_filterOutput.getDoubleNBpixels());
|
||
unsigned int maxNBpixels=3*_filterOutput.getNBpixels();
|
||
register float *colorLocalDensityPTR=&_colorLocalDensity[0];
|
||
for (unsigned int i=0;i<maxNBpixels;++i, ++colorLocalDensityPTR)
|
||
*colorLocalDensityPTR=1.f/ *colorLocalDensityPTR;
|
||
|
||
#ifdef RETINACOLORDEBUG
|
||
std::cout<<"INIT _colorLocalDensity max, min: "<<_colorLocalDensity.max()<<", "<<_colorLocalDensity.min()<<std::endl;
|
||
#endif
|
||
// end of the init step
|
||
_objectInit=true;
|
||
}
|
||
|
||
// public functions
|
||
|
||
void RetinaColor::runColorDemultiplexing(const std::valarray<float> &multiplexedColorFrame, const bool adaptiveFiltering, const float maxInputValue)
|
||
{
|
||
// demultiplex the grey frame to RGB frame
|
||
// -> first set demultiplexed frame to 0
|
||
_demultiplexedTempBuffer=0;
|
||
// -> demultiplex process
|
||
register unsigned int *colorSamplingPRT=&_colorSampling[0];
|
||
register const float *multiplexedColorFramePTR=get_data(multiplexedColorFrame);
|
||
for (unsigned int indexa=0; indexa<_filterOutput.getNBpixels() ; ++indexa)
|
||
_demultiplexedTempBuffer[*(colorSamplingPRT++)]=*(multiplexedColorFramePTR++);
|
||
|
||
// interpolate the demultiplexed frame depending on the color sampling method
|
||
if (!adaptiveFiltering)
|
||
_interpolateImageDemultiplexedImage(&_demultiplexedTempBuffer[0]);
|
||
|
||
// low pass filtering the demultiplexed frame
|
||
_spatiotemporalLPfilter(&_demultiplexedTempBuffer[0], &_chrominance[0]);
|
||
_spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_chrominance[0]+_filterOutput.getNBpixels());
|
||
_spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_chrominance[0]+_filterOutput.getDoubleNBpixels());
|
||
|
||
/*if (_samplingMethod=BAYER)
|
||
{
|
||
_applyRIFfilter(_chrominance, _chrominance);
|
||
_applyRIFfilter(_chrominance+_filterOutput.getNBpixels(), _chrominance+_filterOutput.getNBpixels());
|
||
_applyRIFfilter(_chrominance+_filterOutput.getDoubleNBpixels(), _chrominance+_filterOutput.getDoubleNBpixels());
|
||
}*/
|
||
|
||
// normalize by the photoreceptors local density and retrieve the local luminance
|
||
register float *chrominancePTR= &_chrominance[0];
|
||
register float *colorLocalDensityPTR= &_colorLocalDensity[0];
|
||
register float *luminance= &(*_luminance)[0];
|
||
if (!adaptiveFiltering)// compute the gradient on the luminance
|
||
{
|
||
if (_samplingMethod==RETINA_COLOR_RANDOM)
|
||
for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance)
|
||
{
|
||
// normalize by photoreceptors density
|
||
float Cr=*(chrominancePTR)*_colorLocalDensity[indexc];
|
||
float Cg=*(chrominancePTR+_filterOutput.getNBpixels())*_colorLocalDensity[indexc+_filterOutput.getNBpixels()];
|
||
float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels())*_colorLocalDensity[indexc+_filterOutput.getDoubleNBpixels()];
|
||
*luminance=(Cr+Cg+Cb)*_pG;
|
||
*(chrominancePTR)=Cr-*luminance;
|
||
*(chrominancePTR+_filterOutput.getNBpixels())=Cg-*luminance;
|
||
*(chrominancePTR+_filterOutput.getDoubleNBpixels())=Cb-*luminance;
|
||
}
|
||
else
|
||
for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance)
|
||
{
|
||
float Cr=*(chrominancePTR);
|
||
float Cg=*(chrominancePTR+_filterOutput.getNBpixels());
|
||
float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels());
|
||
*luminance=_pR*Cr+_pG*Cg+_pB*Cb;
|
||
*(chrominancePTR)=Cr-*luminance;
|
||
*(chrominancePTR+_filterOutput.getNBpixels())=Cg-*luminance;
|
||
*(chrominancePTR+_filterOutput.getDoubleNBpixels())=Cb-*luminance;
|
||
}
|
||
|
||
// in order to get the color image, each colored map needs to be added the luminance
|
||
// -> to do so, compute: multiplexedColorFrame - remultiplexed chrominances
|
||
runColorMultiplexing(_chrominance, _tempMultiplexedFrame);
|
||
//lum = 1/3((f*(ImR))/(f*mR) + (f*(ImG))/(f*mG) + (f*(ImB))/(f*mB));
|
||
float *luminancePTR= &(*_luminance)[0];
|
||
chrominancePTR= &_chrominance[0];
|
||
float *demultiplexedColorFramePTR= &_demultiplexedColorFrame[0];
|
||
for (unsigned int indexp=0; indexp<_filterOutput.getNBpixels() ; ++indexp, ++luminancePTR, ++chrominancePTR, ++demultiplexedColorFramePTR)
|
||
{
|
||
*luminancePTR=(multiplexedColorFrame[indexp]-_tempMultiplexedFrame[indexp]);
|
||
*(demultiplexedColorFramePTR)=*(chrominancePTR)+*luminancePTR;
|
||
*(demultiplexedColorFramePTR+_filterOutput.getNBpixels())=*(chrominancePTR+_filterOutput.getNBpixels())+*luminancePTR;
|
||
*(demultiplexedColorFramePTR+_filterOutput.getDoubleNBpixels())=*(chrominancePTR+_filterOutput.getDoubleNBpixels())+*luminancePTR;
|
||
}
|
||
|
||
}else
|
||
{
|
||
register const float *multiplexedColorFramePTR= get_data(multiplexedColorFrame);
|
||
for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance, ++multiplexedColorFramePTR)
|
||
{
|
||
// normalize by photoreceptors density
|
||
float Cr=*(chrominancePTR)*_colorLocalDensity[indexc];
|
||
float Cg=*(chrominancePTR+_filterOutput.getNBpixels())*_colorLocalDensity[indexc+_filterOutput.getNBpixels()];
|
||
float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels())*_colorLocalDensity[indexc+_filterOutput.getDoubleNBpixels()];
|
||
*luminance=(Cr+Cg+Cb)*_pG;
|
||
_demultiplexedTempBuffer[_colorSampling[indexc]] = *multiplexedColorFramePTR - *luminance;
|
||
|
||
}
|
||
|
||
// compute the gradient of the luminance
|
||
_computeGradient(&(*_luminance)[0]);
|
||
|
||
// adaptively filter the submosaics to get the adaptive densities, here the buffer _chrominance is used as a temp buffer
|
||
_adaptiveSpatialLPfilter(&_RGBmosaic[0], &_chrominance[0]);
|
||
_adaptiveSpatialLPfilter(&_RGBmosaic[0]+_filterOutput.getNBpixels(), &_chrominance[0]+_filterOutput.getNBpixels());
|
||
_adaptiveSpatialLPfilter(&_RGBmosaic[0]+_filterOutput.getDoubleNBpixels(), &_chrominance[0]+_filterOutput.getDoubleNBpixels());
|
||
|
||
_adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0], &_demultiplexedColorFrame[0]);
|
||
_adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels());
|
||
_adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getDoubleNBpixels());
|
||
|
||
for (unsigned int index=0; index<_filterOutput.getNBpixels()*3 ; ++index) // cette boucle pourrait <20>tre supprimee en passant la densit<69> <20> la fonction de filtrage
|
||
_demultiplexedColorFrame[index] /= _chrominance[index];
|
||
|
||
// compute and substract the residual luminance
|
||
for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index)
|
||
{
|
||
float residu = _pR*_demultiplexedColorFrame[index] + _pG*_demultiplexedColorFrame[index+_filterOutput.getNBpixels()] + _pB*_demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()];
|
||
_demultiplexedColorFrame[index] = _demultiplexedColorFrame[index] - residu;
|
||
_demultiplexedColorFrame[index+_filterOutput.getNBpixels()] = _demultiplexedColorFrame[index+_filterOutput.getNBpixels()] - residu;
|
||
_demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] = _demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] - residu;
|
||
}
|
||
|
||
// multiplex the obtained chrominance
|
||
runColorMultiplexing(_demultiplexedColorFrame, _tempMultiplexedFrame);
|
||
_demultiplexedTempBuffer=0;
|
||
|
||
// get the luminance, et and add it to each chrominance
|
||
for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index)
|
||
{
|
||
(*_luminance)[index]=multiplexedColorFrame[index]-_tempMultiplexedFrame[index];
|
||
_demultiplexedTempBuffer[_colorSampling[index]] = _demultiplexedColorFrame[_colorSampling[index]];//multiplexedColorFrame[index] - (*_luminance)[index];
|
||
}
|
||
|
||
_spatiotemporalLPfilter(&_demultiplexedTempBuffer[0], &_demultiplexedTempBuffer[0]);
|
||
_spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels());
|
||
_spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels());
|
||
|
||
// get the luminance and add it to each chrominance
|
||
for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index)
|
||
{
|
||
_demultiplexedColorFrame[index] = _demultiplexedTempBuffer[index]*_colorLocalDensity[index]+ (*_luminance)[index];
|
||
_demultiplexedColorFrame[index+_filterOutput.getNBpixels()] = _demultiplexedTempBuffer[index+_filterOutput.getNBpixels()]*_colorLocalDensity[index+_filterOutput.getNBpixels()]+ (*_luminance)[index];
|
||
_demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] = _demultiplexedTempBuffer[index+_filterOutput.getDoubleNBpixels()]*_colorLocalDensity[index+_filterOutput.getDoubleNBpixels()]+ (*_luminance)[index];
|
||
}
|
||
}
|
||
|
||
// eliminate saturated colors by simple clipping values to the input range
|
||
clipRGBOutput_0_maxInputValue(NULL, maxInputValue);
|
||
|
||
/* transfert image gradient in order to check validity
|
||
memcpy((*_luminance), _imageGradient, sizeof(float)*_filterOutput.getNBpixels());
|
||
memcpy(_demultiplexedColorFrame, _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels());
|
||
memcpy(_demultiplexedColorFrame+_filterOutput.getNBpixels(), _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels());
|
||
memcpy(_demultiplexedColorFrame+2*_filterOutput.getNBpixels(), _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels());
|
||
*/
|
||
|
||
if (_saturateColors)
|
||
{
|
||
TemplateBuffer<float>::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0], &_demultiplexedColorFrame[0], _filterOutput.getNBpixels());
|
||
TemplateBuffer<float>::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels(), _filterOutput.getNBpixels());
|
||
TemplateBuffer<float>::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels()*2, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels()*2, _filterOutput.getNBpixels());
|
||
}
|
||
}
|
||
|
||
// color multiplexing: input frame size=_NBrows*_filterOutput.getNBcolumns()*3, multiplexedFrame output size=_NBrows*_filterOutput.getNBcolumns()
|
||
void RetinaColor::runColorMultiplexing(const std::valarray<float> &demultiplexedInputFrame, std::valarray<float> &multiplexedFrame)
|
||
{
|
||
// multiply each color layer by its bayer mask
|
||
register unsigned int *colorSamplingPTR= &_colorSampling[0];
|
||
register float *multiplexedFramePTR= &multiplexedFrame[0];
|
||
for (unsigned int indexp=0; indexp<_filterOutput.getNBpixels(); ++indexp)
|
||
*(multiplexedFramePTR++)=demultiplexedInputFrame[*(colorSamplingPTR++)];
|
||
}
|
||
|
||
void RetinaColor::normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue)
|
||
{
|
||
//normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance);
|
||
TemplateBuffer<float>::normalizeGrayOutput_0_maxOutputValue(&_demultiplexedColorFrame[0], 3*_filterOutput.getNBpixels(), maxOutputValue);
|
||
//normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance+_filterOutput.getNBpixels());
|
||
//normalizeGrayOutput_0_maxOutputValue(_demultiplexedColorFrame+_filterOutput.getNBpixels(), _filterOutput.getNBpixels(), maxOutputValue);
|
||
//normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance+2*_filterOutput.getNBpixels());
|
||
//normalizeGrayOutput_0_maxOutputValue(_demultiplexedColorFrame+_filterOutput.getDoubleNBpixels(), _filterOutput.getNBpixels(), maxOutputValue);
|
||
TemplateBuffer<float>::normalizeGrayOutput_0_maxOutputValue(&(*_luminance)[0], _filterOutput.getNBpixels(), maxOutputValue);
|
||
}
|
||
|
||
/// normalize output between 0 and maxOutputValue;
|
||
void RetinaColor::clipRGBOutput_0_maxInputValue(float *inputOutputBuffer, const float maxInputValue)
|
||
{
|
||
//std::cout<<"RetinaColor::normalizing RGB frame..."<<std::endl;
|
||
// if outputBuffer unsassigned, the rewrite the buffer
|
||
if (inputOutputBuffer==NULL)
|
||
inputOutputBuffer= &_demultiplexedColorFrame[0];
|
||
|
||
register float *inputOutputBufferPTR=inputOutputBuffer;
|
||
for (register unsigned int jf = 0; jf < _filterOutput.getNBpixels()*3; ++jf, ++inputOutputBufferPTR)
|
||
{
|
||
if (*inputOutputBufferPTR>maxInputValue)
|
||
*inputOutputBufferPTR=maxInputValue;
|
||
else if (*inputOutputBufferPTR<0)
|
||
*inputOutputBufferPTR=0;
|
||
}
|
||
//std::cout<<"RetinaColor::...normalizing RGB frame OK"<<std::endl;
|
||
}
|
||
|
||
void RetinaColor::_interpolateImageDemultiplexedImage(float *inputOutputBuffer)
|
||
{
|
||
|
||
switch(_samplingMethod)
|
||
{
|
||
|
||
case RETINA_COLOR_RANDOM:
|
||
return; // no need to interpolate
|
||
break;
|
||
|
||
case RETINA_COLOR_DIAGONAL:
|
||
_interpolateSingleChannelImage111(inputOutputBuffer);
|
||
break;
|
||
|
||
case RETINA_COLOR_BAYER: // default sets bayer sampling
|
||
_interpolateBayerRGBchannels(inputOutputBuffer);
|
||
break;
|
||
default:
|
||
std::cerr<<"RetinaColor::No or wrong color sampling method, skeeping"<<std::endl;
|
||
return;
|
||
break;//.. not useful, yes
|
||
|
||
}
|
||
|
||
}
|
||
|
||
void RetinaColor::_interpolateSingleChannelImage111(float *inputOutputBuffer)
|
||
{
|
||
for (unsigned int indexr=0 ; indexr<_filterOutput.getNBrows(); ++indexr)
|
||
{
|
||
for (unsigned int indexc=1 ; indexc<_filterOutput.getNBcolumns()-1; ++indexc)
|
||
{
|
||
unsigned int index=indexc+indexr*_filterOutput.getNBcolumns();
|
||
inputOutputBuffer[index]=(inputOutputBuffer[index-1]+inputOutputBuffer[index]+inputOutputBuffer[index+1])/3.f;
|
||
}
|
||
}
|
||
for (unsigned int indexc=0 ; indexc<_filterOutput.getNBcolumns(); ++indexc)
|
||
{
|
||
for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; ++indexr)
|
||
{
|
||
unsigned int index=indexc+indexr*_filterOutput.getNBcolumns();
|
||
inputOutputBuffer[index]=(inputOutputBuffer[index-_filterOutput.getNBcolumns()]+inputOutputBuffer[index]+inputOutputBuffer[index+_filterOutput.getNBcolumns()])/3.f;
|
||
}
|
||
}
|
||
}
|
||
|
||
void RetinaColor::_interpolateBayerRGBchannels(float *inputOutputBuffer)
|
||
{
|
||
for (unsigned int indexr=0 ; indexr<_filterOutput.getNBrows()-1; indexr+=2)
|
||
{
|
||
for (unsigned int indexc=1 ; indexc<_filterOutput.getNBcolumns()-1; indexc+=2)
|
||
{
|
||
unsigned int indexR=indexc+indexr*_filterOutput.getNBcolumns();
|
||
unsigned int indexB=_filterOutput.getDoubleNBpixels()+indexc+1+(indexr+1)*_filterOutput.getNBcolumns();
|
||
inputOutputBuffer[indexR]=(inputOutputBuffer[indexR-1]+inputOutputBuffer[indexR+1])/2.f;
|
||
inputOutputBuffer[indexB]=(inputOutputBuffer[indexB-1]+inputOutputBuffer[indexB+1])/2.f;
|
||
}
|
||
}
|
||
for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; indexr+=2)
|
||
{
|
||
for (unsigned int indexc=0 ; indexc<_filterOutput.getNBcolumns(); ++indexc)
|
||
{
|
||
unsigned int indexR=indexc+indexr*_filterOutput.getNBcolumns();
|
||
unsigned int indexB=_filterOutput.getDoubleNBpixels()+indexc+1+(indexr+1)*_filterOutput.getNBcolumns();
|
||
inputOutputBuffer[indexR]=(inputOutputBuffer[indexR-_filterOutput.getNBcolumns()]+inputOutputBuffer[indexR+_filterOutput.getNBcolumns()])/2.f;
|
||
inputOutputBuffer[indexB]=(inputOutputBuffer[indexB-_filterOutput.getNBcolumns()]+inputOutputBuffer[indexB+_filterOutput.getNBcolumns()])/2.f;
|
||
|
||
}
|
||
}
|
||
for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; ++indexr)
|
||
for (unsigned int indexc=0 ; indexc<_filterOutput.getNBcolumns(); indexc+=2)
|
||
{
|
||
unsigned int indexG=_filterOutput.getNBpixels()+indexc+(indexr)*_filterOutput.getNBcolumns()+indexr%2;
|
||
inputOutputBuffer[indexG]=(inputOutputBuffer[indexG-1]+inputOutputBuffer[indexG+1]+inputOutputBuffer[indexG-_filterOutput.getNBcolumns()]+inputOutputBuffer[indexG+_filterOutput.getNBcolumns()])*0.25f;
|
||
}
|
||
}
|
||
|
||
void RetinaColor::_applyRIFfilter(const float *sourceBuffer, float *destinationBuffer)
|
||
{
|
||
for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; ++indexr)
|
||
{
|
||
for (unsigned int indexc=1 ; indexc<_filterOutput.getNBcolumns()-1; ++indexc)
|
||
{
|
||
unsigned int index=indexc+indexr*_filterOutput.getNBcolumns();
|
||
_tempMultiplexedFrame[index]=(4.f*sourceBuffer[index]+sourceBuffer[index-1-_filterOutput.getNBcolumns()]+sourceBuffer[index-1+_filterOutput.getNBcolumns()]+sourceBuffer[index+1-_filterOutput.getNBcolumns()]+sourceBuffer[index+1+_filterOutput.getNBcolumns()])*0.125f;
|
||
}
|
||
}
|
||
memcpy(destinationBuffer, &_tempMultiplexedFrame[0], sizeof(float)*_filterOutput.getNBpixels());
|
||
}
|
||
|
||
void RetinaColor::_getNormalizedContoursImage(const float *inputFrame, float *outputFrame)
|
||
{
|
||
float maxValue=0;
|
||
float normalisationFactor=1.f/3;
|
||
for (unsigned int indexr=1 ; indexr<_filterOutput.getNBrows()-1; ++indexr)
|
||
{
|
||
for (unsigned int indexc=1 ; indexc<_filterOutput.getNBcolumns()-1; ++indexc)
|
||
{
|
||
unsigned int index=indexc+indexr*_filterOutput.getNBcolumns();
|
||
outputFrame[index]=normalisationFactor*fabs(8.f*inputFrame[index]-inputFrame[index-1]-inputFrame[index+1]-inputFrame[index-_filterOutput.getNBcolumns()]-inputFrame[index+_filterOutput.getNBcolumns()]-inputFrame[index-1-_filterOutput.getNBcolumns()]-inputFrame[index-1+_filterOutput.getNBcolumns()]-inputFrame[index+1-_filterOutput.getNBcolumns()]-inputFrame[index+1+_filterOutput.getNBcolumns()]);
|
||
if (outputFrame[index]>maxValue)
|
||
maxValue=outputFrame[index];
|
||
}
|
||
}
|
||
normalisationFactor=1.f/maxValue;
|
||
// normalisation [0, 1]
|
||
for (unsigned int indexp=1 ; indexp<_filterOutput.getNBrows()-1; ++indexp)
|
||
outputFrame[indexp]=outputFrame[indexp]*normalisationFactor;
|
||
}
|
||
|
||
//////////////////////////////////////////////////////////
|
||
// ADAPTIVE BASIC RETINA FILTER
|
||
//////////////////////////////////////////////////////////
|
||
// run LP filter for a new frame input and save result at a specific output adress
|
||
void RetinaColor::_adaptiveSpatialLPfilter(const float *inputFrame, float *outputFrame)
|
||
{
|
||
|
||
/**********/
|
||
_gain = (1-0.57f)*(1-0.57f)*(1-0.06f)*(1-0.06f);
|
||
|
||
// launch the serie of 1D directional filters in order to compute the 2D low pass filter
|
||
_adaptiveHorizontalCausalFilter_addInput(inputFrame, outputFrame, 0, _filterOutput.getNBrows());
|
||
_adaptiveHorizontalAnticausalFilter(outputFrame, 0, _filterOutput.getNBrows());
|
||
_adaptiveVerticalCausalFilter(outputFrame, 0, _filterOutput.getNBcolumns());
|
||
_adaptiveVerticalAnticausalFilter_multGain(outputFrame, 0, _filterOutput.getNBcolumns());
|
||
|
||
}
|
||
|
||
// horizontal causal filter which adds the input inside
|
||
void RetinaColor::_adaptiveHorizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
|
||
{
|
||
register float* outputPTR=outputFrame+IDrowStart*_filterOutput.getNBcolumns();
|
||
register const float* inputPTR=inputFrame+IDrowStart*_filterOutput.getNBcolumns();
|
||
register float *imageGradientPTR= &_imageGradient[0]+IDrowStart*_filterOutput.getNBcolumns();
|
||
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
|
||
{
|
||
register float result=0;
|
||
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
|
||
{
|
||
//std::cout<<(*imageGradientPTR)<<" ";
|
||
result = *(inputPTR++) + (*imageGradientPTR)* result;
|
||
*(outputPTR++) = result;
|
||
++imageGradientPTR;
|
||
}
|
||
// std::cout<<" "<<std::endl;
|
||
}
|
||
}
|
||
|
||
// horizontal anticausal filter (basic way, no add on)
|
||
void RetinaColor::_adaptiveHorizontalAnticausalFilter(float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd)
|
||
{
|
||
register float* outputPTR=outputFrame+IDrowEnd*(_filterOutput.getNBcolumns())-1;
|
||
register float *imageGradientPTR= &_imageGradient[0]+IDrowEnd*(_filterOutput.getNBcolumns())-1;
|
||
|
||
for (unsigned int IDrow=IDrowStart; IDrow<IDrowEnd; ++IDrow)
|
||
{
|
||
register float result=0;
|
||
for (unsigned int index=0; index<_filterOutput.getNBcolumns(); ++index)
|
||
{
|
||
result = *(outputPTR)+ (*imageGradientPTR)* result;
|
||
*(outputPTR--) = result;
|
||
--imageGradientPTR;
|
||
}
|
||
}
|
||
}
|
||
|
||
// vertical anticausal filter
|
||
void RetinaColor::_adaptiveVerticalCausalFilter(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd)
|
||
{
|
||
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
|
||
{
|
||
register float result=0;
|
||
register float *outputPTR=outputFrame+IDcolumn;
|
||
register float *imageGradientPTR= &_imageGradient[0]+IDcolumn;
|
||
|
||
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
|
||
{
|
||
result = *(outputPTR) + (*(imageGradientPTR+_filterOutput.getNBpixels())) * result;
|
||
*(outputPTR) = result;
|
||
outputPTR+=_filterOutput.getNBcolumns();
|
||
imageGradientPTR+=_filterOutput.getNBcolumns();
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
// vertical anticausal filter which multiplies the output by _gain
|
||
void RetinaColor::_adaptiveVerticalAnticausalFilter_multGain(float *outputFrame, unsigned int IDcolumnStart, unsigned int IDcolumnEnd)
|
||
{
|
||
float* outputOffset=outputFrame+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
|
||
float* gradOffset= &_imageGradient[0]+_filterOutput.getNBpixels()-_filterOutput.getNBcolumns();
|
||
|
||
for (unsigned int IDcolumn=IDcolumnStart; IDcolumn<IDcolumnEnd; ++IDcolumn)
|
||
{
|
||
register float result=0;
|
||
register float *outputPTR=outputOffset+IDcolumn;
|
||
register float *imageGradientPTR=gradOffset+IDcolumn;
|
||
for (unsigned int index=0; index<_filterOutput.getNBrows(); ++index)
|
||
{
|
||
result = *(outputPTR) + (*(imageGradientPTR+_filterOutput.getNBpixels())) * result;
|
||
*(outputPTR) = _gain*result;
|
||
outputPTR-=_filterOutput.getNBcolumns();
|
||
imageGradientPTR-=_filterOutput.getNBcolumns();
|
||
}
|
||
}
|
||
}
|
||
|
||
///////////////////////////
|
||
void RetinaColor::_computeGradient(const float *luminance)
|
||
{
|
||
for (unsigned int idLine=2;idLine<_filterOutput.getNBrows()-2;++idLine)
|
||
{
|
||
for (unsigned int idColumn=2;idColumn<_filterOutput.getNBcolumns()-2;++idColumn)
|
||
{
|
||
const unsigned int pixelIndex=idColumn+_filterOutput.getNBcolumns()*idLine;
|
||
|
||
// horizontal and vertical local gradients
|
||
const float verticalGrad=fabs(luminance[pixelIndex+_filterOutput.getNBcolumns()]-luminance[pixelIndex-_filterOutput.getNBcolumns()]);
|
||
const float horizontalGrad=fabs(luminance[pixelIndex+1]-luminance[pixelIndex-1]);
|
||
|
||
// neighborhood horizontal and vertical gradients
|
||
const float verticalGrad_p=fabs(luminance[pixelIndex]-luminance[pixelIndex-2*_filterOutput.getNBcolumns()]);
|
||
const float horizontalGrad_p=fabs(luminance[pixelIndex]-luminance[pixelIndex-2]);
|
||
const float verticalGrad_n=fabs(luminance[pixelIndex+2*_filterOutput.getNBcolumns()]-luminance[pixelIndex]);
|
||
const float horizontalGrad_n=fabs(luminance[pixelIndex+2]-luminance[pixelIndex]);
|
||
|
||
const float horizontalGradient=0.5f*horizontalGrad+0.25f*(horizontalGrad_p+horizontalGrad_n);
|
||
const float verticalGradient=0.5f*verticalGrad+0.25f*(verticalGrad_p+verticalGrad_n);
|
||
|
||
// compare local gradient means and fill the appropriate filtering coefficient value that will be used in adaptative filters
|
||
if (horizontalGradient<verticalGradient)
|
||
{
|
||
_imageGradient[pixelIndex+_filterOutput.getNBpixels()]=0.06f;
|
||
_imageGradient[pixelIndex]=0.57f;
|
||
}
|
||
else
|
||
{
|
||
_imageGradient[pixelIndex+_filterOutput.getNBpixels()]=0.57f;
|
||
_imageGradient[pixelIndex]=0.06f;
|
||
}
|
||
}
|
||
}
|
||
|
||
}
|
||
const bool RetinaColor::applyKrauskopfLMS2Acr1cr2Transform(std::valarray<float> &result)
|
||
{
|
||
bool processSuccess=true;
|
||
// basic preliminary error check
|
||
if (result.size()!=_demultiplexedColorFrame.size())
|
||
{
|
||
std::cerr<<"RetinaColor::applyKrauskopfLMS2Acr1cr2Transform: input buffer does not match retina buffer size, conversion aborted"<<std::endl;
|
||
return false;
|
||
}
|
||
|
||
// apply transformation
|
||
_applyImageColorSpaceConversion(_demultiplexedColorFrame, result, _LMStoACr1Cr2);
|
||
|
||
return processSuccess;
|
||
}
|
||
|
||
const bool RetinaColor::applyLMS2LabTransform(std::valarray<float> &result)
|
||
{
|
||
bool processSuccess=true;
|
||
// basic preliminary error check
|
||
if (result.size()!=_demultiplexedColorFrame.size())
|
||
{
|
||
std::cerr<<"RetinaColor::applyKrauskopfLMS2Acr1cr2Transform: input buffer does not match retina buffer size, conversion aborted"<<std::endl;
|
||
return false;
|
||
}
|
||
|
||
// apply transformation
|
||
_applyImageColorSpaceConversion(_demultiplexedColorFrame, result, _LMStoLab);
|
||
|
||
return processSuccess;
|
||
}
|
||
|
||
// template function able to perform a custom color space transformation
|
||
void RetinaColor::_applyImageColorSpaceConversion(const std::valarray<float> &inputFrameBuffer, std::valarray<float> &outputFrameBuffer, const float *transformTable)
|
||
{
|
||
// two step methods in order to allow inputFrame and outputFrame to be the same
|
||
unsigned int nbPixels=(unsigned int)(inputFrameBuffer.size()/3), dbpixels=(unsigned int)(2*inputFrameBuffer.size()/3);
|
||
|
||
const float *inputFrame=get_data(inputFrameBuffer);
|
||
float *outputFrame= &outputFrameBuffer[0];
|
||
|
||
for (unsigned int dataIndex=0; dataIndex<nbPixels;++dataIndex, ++outputFrame, ++inputFrame)
|
||
{
|
||
// first step, compute each new values
|
||
float layer1 = *(inputFrame)**(transformTable+0) +*(inputFrame+nbPixels)**(transformTable+1) +*(inputFrame+dbpixels)**(transformTable+2);
|
||
float layer2 = *(inputFrame)**(transformTable+3) +*(inputFrame+nbPixels)**(transformTable+4) +*(inputFrame+dbpixels)**(transformTable+5);
|
||
float layer3 = *(inputFrame)**(transformTable+6) +*(inputFrame+nbPixels)**(transformTable+7) +*(inputFrame+dbpixels)**(transformTable+8);
|
||
// second, affect the output
|
||
*(outputFrame) = layer1;
|
||
*(outputFrame+nbPixels) = layer2;
|
||
*(outputFrame+dbpixels) = layer3;
|
||
}
|
||
}
|
||
|
||
}
|