190 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			190 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* slasd5.f -- translated by f2c (version 20061008).
 | 
						|
   You must link the resulting object file with libf2c:
 | 
						|
	on Microsoft Windows system, link with libf2c.lib;
 | 
						|
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | 
						|
	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | 
						|
	-- in that order, at the end of the command line, as in
 | 
						|
		cc *.o -lf2c -lm
 | 
						|
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | 
						|
 | 
						|
		http://www.netlib.org/f2c/libf2c.zip
 | 
						|
*/
 | 
						|
 | 
						|
#include "clapack.h"
 | 
						|
 | 
						|
 | 
						|
/* Subroutine */ int slasd5_(integer *i__, real *d__, real *z__, real *delta, 
 | 
						|
	real *rho, real *dsigma, real *work)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    real r__1;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    double sqrt(doublereal);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real b, c__, w, del, tau, delsq;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.2) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  This subroutine computes the square root of the I-th eigenvalue */
 | 
						|
/*  of a positive symmetric rank-one modification of a 2-by-2 diagonal */
 | 
						|
/*  matrix */
 | 
						|
 | 
						|
/*             diag( D ) * diag( D ) +  RHO *  Z * transpose(Z) . */
 | 
						|
 | 
						|
/*  The diagonal entries in the array D are assumed to satisfy */
 | 
						|
 | 
						|
/*             0 <= D(i) < D(j)  for  i < j . */
 | 
						|
 | 
						|
/*  We also assume RHO > 0 and that the Euclidean norm of the vector */
 | 
						|
/*  Z is one. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  I      (input) INTEGER */
 | 
						|
/*         The index of the eigenvalue to be computed.  I = 1 or I = 2. */
 | 
						|
 | 
						|
/*  D      (input) REAL array, dimension (2) */
 | 
						|
/*         The original eigenvalues.  We assume 0 <= D(1) < D(2). */
 | 
						|
 | 
						|
/*  Z      (input) REAL array, dimension (2) */
 | 
						|
/*         The components of the updating vector. */
 | 
						|
 | 
						|
/*  DELTA  (output) REAL array, dimension (2) */
 | 
						|
/*         Contains (D(j) - sigma_I) in its  j-th component. */
 | 
						|
/*         The vector DELTA contains the information necessary */
 | 
						|
/*         to construct the eigenvectors. */
 | 
						|
 | 
						|
/*  RHO    (input) REAL */
 | 
						|
/*         The scalar in the symmetric updating formula. */
 | 
						|
 | 
						|
/*  DSIGMA (output) REAL */
 | 
						|
/*         The computed sigma_I, the I-th updated eigenvalue. */
 | 
						|
 | 
						|
/*  WORK   (workspace) REAL array, dimension (2) */
 | 
						|
/*         WORK contains (D(j) + sigma_I) in its  j-th component. */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  Based on contributions by */
 | 
						|
/*     Ren-Cang Li, Computer Science Division, University of California */
 | 
						|
/*     at Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --work;
 | 
						|
    --delta;
 | 
						|
    --z__;
 | 
						|
    --d__;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    del = d__[2] - d__[1];
 | 
						|
    delsq = del * (d__[2] + d__[1]);
 | 
						|
    if (*i__ == 1) {
 | 
						|
	w = *rho * 4.f * (z__[2] * z__[2] / (d__[1] + d__[2] * 3.f) - z__[1] *
 | 
						|
		 z__[1] / (d__[1] * 3.f + d__[2])) / del + 1.f;
 | 
						|
	if (w > 0.f) {
 | 
						|
	    b = delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 | 
						|
	    c__ = *rho * z__[1] * z__[1] * delsq;
 | 
						|
 | 
						|
/*           B > ZERO, always */
 | 
						|
 | 
						|
/*           The following TAU is DSIGMA * DSIGMA - D( 1 ) * D( 1 ) */
 | 
						|
 | 
						|
	    tau = c__ * 2.f / (b + sqrt((r__1 = b * b - c__ * 4.f, dabs(r__1))
 | 
						|
		    ));
 | 
						|
 | 
						|
/*           The following TAU is DSIGMA - D( 1 ) */
 | 
						|
 | 
						|
	    tau /= d__[1] + sqrt(d__[1] * d__[1] + tau);
 | 
						|
	    *dsigma = d__[1] + tau;
 | 
						|
	    delta[1] = -tau;
 | 
						|
	    delta[2] = del - tau;
 | 
						|
	    work[1] = d__[1] * 2.f + tau;
 | 
						|
	    work[2] = d__[1] + tau + d__[2];
 | 
						|
/*           DELTA( 1 ) = -Z( 1 ) / TAU */
 | 
						|
/*           DELTA( 2 ) = Z( 2 ) / ( DEL-TAU ) */
 | 
						|
	} else {
 | 
						|
	    b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 | 
						|
	    c__ = *rho * z__[2] * z__[2] * delsq;
 | 
						|
 | 
						|
/*           The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
 | 
						|
 | 
						|
	    if (b > 0.f) {
 | 
						|
		tau = c__ * -2.f / (b + sqrt(b * b + c__ * 4.f));
 | 
						|
	    } else {
 | 
						|
		tau = (b - sqrt(b * b + c__ * 4.f)) / 2.f;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           The following TAU is DSIGMA - D( 2 ) */
 | 
						|
 | 
						|
	    tau /= d__[2] + sqrt((r__1 = d__[2] * d__[2] + tau, dabs(r__1)));
 | 
						|
	    *dsigma = d__[2] + tau;
 | 
						|
	    delta[1] = -(del + tau);
 | 
						|
	    delta[2] = -tau;
 | 
						|
	    work[1] = d__[1] + tau + d__[2];
 | 
						|
	    work[2] = d__[2] * 2.f + tau;
 | 
						|
/*           DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
 | 
						|
/*           DELTA( 2 ) = -Z( 2 ) / TAU */
 | 
						|
	}
 | 
						|
/*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
 | 
						|
/*        DELTA( 1 ) = DELTA( 1 ) / TEMP */
 | 
						|
/*        DELTA( 2 ) = DELTA( 2 ) / TEMP */
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Now I=2 */
 | 
						|
 | 
						|
	b = -delsq + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 | 
						|
	c__ = *rho * z__[2] * z__[2] * delsq;
 | 
						|
 | 
						|
/*        The following TAU is DSIGMA * DSIGMA - D( 2 ) * D( 2 ) */
 | 
						|
 | 
						|
	if (b > 0.f) {
 | 
						|
	    tau = (b + sqrt(b * b + c__ * 4.f)) / 2.f;
 | 
						|
	} else {
 | 
						|
	    tau = c__ * 2.f / (-b + sqrt(b * b + c__ * 4.f));
 | 
						|
	}
 | 
						|
 | 
						|
/*        The following TAU is DSIGMA - D( 2 ) */
 | 
						|
 | 
						|
	tau /= d__[2] + sqrt(d__[2] * d__[2] + tau);
 | 
						|
	*dsigma = d__[2] + tau;
 | 
						|
	delta[1] = -(del + tau);
 | 
						|
	delta[2] = -tau;
 | 
						|
	work[1] = d__[1] + tau + d__[2];
 | 
						|
	work[2] = d__[2] * 2.f + tau;
 | 
						|
/*        DELTA( 1 ) = -Z( 1 ) / ( DEL+TAU ) */
 | 
						|
/*        DELTA( 2 ) = -Z( 2 ) / TAU */
 | 
						|
/*        TEMP = SQRT( DELTA( 1 )*DELTA( 1 )+DELTA( 2 )*DELTA( 2 ) ) */
 | 
						|
/*        DELTA( 1 ) = DELTA( 1 ) / TEMP */
 | 
						|
/*        DELTA( 2 ) = DELTA( 2 ) / TEMP */
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SLASD5 */
 | 
						|
 | 
						|
} /* slasd5_ */
 |