608 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			608 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* slasd2.f -- translated by f2c (version 20061008).
 | 
						|
   You must link the resulting object file with libf2c:
 | 
						|
	on Microsoft Windows system, link with libf2c.lib;
 | 
						|
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | 
						|
	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | 
						|
	-- in that order, at the end of the command line, as in
 | 
						|
		cc *.o -lf2c -lm
 | 
						|
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | 
						|
 | 
						|
		http://www.netlib.org/f2c/libf2c.zip
 | 
						|
*/
 | 
						|
 | 
						|
#include "clapack.h"
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b30 = 0.f;
 | 
						|
 | 
						|
/* Subroutine */ int slasd2_(integer *nl, integer *nr, integer *sqre, integer 
 | 
						|
	*k, real *d__, real *z__, real *alpha, real *beta, real *u, integer *
 | 
						|
	ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2, 
 | 
						|
	real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc, 
 | 
						|
	 integer *idxq, integer *coltyp, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, 
 | 
						|
	    vt2_dim1, vt2_offset, i__1;
 | 
						|
    real r__1, r__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real c__;
 | 
						|
    integer i__, j, m, n;
 | 
						|
    real s;
 | 
						|
    integer k2;
 | 
						|
    real z1;
 | 
						|
    integer ct, jp;
 | 
						|
    real eps, tau, tol;
 | 
						|
    integer psm[4], nlp1, nlp2, idxi, idxj, ctot[4];
 | 
						|
    extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *, real *, real *);
 | 
						|
    integer idxjp, jprev;
 | 
						|
    extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
 | 
						|
	    integer *);
 | 
						|
    extern doublereal slapy2_(real *, real *), slamch_(char *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_(
 | 
						|
	    integer *, integer *, real *, integer *, integer *, integer *);
 | 
						|
    real hlftol;
 | 
						|
    extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, 
 | 
						|
	    integer *, real *, integer *), slaset_(char *, integer *, 
 | 
						|
	    integer *, real *, real *, real *, integer *);
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.2) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  SLASD2 merges the two sets of singular values together into a single */
 | 
						|
/*  sorted set.  Then it tries to deflate the size of the problem. */
 | 
						|
/*  There are two ways in which deflation can occur:  when two or more */
 | 
						|
/*  singular values are close together or if there is a tiny entry in the */
 | 
						|
/*  Z vector.  For each such occurrence the order of the related secular */
 | 
						|
/*  equation problem is reduced by one. */
 | 
						|
 | 
						|
/*  SLASD2 is called from SLASD1. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  NL     (input) INTEGER */
 | 
						|
/*         The row dimension of the upper block.  NL >= 1. */
 | 
						|
 | 
						|
/*  NR     (input) INTEGER */
 | 
						|
/*         The row dimension of the lower block.  NR >= 1. */
 | 
						|
 | 
						|
/*  SQRE   (input) INTEGER */
 | 
						|
/*         = 0: the lower block is an NR-by-NR square matrix. */
 | 
						|
/*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 | 
						|
 | 
						|
/*         The bidiagonal matrix has N = NL + NR + 1 rows and */
 | 
						|
/*         M = N + SQRE >= N columns. */
 | 
						|
 | 
						|
/*  K      (output) INTEGER */
 | 
						|
/*         Contains the dimension of the non-deflated matrix, */
 | 
						|
/*         This is the order of the related secular equation. 1 <= K <=N. */
 | 
						|
 | 
						|
/*  D      (input/output) REAL array, dimension (N) */
 | 
						|
/*         On entry D contains the singular values of the two submatrices */
 | 
						|
/*         to be combined.  On exit D contains the trailing (N-K) updated */
 | 
						|
/*         singular values (those which were deflated) sorted into */
 | 
						|
/*         increasing order. */
 | 
						|
 | 
						|
/*  Z      (output) REAL array, dimension (N) */
 | 
						|
/*         On exit Z contains the updating row vector in the secular */
 | 
						|
/*         equation. */
 | 
						|
 | 
						|
/*  ALPHA  (input) REAL */
 | 
						|
/*         Contains the diagonal element associated with the added row. */
 | 
						|
 | 
						|
/*  BETA   (input) REAL */
 | 
						|
/*         Contains the off-diagonal element associated with the added */
 | 
						|
/*         row. */
 | 
						|
 | 
						|
/*  U      (input/output) REAL array, dimension (LDU,N) */
 | 
						|
/*         On entry U contains the left singular vectors of two */
 | 
						|
/*         submatrices in the two square blocks with corners at (1,1), */
 | 
						|
/*         (NL, NL), and (NL+2, NL+2), (N,N). */
 | 
						|
/*         On exit U contains the trailing (N-K) updated left singular */
 | 
						|
/*         vectors (those which were deflated) in its last N-K columns. */
 | 
						|
 | 
						|
/*  LDU    (input) INTEGER */
 | 
						|
/*         The leading dimension of the array U.  LDU >= N. */
 | 
						|
 | 
						|
/*  VT     (input/output) REAL array, dimension (LDVT,M) */
 | 
						|
/*         On entry VT' contains the right singular vectors of two */
 | 
						|
/*         submatrices in the two square blocks with corners at (1,1), */
 | 
						|
/*         (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
 | 
						|
/*         On exit VT' contains the trailing (N-K) updated right singular */
 | 
						|
/*         vectors (those which were deflated) in its last N-K columns. */
 | 
						|
/*         In case SQRE =1, the last row of VT spans the right null */
 | 
						|
/*         space. */
 | 
						|
 | 
						|
/*  LDVT   (input) INTEGER */
 | 
						|
/*         The leading dimension of the array VT.  LDVT >= M. */
 | 
						|
 | 
						|
/*  DSIGMA (output) REAL array, dimension (N) */
 | 
						|
/*         Contains a copy of the diagonal elements (K-1 singular values */
 | 
						|
/*         and one zero) in the secular equation. */
 | 
						|
 | 
						|
/*  U2     (output) REAL array, dimension (LDU2,N) */
 | 
						|
/*         Contains a copy of the first K-1 left singular vectors which */
 | 
						|
/*         will be used by SLASD3 in a matrix multiply (SGEMM) to solve */
 | 
						|
/*         for the new left singular vectors. U2 is arranged into four */
 | 
						|
/*         blocks. The first block contains a column with 1 at NL+1 and */
 | 
						|
/*         zero everywhere else; the second block contains non-zero */
 | 
						|
/*         entries only at and above NL; the third contains non-zero */
 | 
						|
/*         entries only below NL+1; and the fourth is dense. */
 | 
						|
 | 
						|
/*  LDU2   (input) INTEGER */
 | 
						|
/*         The leading dimension of the array U2.  LDU2 >= N. */
 | 
						|
 | 
						|
/*  VT2    (output) REAL array, dimension (LDVT2,N) */
 | 
						|
/*         VT2' contains a copy of the first K right singular vectors */
 | 
						|
/*         which will be used by SLASD3 in a matrix multiply (SGEMM) to */
 | 
						|
/*         solve for the new right singular vectors. VT2 is arranged into */
 | 
						|
/*         three blocks. The first block contains a row that corresponds */
 | 
						|
/*         to the special 0 diagonal element in SIGMA; the second block */
 | 
						|
/*         contains non-zeros only at and before NL +1; the third block */
 | 
						|
/*         contains non-zeros only at and after  NL +2. */
 | 
						|
 | 
						|
/*  LDVT2  (input) INTEGER */
 | 
						|
/*         The leading dimension of the array VT2.  LDVT2 >= M. */
 | 
						|
 | 
						|
/*  IDXP   (workspace) INTEGER array, dimension (N) */
 | 
						|
/*         This will contain the permutation used to place deflated */
 | 
						|
/*         values of D at the end of the array. On output IDXP(2:K) */
 | 
						|
/*         points to the nondeflated D-values and IDXP(K+1:N) */
 | 
						|
/*         points to the deflated singular values. */
 | 
						|
 | 
						|
/*  IDX    (workspace) INTEGER array, dimension (N) */
 | 
						|
/*         This will contain the permutation used to sort the contents of */
 | 
						|
/*         D into ascending order. */
 | 
						|
 | 
						|
/*  IDXC   (output) INTEGER array, dimension (N) */
 | 
						|
/*         This will contain the permutation used to arrange the columns */
 | 
						|
/*         of the deflated U matrix into three groups:  the first group */
 | 
						|
/*         contains non-zero entries only at and above NL, the second */
 | 
						|
/*         contains non-zero entries only below NL+2, and the third is */
 | 
						|
/*         dense. */
 | 
						|
 | 
						|
/*  IDXQ   (input/output) INTEGER array, dimension (N) */
 | 
						|
/*         This contains the permutation which separately sorts the two */
 | 
						|
/*         sub-problems in D into ascending order.  Note that entries in */
 | 
						|
/*         the first hlaf of this permutation must first be moved one */
 | 
						|
/*         position backward; and entries in the second half */
 | 
						|
/*         must first have NL+1 added to their values. */
 | 
						|
 | 
						|
/*  COLTYP (workspace/output) INTEGER array, dimension (N) */
 | 
						|
/*         As workspace, this will contain a label which will indicate */
 | 
						|
/*         which of the following types a column in the U2 matrix or a */
 | 
						|
/*         row in the VT2 matrix is: */
 | 
						|
/*         1 : non-zero in the upper half only */
 | 
						|
/*         2 : non-zero in the lower half only */
 | 
						|
/*         3 : dense */
 | 
						|
/*         4 : deflated */
 | 
						|
 | 
						|
/*         On exit, it is an array of dimension 4, with COLTYP(I) being */
 | 
						|
/*         the dimension of the I-th type columns. */
 | 
						|
 | 
						|
/*  INFO   (output) INTEGER */
 | 
						|
/*          = 0:  successful exit. */
 | 
						|
/*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  Based on contributions by */
 | 
						|
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
 | 
						|
/*     California at Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Arrays .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --d__;
 | 
						|
    --z__;
 | 
						|
    u_dim1 = *ldu;
 | 
						|
    u_offset = 1 + u_dim1;
 | 
						|
    u -= u_offset;
 | 
						|
    vt_dim1 = *ldvt;
 | 
						|
    vt_offset = 1 + vt_dim1;
 | 
						|
    vt -= vt_offset;
 | 
						|
    --dsigma;
 | 
						|
    u2_dim1 = *ldu2;
 | 
						|
    u2_offset = 1 + u2_dim1;
 | 
						|
    u2 -= u2_offset;
 | 
						|
    vt2_dim1 = *ldvt2;
 | 
						|
    vt2_offset = 1 + vt2_dim1;
 | 
						|
    vt2 -= vt2_offset;
 | 
						|
    --idxp;
 | 
						|
    --idx;
 | 
						|
    --idxc;
 | 
						|
    --idxq;
 | 
						|
    --coltyp;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
 | 
						|
    if (*nl < 1) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*nr < 1) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*sqre != 1 && *sqre != 0) {
 | 
						|
	*info = -3;
 | 
						|
    }
 | 
						|
 | 
						|
    n = *nl + *nr + 1;
 | 
						|
    m = n + *sqre;
 | 
						|
 | 
						|
    if (*ldu < n) {
 | 
						|
	*info = -10;
 | 
						|
    } else if (*ldvt < m) {
 | 
						|
	*info = -12;
 | 
						|
    } else if (*ldu2 < n) {
 | 
						|
	*info = -15;
 | 
						|
    } else if (*ldvt2 < m) {
 | 
						|
	*info = -17;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("SLASD2", &i__1);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    nlp1 = *nl + 1;
 | 
						|
    nlp2 = *nl + 2;
 | 
						|
 | 
						|
/*     Generate the first part of the vector Z; and move the singular */
 | 
						|
/*     values in the first part of D one position backward. */
 | 
						|
 | 
						|
    z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
 | 
						|
    z__[1] = z1;
 | 
						|
    for (i__ = *nl; i__ >= 1; --i__) {
 | 
						|
	z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
 | 
						|
	d__[i__ + 1] = d__[i__];
 | 
						|
	idxq[i__ + 1] = idxq[i__] + 1;
 | 
						|
/* L10: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Generate the second part of the vector Z. */
 | 
						|
 | 
						|
    i__1 = m;
 | 
						|
    for (i__ = nlp2; i__ <= i__1; ++i__) {
 | 
						|
	z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
 | 
						|
/* L20: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize some reference arrays. */
 | 
						|
 | 
						|
    i__1 = nlp1;
 | 
						|
    for (i__ = 2; i__ <= i__1; ++i__) {
 | 
						|
	coltyp[i__] = 1;
 | 
						|
/* L30: */
 | 
						|
    }
 | 
						|
    i__1 = n;
 | 
						|
    for (i__ = nlp2; i__ <= i__1; ++i__) {
 | 
						|
	coltyp[i__] = 2;
 | 
						|
/* L40: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Sort the singular values into increasing order */
 | 
						|
 | 
						|
    i__1 = n;
 | 
						|
    for (i__ = nlp2; i__ <= i__1; ++i__) {
 | 
						|
	idxq[i__] += nlp1;
 | 
						|
/* L50: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     DSIGMA, IDXC, IDXC, and the first column of U2 */
 | 
						|
/*     are used as storage space. */
 | 
						|
 | 
						|
    i__1 = n;
 | 
						|
    for (i__ = 2; i__ <= i__1; ++i__) {
 | 
						|
	dsigma[i__] = d__[idxq[i__]];
 | 
						|
	u2[i__ + u2_dim1] = z__[idxq[i__]];
 | 
						|
	idxc[i__] = coltyp[idxq[i__]];
 | 
						|
/* L60: */
 | 
						|
    }
 | 
						|
 | 
						|
    slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
 | 
						|
 | 
						|
    i__1 = n;
 | 
						|
    for (i__ = 2; i__ <= i__1; ++i__) {
 | 
						|
	idxi = idx[i__] + 1;
 | 
						|
	d__[i__] = dsigma[idxi];
 | 
						|
	z__[i__] = u2[idxi + u2_dim1];
 | 
						|
	coltyp[i__] = idxc[idxi];
 | 
						|
/* L70: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Calculate the allowable deflation tolerance */
 | 
						|
 | 
						|
    eps = slamch_("Epsilon");
 | 
						|
/* Computing MAX */
 | 
						|
    r__1 = dabs(*alpha), r__2 = dabs(*beta);
 | 
						|
    tol = dmax(r__1,r__2);
 | 
						|
/* Computing MAX */
 | 
						|
    r__2 = (r__1 = d__[n], dabs(r__1));
 | 
						|
    tol = eps * 8.f * dmax(r__2,tol);
 | 
						|
 | 
						|
/*     There are 2 kinds of deflation -- first a value in the z-vector */
 | 
						|
/*     is small, second two (or more) singular values are very close */
 | 
						|
/*     together (their difference is small). */
 | 
						|
 | 
						|
/*     If the value in the z-vector is small, we simply permute the */
 | 
						|
/*     array so that the corresponding singular value is moved to the */
 | 
						|
/*     end. */
 | 
						|
 | 
						|
/*     If two values in the D-vector are close, we perform a two-sided */
 | 
						|
/*     rotation designed to make one of the corresponding z-vector */
 | 
						|
/*     entries zero, and then permute the array so that the deflated */
 | 
						|
/*     singular value is moved to the end. */
 | 
						|
 | 
						|
/*     If there are multiple singular values then the problem deflates. */
 | 
						|
/*     Here the number of equal singular values are found.  As each equal */
 | 
						|
/*     singular value is found, an elementary reflector is computed to */
 | 
						|
/*     rotate the corresponding singular subspace so that the */
 | 
						|
/*     corresponding components of Z are zero in this new basis. */
 | 
						|
 | 
						|
    *k = 1;
 | 
						|
    k2 = n + 1;
 | 
						|
    i__1 = n;
 | 
						|
    for (j = 2; j <= i__1; ++j) {
 | 
						|
	if ((r__1 = z__[j], dabs(r__1)) <= tol) {
 | 
						|
 | 
						|
/*           Deflate due to small z component. */
 | 
						|
 | 
						|
	    --k2;
 | 
						|
	    idxp[k2] = j;
 | 
						|
	    coltyp[j] = 4;
 | 
						|
	    if (j == n) {
 | 
						|
		goto L120;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    jprev = j;
 | 
						|
	    goto L90;
 | 
						|
	}
 | 
						|
/* L80: */
 | 
						|
    }
 | 
						|
L90:
 | 
						|
    j = jprev;
 | 
						|
L100:
 | 
						|
    ++j;
 | 
						|
    if (j > n) {
 | 
						|
	goto L110;
 | 
						|
    }
 | 
						|
    if ((r__1 = z__[j], dabs(r__1)) <= tol) {
 | 
						|
 | 
						|
/*        Deflate due to small z component. */
 | 
						|
 | 
						|
	--k2;
 | 
						|
	idxp[k2] = j;
 | 
						|
	coltyp[j] = 4;
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Check if singular values are close enough to allow deflation. */
 | 
						|
 | 
						|
	if ((r__1 = d__[j] - d__[jprev], dabs(r__1)) <= tol) {
 | 
						|
 | 
						|
/*           Deflation is possible. */
 | 
						|
 | 
						|
	    s = z__[jprev];
 | 
						|
	    c__ = z__[j];
 | 
						|
 | 
						|
/*           Find sqrt(a**2+b**2) without overflow or */
 | 
						|
/*           destructive underflow. */
 | 
						|
 | 
						|
	    tau = slapy2_(&c__, &s);
 | 
						|
	    c__ /= tau;
 | 
						|
	    s = -s / tau;
 | 
						|
	    z__[j] = tau;
 | 
						|
	    z__[jprev] = 0.f;
 | 
						|
 | 
						|
/*           Apply back the Givens rotation to the left and right */
 | 
						|
/*           singular vector matrices. */
 | 
						|
 | 
						|
	    idxjp = idxq[idx[jprev] + 1];
 | 
						|
	    idxj = idxq[idx[j] + 1];
 | 
						|
	    if (idxjp <= nlp1) {
 | 
						|
		--idxjp;
 | 
						|
	    }
 | 
						|
	    if (idxj <= nlp1) {
 | 
						|
		--idxj;
 | 
						|
	    }
 | 
						|
	    srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
 | 
						|
		    c__1, &c__, &s);
 | 
						|
	    srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
 | 
						|
		    c__, &s);
 | 
						|
	    if (coltyp[j] != coltyp[jprev]) {
 | 
						|
		coltyp[j] = 3;
 | 
						|
	    }
 | 
						|
	    coltyp[jprev] = 4;
 | 
						|
	    --k2;
 | 
						|
	    idxp[k2] = jprev;
 | 
						|
	    jprev = j;
 | 
						|
	} else {
 | 
						|
	    ++(*k);
 | 
						|
	    u2[*k + u2_dim1] = z__[jprev];
 | 
						|
	    dsigma[*k] = d__[jprev];
 | 
						|
	    idxp[*k] = jprev;
 | 
						|
	    jprev = j;
 | 
						|
	}
 | 
						|
    }
 | 
						|
    goto L100;
 | 
						|
L110:
 | 
						|
 | 
						|
/*     Record the last singular value. */
 | 
						|
 | 
						|
    ++(*k);
 | 
						|
    u2[*k + u2_dim1] = z__[jprev];
 | 
						|
    dsigma[*k] = d__[jprev];
 | 
						|
    idxp[*k] = jprev;
 | 
						|
 | 
						|
L120:
 | 
						|
 | 
						|
/*     Count up the total number of the various types of columns, then */
 | 
						|
/*     form a permutation which positions the four column types into */
 | 
						|
/*     four groups of uniform structure (although one or more of these */
 | 
						|
/*     groups may be empty). */
 | 
						|
 | 
						|
    for (j = 1; j <= 4; ++j) {
 | 
						|
	ctot[j - 1] = 0;
 | 
						|
/* L130: */
 | 
						|
    }
 | 
						|
    i__1 = n;
 | 
						|
    for (j = 2; j <= i__1; ++j) {
 | 
						|
	ct = coltyp[j];
 | 
						|
	++ctot[ct - 1];
 | 
						|
/* L140: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     PSM(*) = Position in SubMatrix (of types 1 through 4) */
 | 
						|
 | 
						|
    psm[0] = 2;
 | 
						|
    psm[1] = ctot[0] + 2;
 | 
						|
    psm[2] = psm[1] + ctot[1];
 | 
						|
    psm[3] = psm[2] + ctot[2];
 | 
						|
 | 
						|
/*     Fill out the IDXC array so that the permutation which it induces */
 | 
						|
/*     will place all type-1 columns first, all type-2 columns next, */
 | 
						|
/*     then all type-3's, and finally all type-4's, starting from the */
 | 
						|
/*     second column. This applies similarly to the rows of VT. */
 | 
						|
 | 
						|
    i__1 = n;
 | 
						|
    for (j = 2; j <= i__1; ++j) {
 | 
						|
	jp = idxp[j];
 | 
						|
	ct = coltyp[jp];
 | 
						|
	idxc[psm[ct - 1]] = j;
 | 
						|
	++psm[ct - 1];
 | 
						|
/* L150: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Sort the singular values and corresponding singular vectors into */
 | 
						|
/*     DSIGMA, U2, and VT2 respectively.  The singular values/vectors */
 | 
						|
/*     which were not deflated go into the first K slots of DSIGMA, U2, */
 | 
						|
/*     and VT2 respectively, while those which were deflated go into the */
 | 
						|
/*     last N - K slots, except that the first column/row will be treated */
 | 
						|
/*     separately. */
 | 
						|
 | 
						|
    i__1 = n;
 | 
						|
    for (j = 2; j <= i__1; ++j) {
 | 
						|
	jp = idxp[j];
 | 
						|
	dsigma[j] = d__[jp];
 | 
						|
	idxj = idxq[idx[idxp[idxc[j]]] + 1];
 | 
						|
	if (idxj <= nlp1) {
 | 
						|
	    --idxj;
 | 
						|
	}
 | 
						|
	scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
 | 
						|
	scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
 | 
						|
/* L160: */
 | 
						|
    }
 | 
						|
 | 
						|
/*     Determine DSIGMA(1), DSIGMA(2) and Z(1) */
 | 
						|
 | 
						|
    dsigma[1] = 0.f;
 | 
						|
    hlftol = tol / 2.f;
 | 
						|
    if (dabs(dsigma[2]) <= hlftol) {
 | 
						|
	dsigma[2] = hlftol;
 | 
						|
    }
 | 
						|
    if (m > n) {
 | 
						|
	z__[1] = slapy2_(&z1, &z__[m]);
 | 
						|
	if (z__[1] <= tol) {
 | 
						|
	    c__ = 1.f;
 | 
						|
	    s = 0.f;
 | 
						|
	    z__[1] = tol;
 | 
						|
	} else {
 | 
						|
	    c__ = z1 / z__[1];
 | 
						|
	    s = z__[m] / z__[1];
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	if (dabs(z1) <= tol) {
 | 
						|
	    z__[1] = tol;
 | 
						|
	} else {
 | 
						|
	    z__[1] = z1;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Move the rest of the updating row to Z. */
 | 
						|
 | 
						|
    i__1 = *k - 1;
 | 
						|
    scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
 | 
						|
 | 
						|
/*     Determine the first column of U2, the first row of VT2 and the */
 | 
						|
/*     last row of VT. */
 | 
						|
 | 
						|
    slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
 | 
						|
    u2[nlp1 + u2_dim1] = 1.f;
 | 
						|
    if (m > n) {
 | 
						|
	i__1 = nlp1;
 | 
						|
	for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	    vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
 | 
						|
	    vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
 | 
						|
/* L170: */
 | 
						|
	}
 | 
						|
	i__1 = m;
 | 
						|
	for (i__ = nlp2; i__ <= i__1; ++i__) {
 | 
						|
	    vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
 | 
						|
	    vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
 | 
						|
/* L180: */
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
 | 
						|
    }
 | 
						|
    if (m > n) {
 | 
						|
	scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
 | 
						|
    }
 | 
						|
 | 
						|
/*     The deflated singular values and their corresponding vectors go */
 | 
						|
/*     into the back of D, U, and V respectively. */
 | 
						|
 | 
						|
    if (n > *k) {
 | 
						|
	i__1 = n - *k;
 | 
						|
	scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
 | 
						|
	i__1 = n - *k;
 | 
						|
	slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
 | 
						|
		 * u_dim1 + 1], ldu);
 | 
						|
	i__1 = n - *k;
 | 
						|
	slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 + 
 | 
						|
		vt_dim1], ldvt);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Copy CTOT into COLTYP for referencing in SLASD3. */
 | 
						|
 | 
						|
    for (j = 1; j <= 4; ++j) {
 | 
						|
	coltyp[j] = ctot[j - 1];
 | 
						|
/* L190: */
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SLASD2 */
 | 
						|
 | 
						|
} /* slasd2_ */
 |