953 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			953 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* slaed4.f -- translated by f2c (version 20061008).
 | 
						|
   You must link the resulting object file with libf2c:
 | 
						|
	on Microsoft Windows system, link with libf2c.lib;
 | 
						|
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | 
						|
	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | 
						|
	-- in that order, at the end of the command line, as in
 | 
						|
		cc *.o -lf2c -lm
 | 
						|
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | 
						|
 | 
						|
		http://www.netlib.org/f2c/libf2c.zip
 | 
						|
*/
 | 
						|
 | 
						|
#include "clapack.h"
 | 
						|
 | 
						|
 | 
						|
/* Subroutine */ int slaed4_(integer *n, integer *i__, real *d__, real *z__, 
 | 
						|
	real *delta, real *rho, real *dlam, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer i__1;
 | 
						|
    real r__1;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    double sqrt(doublereal);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real a, b, c__;
 | 
						|
    integer j;
 | 
						|
    real w;
 | 
						|
    integer ii;
 | 
						|
    real dw, zz[3];
 | 
						|
    integer ip1;
 | 
						|
    real del, eta, phi, eps, tau, psi;
 | 
						|
    integer iim1, iip1;
 | 
						|
    real dphi, dpsi;
 | 
						|
    integer iter;
 | 
						|
    real temp, prew, temp1, dltlb, dltub, midpt;
 | 
						|
    integer niter;
 | 
						|
    logical swtch;
 | 
						|
    extern /* Subroutine */ int slaed5_(integer *, real *, real *, real *, 
 | 
						|
	    real *, real *), slaed6_(integer *, logical *, real *, real *, 
 | 
						|
	    real *, real *, real *, integer *);
 | 
						|
    logical swtch3;
 | 
						|
    extern doublereal slamch_(char *);
 | 
						|
    logical orgati;
 | 
						|
    real erretm, rhoinv;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK routine (version 3.2) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  This subroutine computes the I-th updated eigenvalue of a symmetric */
 | 
						|
/*  rank-one modification to a diagonal matrix whose elements are */
 | 
						|
/*  given in the array d, and that */
 | 
						|
 | 
						|
/*             D(i) < D(j)  for  i < j */
 | 
						|
 | 
						|
/*  and that RHO > 0.  This is arranged by the calling routine, and is */
 | 
						|
/*  no loss in generality.  The rank-one modified system is thus */
 | 
						|
 | 
						|
/*             diag( D )  +  RHO *  Z * Z_transpose. */
 | 
						|
 | 
						|
/*  where we assume the Euclidean norm of Z is 1. */
 | 
						|
 | 
						|
/*  The method consists of approximating the rational functions in the */
 | 
						|
/*  secular equation by simpler interpolating rational functions. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  N      (input) INTEGER */
 | 
						|
/*         The length of all arrays. */
 | 
						|
 | 
						|
/*  I      (input) INTEGER */
 | 
						|
/*         The index of the eigenvalue to be computed.  1 <= I <= N. */
 | 
						|
 | 
						|
/*  D      (input) REAL array, dimension (N) */
 | 
						|
/*         The original eigenvalues.  It is assumed that they are in */
 | 
						|
/*         order, D(I) < D(J)  for I < J. */
 | 
						|
 | 
						|
/*  Z      (input) REAL array, dimension (N) */
 | 
						|
/*         The components of the updating vector. */
 | 
						|
 | 
						|
/*  DELTA  (output) REAL array, dimension (N) */
 | 
						|
/*         If N .GT. 2, DELTA contains (D(j) - lambda_I) in its  j-th */
 | 
						|
/*         component.  If N = 1, then DELTA(1) = 1. If N = 2, see SLAED5 */
 | 
						|
/*         for detail. The vector DELTA contains the information necessary */
 | 
						|
/*         to construct the eigenvectors by SLAED3 and SLAED9. */
 | 
						|
 | 
						|
/*  RHO    (input) REAL */
 | 
						|
/*         The scalar in the symmetric updating formula. */
 | 
						|
 | 
						|
/*  DLAM   (output) REAL */
 | 
						|
/*         The computed lambda_I, the I-th updated eigenvalue. */
 | 
						|
 | 
						|
/*  INFO   (output) INTEGER */
 | 
						|
/*         = 0:  successful exit */
 | 
						|
/*         > 0:  if INFO = 1, the updating process failed. */
 | 
						|
 | 
						|
/*  Internal Parameters */
 | 
						|
/*  =================== */
 | 
						|
 | 
						|
/*  Logical variable ORGATI (origin-at-i?) is used for distinguishing */
 | 
						|
/*  whether D(i) or D(i+1) is treated as the origin. */
 | 
						|
 | 
						|
/*            ORGATI = .true.    origin at i */
 | 
						|
/*            ORGATI = .false.   origin at i+1 */
 | 
						|
 | 
						|
/*   Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
 | 
						|
/*   if we are working with THREE poles! */
 | 
						|
 | 
						|
/*   MAXIT is the maximum number of iterations allowed for each */
 | 
						|
/*   eigenvalue. */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  Based on contributions by */
 | 
						|
/*     Ren-Cang Li, Computer Science Division, University of California */
 | 
						|
/*     at Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Arrays .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Since this routine is called in an inner loop, we do no argument */
 | 
						|
/*     checking. */
 | 
						|
 | 
						|
/*     Quick return for N=1 and 2. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --delta;
 | 
						|
    --z__;
 | 
						|
    --d__;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    if (*n == 1) {
 | 
						|
 | 
						|
/*         Presumably, I=1 upon entry */
 | 
						|
 | 
						|
	*dlam = d__[1] + *rho * z__[1] * z__[1];
 | 
						|
	delta[1] = 1.f;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
    if (*n == 2) {
 | 
						|
	slaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute machine epsilon */
 | 
						|
 | 
						|
    eps = slamch_("Epsilon");
 | 
						|
    rhoinv = 1.f / *rho;
 | 
						|
 | 
						|
/*     The case I = N */
 | 
						|
 | 
						|
    if (*i__ == *n) {
 | 
						|
 | 
						|
/*        Initialize some basic variables */
 | 
						|
 | 
						|
	ii = *n - 1;
 | 
						|
	niter = 1;
 | 
						|
 | 
						|
/*        Calculate initial guess */
 | 
						|
 | 
						|
	midpt = *rho / 2.f;
 | 
						|
 | 
						|
/*        If ||Z||_2 is not one, then TEMP should be set to */
 | 
						|
/*        RHO * ||Z||_2^2 / TWO */
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] = d__[j] - d__[*i__] - midpt;
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
 | 
						|
	psi = 0.f;
 | 
						|
	i__1 = *n - 2;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    psi += z__[j] * z__[j] / delta[j];
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
 | 
						|
	c__ = rhoinv + psi;
 | 
						|
	w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*
 | 
						|
		n];
 | 
						|
 | 
						|
	if (w <= 0.f) {
 | 
						|
	    temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho) 
 | 
						|
		    + z__[*n] * z__[*n] / *rho;
 | 
						|
	    if (c__ <= temp) {
 | 
						|
		tau = *rho;
 | 
						|
	    } else {
 | 
						|
		del = d__[*n] - d__[*n - 1];
 | 
						|
		a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]
 | 
						|
			;
 | 
						|
		b = z__[*n] * z__[*n] * del;
 | 
						|
		if (a < 0.f) {
 | 
						|
		    tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
 | 
						|
		} else {
 | 
						|
		    tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           It can be proved that */
 | 
						|
/*               D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO */
 | 
						|
 | 
						|
	    dltlb = midpt;
 | 
						|
	    dltub = *rho;
 | 
						|
	} else {
 | 
						|
	    del = d__[*n] - d__[*n - 1];
 | 
						|
	    a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
 | 
						|
	    b = z__[*n] * z__[*n] * del;
 | 
						|
	    if (a < 0.f) {
 | 
						|
		tau = b * 2.f / (sqrt(a * a + b * 4.f * c__) - a);
 | 
						|
	    } else {
 | 
						|
		tau = (a + sqrt(a * a + b * 4.f * c__)) / (c__ * 2.f);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           It can be proved that */
 | 
						|
/*               D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2 */
 | 
						|
 | 
						|
	    dltlb = 0.f;
 | 
						|
	    dltub = midpt;
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] = d__[j] - d__[*i__] - tau;
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.f;
 | 
						|
	psi = 0.f;
 | 
						|
	erretm = 0.f;
 | 
						|
	i__1 = ii;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
	erretm = dabs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	temp = z__[*n] / delta[*n];
 | 
						|
	phi = z__[*n] * temp;
 | 
						|
	dphi = temp * temp;
 | 
						|
	erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) * (
 | 
						|
		dpsi + dphi);
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        Test for convergence */
 | 
						|
 | 
						|
	if (dabs(w) <= eps * erretm) {
 | 
						|
	    *dlam = d__[*i__] + tau;
 | 
						|
	    goto L250;
 | 
						|
	}
 | 
						|
 | 
						|
	if (w <= 0.f) {
 | 
						|
	    dltlb = dmax(dltlb,tau);
 | 
						|
	} else {
 | 
						|
	    dltub = dmin(dltub,tau);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Calculate the new step */
 | 
						|
 | 
						|
	++niter;
 | 
						|
	c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
 | 
						|
	a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (
 | 
						|
		dpsi + dphi);
 | 
						|
	b = delta[*n - 1] * delta[*n] * w;
 | 
						|
	if (c__ < 0.f) {
 | 
						|
	    c__ = dabs(c__);
 | 
						|
	}
 | 
						|
	if (c__ == 0.f) {
 | 
						|
/*          ETA = B/A */
 | 
						|
/*           ETA = RHO - TAU */
 | 
						|
	    eta = dltub - tau;
 | 
						|
	} else if (a >= 0.f) {
 | 
						|
	    eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) / (
 | 
						|
		    c__ * 2.f);
 | 
						|
	} else {
 | 
						|
	    eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(
 | 
						|
		    r__1))));
 | 
						|
	}
 | 
						|
 | 
						|
/*        Note, eta should be positive if w is negative, and */
 | 
						|
/*        eta should be negative otherwise. However, */
 | 
						|
/*        if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*        we simply use one Newton step instead. This way */
 | 
						|
/*        will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	if (w * eta > 0.f) {
 | 
						|
	    eta = -w / (dpsi + dphi);
 | 
						|
	}
 | 
						|
	temp = tau + eta;
 | 
						|
	if (temp > dltub || temp < dltlb) {
 | 
						|
	    if (w < 0.f) {
 | 
						|
		eta = (dltub - tau) / 2.f;
 | 
						|
	    } else {
 | 
						|
		eta = (dltlb - tau) / 2.f;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] -= eta;
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
 | 
						|
	tau += eta;
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.f;
 | 
						|
	psi = 0.f;
 | 
						|
	erretm = 0.f;
 | 
						|
	i__1 = ii;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L60: */
 | 
						|
	}
 | 
						|
	erretm = dabs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	temp = z__[*n] / delta[*n];
 | 
						|
	phi = z__[*n] * temp;
 | 
						|
	dphi = temp * temp;
 | 
						|
	erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) * (
 | 
						|
		dpsi + dphi);
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        Main loop to update the values of the array   DELTA */
 | 
						|
 | 
						|
	iter = niter + 1;
 | 
						|
 | 
						|
	for (niter = iter; niter <= 30; ++niter) {
 | 
						|
 | 
						|
/*           Test for convergence */
 | 
						|
 | 
						|
	    if (dabs(w) <= eps * erretm) {
 | 
						|
		*dlam = d__[*i__] + tau;
 | 
						|
		goto L250;
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (w <= 0.f) {
 | 
						|
		dltlb = dmax(dltlb,tau);
 | 
						|
	    } else {
 | 
						|
		dltub = dmin(dltub,tau);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Calculate the new step */
 | 
						|
 | 
						|
	    c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
 | 
						|
	    a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * 
 | 
						|
		    (dpsi + dphi);
 | 
						|
	    b = delta[*n - 1] * delta[*n] * w;
 | 
						|
	    if (a >= 0.f) {
 | 
						|
		eta = (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) /
 | 
						|
			 (c__ * 2.f);
 | 
						|
	    } else {
 | 
						|
		eta = b * 2.f / (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(
 | 
						|
			r__1))));
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Note, eta should be positive if w is negative, and */
 | 
						|
/*           eta should be negative otherwise. However, */
 | 
						|
/*           if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*           we simply use one Newton step instead. This way */
 | 
						|
/*           will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	    if (w * eta > 0.f) {
 | 
						|
		eta = -w / (dpsi + dphi);
 | 
						|
	    }
 | 
						|
	    temp = tau + eta;
 | 
						|
	    if (temp > dltub || temp < dltlb) {
 | 
						|
		if (w < 0.f) {
 | 
						|
		    eta = (dltub - tau) / 2.f;
 | 
						|
		} else {
 | 
						|
		    eta = (dltlb - tau) / 2.f;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] -= eta;
 | 
						|
/* L70: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    tau += eta;
 | 
						|
 | 
						|
/*           Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	    dpsi = 0.f;
 | 
						|
	    psi = 0.f;
 | 
						|
	    erretm = 0.f;
 | 
						|
	    i__1 = ii;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		temp = z__[j] / delta[j];
 | 
						|
		psi += z__[j] * temp;
 | 
						|
		dpsi += temp * temp;
 | 
						|
		erretm += psi;
 | 
						|
/* L80: */
 | 
						|
	    }
 | 
						|
	    erretm = dabs(erretm);
 | 
						|
 | 
						|
/*           Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	    temp = z__[*n] / delta[*n];
 | 
						|
	    phi = z__[*n] * temp;
 | 
						|
	    dphi = temp * temp;
 | 
						|
	    erretm = (-phi - psi) * 8.f + erretm - phi + rhoinv + dabs(tau) * 
 | 
						|
		    (dpsi + dphi);
 | 
						|
 | 
						|
	    w = rhoinv + phi + psi;
 | 
						|
/* L90: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Return with INFO = 1, NITER = MAXIT and not converged */
 | 
						|
 | 
						|
	*info = 1;
 | 
						|
	*dlam = d__[*i__] + tau;
 | 
						|
	goto L250;
 | 
						|
 | 
						|
/*        End for the case I = N */
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        The case for I < N */
 | 
						|
 | 
						|
	niter = 1;
 | 
						|
	ip1 = *i__ + 1;
 | 
						|
 | 
						|
/*        Calculate initial guess */
 | 
						|
 | 
						|
	del = d__[ip1] - d__[*i__];
 | 
						|
	midpt = del / 2.f;
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] = d__[j] - d__[*i__] - midpt;
 | 
						|
/* L100: */
 | 
						|
	}
 | 
						|
 | 
						|
	psi = 0.f;
 | 
						|
	i__1 = *i__ - 1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    psi += z__[j] * z__[j] / delta[j];
 | 
						|
/* L110: */
 | 
						|
	}
 | 
						|
 | 
						|
	phi = 0.f;
 | 
						|
	i__1 = *i__ + 2;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    phi += z__[j] * z__[j] / delta[j];
 | 
						|
/* L120: */
 | 
						|
	}
 | 
						|
	c__ = rhoinv + psi + phi;
 | 
						|
	w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] / 
 | 
						|
		delta[ip1];
 | 
						|
 | 
						|
	if (w > 0.f) {
 | 
						|
 | 
						|
/*           d(i)< the ith eigenvalue < (d(i)+d(i+1))/2 */
 | 
						|
 | 
						|
/*           We choose d(i) as origin. */
 | 
						|
 | 
						|
	    orgati = TRUE_;
 | 
						|
	    a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
 | 
						|
	    b = z__[*i__] * z__[*i__] * del;
 | 
						|
	    if (a > 0.f) {
 | 
						|
		tau = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(
 | 
						|
			r__1))));
 | 
						|
	    } else {
 | 
						|
		tau = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) /
 | 
						|
			 (c__ * 2.f);
 | 
						|
	    }
 | 
						|
	    dltlb = 0.f;
 | 
						|
	    dltub = midpt;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1) */
 | 
						|
 | 
						|
/*           We choose d(i+1) as origin. */
 | 
						|
 | 
						|
	    orgati = FALSE_;
 | 
						|
	    a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
 | 
						|
	    b = z__[ip1] * z__[ip1] * del;
 | 
						|
	    if (a < 0.f) {
 | 
						|
		tau = b * 2.f / (a - sqrt((r__1 = a * a + b * 4.f * c__, dabs(
 | 
						|
			r__1))));
 | 
						|
	    } else {
 | 
						|
		tau = -(a + sqrt((r__1 = a * a + b * 4.f * c__, dabs(r__1)))) 
 | 
						|
			/ (c__ * 2.f);
 | 
						|
	    }
 | 
						|
	    dltlb = -midpt;
 | 
						|
	    dltub = 0.f;
 | 
						|
	}
 | 
						|
 | 
						|
	if (orgati) {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] = d__[j] - d__[*i__] - tau;
 | 
						|
/* L130: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] = d__[j] - d__[ip1] - tau;
 | 
						|
/* L140: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (orgati) {
 | 
						|
	    ii = *i__;
 | 
						|
	} else {
 | 
						|
	    ii = *i__ + 1;
 | 
						|
	}
 | 
						|
	iim1 = ii - 1;
 | 
						|
	iip1 = ii + 1;
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.f;
 | 
						|
	psi = 0.f;
 | 
						|
	erretm = 0.f;
 | 
						|
	i__1 = iim1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L150: */
 | 
						|
	}
 | 
						|
	erretm = dabs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	dphi = 0.f;
 | 
						|
	phi = 0.f;
 | 
						|
	i__1 = iip1;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    phi += z__[j] * temp;
 | 
						|
	    dphi += temp * temp;
 | 
						|
	    erretm += phi;
 | 
						|
/* L160: */
 | 
						|
	}
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        W is the value of the secular function with */
 | 
						|
/*        its ii-th element removed. */
 | 
						|
 | 
						|
	swtch3 = FALSE_;
 | 
						|
	if (orgati) {
 | 
						|
	    if (w < 0.f) {
 | 
						|
		swtch3 = TRUE_;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    if (w > 0.f) {
 | 
						|
		swtch3 = TRUE_;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (ii == 1 || ii == *n) {
 | 
						|
	    swtch3 = FALSE_;
 | 
						|
	}
 | 
						|
 | 
						|
	temp = z__[ii] / delta[ii];
 | 
						|
	dw = dpsi + dphi + temp * temp;
 | 
						|
	temp = z__[ii] * temp;
 | 
						|
	w += temp;
 | 
						|
	erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) * 3.f 
 | 
						|
		+ dabs(tau) * dw;
 | 
						|
 | 
						|
/*        Test for convergence */
 | 
						|
 | 
						|
	if (dabs(w) <= eps * erretm) {
 | 
						|
	    if (orgati) {
 | 
						|
		*dlam = d__[*i__] + tau;
 | 
						|
	    } else {
 | 
						|
		*dlam = d__[ip1] + tau;
 | 
						|
	    }
 | 
						|
	    goto L250;
 | 
						|
	}
 | 
						|
 | 
						|
	if (w <= 0.f) {
 | 
						|
	    dltlb = dmax(dltlb,tau);
 | 
						|
	} else {
 | 
						|
	    dltub = dmin(dltub,tau);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Calculate the new step */
 | 
						|
 | 
						|
	++niter;
 | 
						|
	if (! swtch3) {
 | 
						|
	    if (orgati) {
 | 
						|
/* Computing 2nd power */
 | 
						|
		r__1 = z__[*i__] / delta[*i__];
 | 
						|
		c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (r__1 * 
 | 
						|
			r__1);
 | 
						|
	    } else {
 | 
						|
/* Computing 2nd power */
 | 
						|
		r__1 = z__[ip1] / delta[ip1];
 | 
						|
		c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (r__1 * 
 | 
						|
			r__1);
 | 
						|
	    }
 | 
						|
	    a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] * 
 | 
						|
		    dw;
 | 
						|
	    b = delta[*i__] * delta[ip1] * w;
 | 
						|
	    if (c__ == 0.f) {
 | 
						|
		if (a == 0.f) {
 | 
						|
		    if (orgati) {
 | 
						|
			a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] * 
 | 
						|
				(dpsi + dphi);
 | 
						|
		    } else {
 | 
						|
			a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] * 
 | 
						|
				(dpsi + dphi);
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		eta = b / a;
 | 
						|
	    } else if (a <= 0.f) {
 | 
						|
		eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1)))) /
 | 
						|
			 (c__ * 2.f);
 | 
						|
	    } else {
 | 
						|
		eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, dabs(
 | 
						|
			r__1))));
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Interpolation using THREE most relevant poles */
 | 
						|
 | 
						|
	    temp = rhoinv + psi + phi;
 | 
						|
	    if (orgati) {
 | 
						|
		temp1 = z__[iim1] / delta[iim1];
 | 
						|
		temp1 *= temp1;
 | 
						|
		c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
 | 
						|
			iip1]) * temp1;
 | 
						|
		zz[0] = z__[iim1] * z__[iim1];
 | 
						|
		zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
 | 
						|
	    } else {
 | 
						|
		temp1 = z__[iip1] / delta[iip1];
 | 
						|
		temp1 *= temp1;
 | 
						|
		c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
 | 
						|
			iim1]) * temp1;
 | 
						|
		zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
 | 
						|
		zz[2] = z__[iip1] * z__[iip1];
 | 
						|
	    }
 | 
						|
	    zz[1] = z__[ii] * z__[ii];
 | 
						|
	    slaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
 | 
						|
	    if (*info != 0) {
 | 
						|
		goto L250;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Note, eta should be positive if w is negative, and */
 | 
						|
/*        eta should be negative otherwise. However, */
 | 
						|
/*        if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*        we simply use one Newton step instead. This way */
 | 
						|
/*        will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	if (w * eta >= 0.f) {
 | 
						|
	    eta = -w / dw;
 | 
						|
	}
 | 
						|
	temp = tau + eta;
 | 
						|
	if (temp > dltub || temp < dltlb) {
 | 
						|
	    if (w < 0.f) {
 | 
						|
		eta = (dltub - tau) / 2.f;
 | 
						|
	    } else {
 | 
						|
		eta = (dltlb - tau) / 2.f;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	prew = w;
 | 
						|
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] -= eta;
 | 
						|
/* L180: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.f;
 | 
						|
	psi = 0.f;
 | 
						|
	erretm = 0.f;
 | 
						|
	i__1 = iim1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L190: */
 | 
						|
	}
 | 
						|
	erretm = dabs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	dphi = 0.f;
 | 
						|
	phi = 0.f;
 | 
						|
	i__1 = iip1;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    temp = z__[j] / delta[j];
 | 
						|
	    phi += z__[j] * temp;
 | 
						|
	    dphi += temp * temp;
 | 
						|
	    erretm += phi;
 | 
						|
/* L200: */
 | 
						|
	}
 | 
						|
 | 
						|
	temp = z__[ii] / delta[ii];
 | 
						|
	dw = dpsi + dphi + temp * temp;
 | 
						|
	temp = z__[ii] * temp;
 | 
						|
	w = rhoinv + phi + psi + temp;
 | 
						|
	erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) * 3.f 
 | 
						|
		+ (r__1 = tau + eta, dabs(r__1)) * dw;
 | 
						|
 | 
						|
	swtch = FALSE_;
 | 
						|
	if (orgati) {
 | 
						|
	    if (-w > dabs(prew) / 10.f) {
 | 
						|
		swtch = TRUE_;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    if (w > dabs(prew) / 10.f) {
 | 
						|
		swtch = TRUE_;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	tau += eta;
 | 
						|
 | 
						|
/*        Main loop to update the values of the array   DELTA */
 | 
						|
 | 
						|
	iter = niter + 1;
 | 
						|
 | 
						|
	for (niter = iter; niter <= 30; ++niter) {
 | 
						|
 | 
						|
/*           Test for convergence */
 | 
						|
 | 
						|
	    if (dabs(w) <= eps * erretm) {
 | 
						|
		if (orgati) {
 | 
						|
		    *dlam = d__[*i__] + tau;
 | 
						|
		} else {
 | 
						|
		    *dlam = d__[ip1] + tau;
 | 
						|
		}
 | 
						|
		goto L250;
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (w <= 0.f) {
 | 
						|
		dltlb = dmax(dltlb,tau);
 | 
						|
	    } else {
 | 
						|
		dltub = dmin(dltub,tau);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Calculate the new step */
 | 
						|
 | 
						|
	    if (! swtch3) {
 | 
						|
		if (! swtch) {
 | 
						|
		    if (orgati) {
 | 
						|
/* Computing 2nd power */
 | 
						|
			r__1 = z__[*i__] / delta[*i__];
 | 
						|
			c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
 | 
						|
				r__1 * r__1);
 | 
						|
		    } else {
 | 
						|
/* Computing 2nd power */
 | 
						|
			r__1 = z__[ip1] / delta[ip1];
 | 
						|
			c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * 
 | 
						|
				(r__1 * r__1);
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    temp = z__[ii] / delta[ii];
 | 
						|
		    if (orgati) {
 | 
						|
			dpsi += temp * temp;
 | 
						|
		    } else {
 | 
						|
			dphi += temp * temp;
 | 
						|
		    }
 | 
						|
		    c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
 | 
						|
		}
 | 
						|
		a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] 
 | 
						|
			* dw;
 | 
						|
		b = delta[*i__] * delta[ip1] * w;
 | 
						|
		if (c__ == 0.f) {
 | 
						|
		    if (a == 0.f) {
 | 
						|
			if (! swtch) {
 | 
						|
			    if (orgati) {
 | 
						|
				a = z__[*i__] * z__[*i__] + delta[ip1] * 
 | 
						|
					delta[ip1] * (dpsi + dphi);
 | 
						|
			    } else {
 | 
						|
				a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
 | 
						|
					*i__] * (dpsi + dphi);
 | 
						|
			    }
 | 
						|
			} else {
 | 
						|
			    a = delta[*i__] * delta[*i__] * dpsi + delta[ip1] 
 | 
						|
				    * delta[ip1] * dphi;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		    eta = b / a;
 | 
						|
		} else if (a <= 0.f) {
 | 
						|
		    eta = (a - sqrt((r__1 = a * a - b * 4.f * c__, dabs(r__1))
 | 
						|
			    )) / (c__ * 2.f);
 | 
						|
		} else {
 | 
						|
		    eta = b * 2.f / (a + sqrt((r__1 = a * a - b * 4.f * c__, 
 | 
						|
			    dabs(r__1))));
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              Interpolation using THREE most relevant poles */
 | 
						|
 | 
						|
		temp = rhoinv + psi + phi;
 | 
						|
		if (swtch) {
 | 
						|
		    c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
 | 
						|
		    zz[0] = delta[iim1] * delta[iim1] * dpsi;
 | 
						|
		    zz[2] = delta[iip1] * delta[iip1] * dphi;
 | 
						|
		} else {
 | 
						|
		    if (orgati) {
 | 
						|
			temp1 = z__[iim1] / delta[iim1];
 | 
						|
			temp1 *= temp1;
 | 
						|
			c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] 
 | 
						|
				- d__[iip1]) * temp1;
 | 
						|
			zz[0] = z__[iim1] * z__[iim1];
 | 
						|
			zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + 
 | 
						|
				dphi);
 | 
						|
		    } else {
 | 
						|
			temp1 = z__[iip1] / delta[iip1];
 | 
						|
			temp1 *= temp1;
 | 
						|
			c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] 
 | 
						|
				- d__[iim1]) * temp1;
 | 
						|
			zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - 
 | 
						|
				temp1));
 | 
						|
			zz[2] = z__[iip1] * z__[iip1];
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		slaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, 
 | 
						|
			info);
 | 
						|
		if (*info != 0) {
 | 
						|
		    goto L250;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Note, eta should be positive if w is negative, and */
 | 
						|
/*           eta should be negative otherwise. However, */
 | 
						|
/*           if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*           we simply use one Newton step instead. This way */
 | 
						|
/*           will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	    if (w * eta >= 0.f) {
 | 
						|
		eta = -w / dw;
 | 
						|
	    }
 | 
						|
	    temp = tau + eta;
 | 
						|
	    if (temp > dltub || temp < dltlb) {
 | 
						|
		if (w < 0.f) {
 | 
						|
		    eta = (dltub - tau) / 2.f;
 | 
						|
		} else {
 | 
						|
		    eta = (dltlb - tau) / 2.f;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] -= eta;
 | 
						|
/* L210: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    tau += eta;
 | 
						|
	    prew = w;
 | 
						|
 | 
						|
/*           Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	    dpsi = 0.f;
 | 
						|
	    psi = 0.f;
 | 
						|
	    erretm = 0.f;
 | 
						|
	    i__1 = iim1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		temp = z__[j] / delta[j];
 | 
						|
		psi += z__[j] * temp;
 | 
						|
		dpsi += temp * temp;
 | 
						|
		erretm += psi;
 | 
						|
/* L220: */
 | 
						|
	    }
 | 
						|
	    erretm = dabs(erretm);
 | 
						|
 | 
						|
/*           Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	    dphi = 0.f;
 | 
						|
	    phi = 0.f;
 | 
						|
	    i__1 = iip1;
 | 
						|
	    for (j = *n; j >= i__1; --j) {
 | 
						|
		temp = z__[j] / delta[j];
 | 
						|
		phi += z__[j] * temp;
 | 
						|
		dphi += temp * temp;
 | 
						|
		erretm += phi;
 | 
						|
/* L230: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    temp = z__[ii] / delta[ii];
 | 
						|
	    dw = dpsi + dphi + temp * temp;
 | 
						|
	    temp = z__[ii] * temp;
 | 
						|
	    w = rhoinv + phi + psi + temp;
 | 
						|
	    erretm = (phi - psi) * 8.f + erretm + rhoinv * 2.f + dabs(temp) * 
 | 
						|
		    3.f + dabs(tau) * dw;
 | 
						|
	    if (w * prew > 0.f && dabs(w) > dabs(prew) / 10.f) {
 | 
						|
		swtch = ! swtch;
 | 
						|
	    }
 | 
						|
 | 
						|
/* L240: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Return with INFO = 1, NITER = MAXIT and not converged */
 | 
						|
 | 
						|
	*info = 1;
 | 
						|
	if (orgati) {
 | 
						|
	    *dlam = d__[*i__] + tau;
 | 
						|
	} else {
 | 
						|
	    *dlam = d__[ip1] + tau;
 | 
						|
	}
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
L250:
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of SLAED4 */
 | 
						|
 | 
						|
} /* slaed4_ */
 |