361 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* dsytrd.f -- translated by f2c (version 20061008).
 | 
						|
   You must link the resulting object file with libf2c:
 | 
						|
	on Microsoft Windows system, link with libf2c.lib;
 | 
						|
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | 
						|
	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | 
						|
	-- in that order, at the end of the command line, as in
 | 
						|
		cc *.o -lf2c -lm
 | 
						|
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | 
						|
 | 
						|
		http://www.netlib.org/f2c/libf2c.zip
 | 
						|
*/
 | 
						|
 | 
						|
#include "clapack.h"
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
static integer c__3 = 3;
 | 
						|
static integer c__2 = 2;
 | 
						|
static doublereal c_b22 = -1.;
 | 
						|
static doublereal c_b23 = 1.;
 | 
						|
 | 
						|
/* Subroutine */ int dsytrd_(char *uplo, integer *n, doublereal *a, integer *
 | 
						|
	lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal *
 | 
						|
	work, integer *lwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2, i__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j, nb, kk, nx, iws;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer nbmin, iinfo;
 | 
						|
    logical upper;
 | 
						|
    extern /* Subroutine */ int dsytd2_(char *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, doublereal *, doublereal *, integer *), dsyr2k_(char *, char *, integer *, integer *, doublereal 
 | 
						|
	    *, doublereal *, integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	     doublereal *, integer *), dlatrd_(char *, 
 | 
						|
	    integer *, integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, integer *), xerbla_(char *, 
 | 
						|
	    integer *);
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *);
 | 
						|
    integer ldwork, lwkopt;
 | 
						|
    logical lquery;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK routine (version 3.2) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DSYTRD reduces a real symmetric matrix A to real symmetric */
 | 
						|
/*  tridiagonal form T by an orthogonal similarity transformation: */
 | 
						|
/*  Q**T * A * Q = T. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  UPLO    (input) CHARACTER*1 */
 | 
						|
/*          = 'U':  Upper triangle of A is stored; */
 | 
						|
/*          = 'L':  Lower triangle of A is stored. */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The order of the matrix A.  N >= 0. */
 | 
						|
 | 
						|
/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 | 
						|
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 | 
						|
/*          N-by-N upper triangular part of A contains the upper */
 | 
						|
/*          triangular part of the matrix A, and the strictly lower */
 | 
						|
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
 | 
						|
/*          leading N-by-N lower triangular part of A contains the lower */
 | 
						|
/*          triangular part of the matrix A, and the strictly upper */
 | 
						|
/*          triangular part of A is not referenced. */
 | 
						|
/*          On exit, if UPLO = 'U', the diagonal and first superdiagonal */
 | 
						|
/*          of A are overwritten by the corresponding elements of the */
 | 
						|
/*          tridiagonal matrix T, and the elements above the first */
 | 
						|
/*          superdiagonal, with the array TAU, represent the orthogonal */
 | 
						|
/*          matrix Q as a product of elementary reflectors; if UPLO */
 | 
						|
/*          = 'L', the diagonal and first subdiagonal of A are over- */
 | 
						|
/*          written by the corresponding elements of the tridiagonal */
 | 
						|
/*          matrix T, and the elements below the first subdiagonal, with */
 | 
						|
/*          the array TAU, represent the orthogonal matrix Q as a product */
 | 
						|
/*          of elementary reflectors. See Further Details. */
 | 
						|
 | 
						|
/*  LDA     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array A.  LDA >= max(1,N). */
 | 
						|
 | 
						|
/*  D       (output) DOUBLE PRECISION array, dimension (N) */
 | 
						|
/*          The diagonal elements of the tridiagonal matrix T: */
 | 
						|
/*          D(i) = A(i,i). */
 | 
						|
 | 
						|
/*  E       (output) DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/*          The off-diagonal elements of the tridiagonal matrix T: */
 | 
						|
/*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
 | 
						|
 | 
						|
/*  TAU     (output) DOUBLE PRECISION array, dimension (N-1) */
 | 
						|
/*          The scalar factors of the elementary reflectors (see Further */
 | 
						|
/*          Details). */
 | 
						|
 | 
						|
/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | 
						|
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
 | 
						|
/*  LWORK   (input) INTEGER */
 | 
						|
/*          The dimension of the array WORK.  LWORK >= 1. */
 | 
						|
/*          For optimum performance LWORK >= N*NB, where NB is the */
 | 
						|
/*          optimal blocksize. */
 | 
						|
 | 
						|
/*          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/*          only calculates the optimal size of the WORK array, returns */
 | 
						|
/*          this value as the first entry of the WORK array, and no error */
 | 
						|
/*          message related to LWORK is issued by XERBLA. */
 | 
						|
 | 
						|
/*  INFO    (output) INTEGER */
 | 
						|
/*          = 0:  successful exit */
 | 
						|
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  If UPLO = 'U', the matrix Q is represented as a product of elementary */
 | 
						|
/*  reflectors */
 | 
						|
 | 
						|
/*     Q = H(n-1) . . . H(2) H(1). */
 | 
						|
 | 
						|
/*  Each H(i) has the form */
 | 
						|
 | 
						|
/*     H(i) = I - tau * v * v' */
 | 
						|
 | 
						|
/*  where tau is a real scalar, and v is a real vector with */
 | 
						|
/*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
 | 
						|
/*  A(1:i-1,i+1), and tau in TAU(i). */
 | 
						|
 | 
						|
/*  If UPLO = 'L', the matrix Q is represented as a product of elementary */
 | 
						|
/*  reflectors */
 | 
						|
 | 
						|
/*     Q = H(1) H(2) . . . H(n-1). */
 | 
						|
 | 
						|
/*  Each H(i) has the form */
 | 
						|
 | 
						|
/*     H(i) = I - tau * v * v' */
 | 
						|
 | 
						|
/*  where tau is a real scalar, and v is a real vector with */
 | 
						|
/*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
 | 
						|
/*  and tau in TAU(i). */
 | 
						|
 | 
						|
/*  The contents of A on exit are illustrated by the following examples */
 | 
						|
/*  with n = 5: */
 | 
						|
 | 
						|
/*  if UPLO = 'U':                       if UPLO = 'L': */
 | 
						|
 | 
						|
/*    (  d   e   v2  v3  v4 )              (  d                  ) */
 | 
						|
/*    (      d   e   v3  v4 )              (  e   d              ) */
 | 
						|
/*    (          d   e   v4 )              (  v1  e   d          ) */
 | 
						|
/*    (              d   e  )              (  v1  v2  e   d      ) */
 | 
						|
/*    (                  d  )              (  v1  v2  v3  e   d  ) */
 | 
						|
 | 
						|
/*  where d and e denote diagonal and off-diagonal elements of T, and vi */
 | 
						|
/*  denotes an element of the vector defining H(i). */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input parameters */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
    --d__;
 | 
						|
    --e;
 | 
						|
    --tau;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    upper = lsame_(uplo, "U");
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    if (! upper && ! lsame_(uplo, "L")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*lda < max(1,*n)) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*lwork < 1 && ! lquery) {
 | 
						|
	*info = -9;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
 | 
						|
/*        Determine the block size. */
 | 
						|
 | 
						|
	nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
 | 
						|
	lwkopt = *n * nb;
 | 
						|
	work[1] = (doublereal) lwkopt;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DSYTRD", &i__1);
 | 
						|
	return 0;
 | 
						|
    } else if (lquery) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	work[1] = 1.;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    nx = *n;
 | 
						|
    iws = 1;
 | 
						|
    if (nb > 1 && nb < *n) {
 | 
						|
 | 
						|
/*        Determine when to cross over from blocked to unblocked code */
 | 
						|
/*        (last block is always handled by unblocked code). */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = nb, i__2 = ilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &
 | 
						|
		c_n1);
 | 
						|
	nx = max(i__1,i__2);
 | 
						|
	if (nx < *n) {
 | 
						|
 | 
						|
/*           Determine if workspace is large enough for blocked code. */
 | 
						|
 | 
						|
	    ldwork = *n;
 | 
						|
	    iws = ldwork * nb;
 | 
						|
	    if (*lwork < iws) {
 | 
						|
 | 
						|
/*              Not enough workspace to use optimal NB:  determine the */
 | 
						|
/*              minimum value of NB, and reduce NB or force use of */
 | 
						|
/*              unblocked code by setting NX = N. */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
		i__1 = *lwork / ldwork;
 | 
						|
		nb = max(i__1,1);
 | 
						|
		nbmin = ilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
 | 
						|
		if (nb < nbmin) {
 | 
						|
		    nx = *n;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    nx = *n;
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	nb = 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (upper) {
 | 
						|
 | 
						|
/*        Reduce the upper triangle of A. */
 | 
						|
/*        Columns 1:kk are handled by the unblocked method. */
 | 
						|
 | 
						|
	kk = *n - (*n - nx + nb - 1) / nb * nb;
 | 
						|
	i__1 = kk + 1;
 | 
						|
	i__2 = -nb;
 | 
						|
	for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 
 | 
						|
		i__2) {
 | 
						|
 | 
						|
/*           Reduce columns i:i+nb-1 to tridiagonal form and form the */
 | 
						|
/*           matrix W which is needed to update the unreduced part of */
 | 
						|
/*           the matrix */
 | 
						|
 | 
						|
	    i__3 = i__ + nb - 1;
 | 
						|
	    dlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
 | 
						|
		    work[1], &ldwork);
 | 
						|
 | 
						|
/*           Update the unreduced submatrix A(1:i-1,1:i-1), using an */
 | 
						|
/*           update of the form:  A := A - V*W' - W*V' */
 | 
						|
 | 
						|
	    i__3 = i__ - 1;
 | 
						|
	    dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1 
 | 
						|
		    + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);
 | 
						|
 | 
						|
/*           Copy superdiagonal elements back into A, and diagonal */
 | 
						|
/*           elements into D */
 | 
						|
 | 
						|
	    i__3 = i__ + nb - 1;
 | 
						|
	    for (j = i__; j <= i__3; ++j) {
 | 
						|
		a[j - 1 + j * a_dim1] = e[j - 1];
 | 
						|
		d__[j] = a[j + j * a_dim1];
 | 
						|
/* L10: */
 | 
						|
	    }
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Use unblocked code to reduce the last or only block */
 | 
						|
 | 
						|
	dsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Reduce the lower triangle of A */
 | 
						|
 | 
						|
	i__2 = *n - nx;
 | 
						|
	i__1 = nb;
 | 
						|
	for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
 | 
						|
 | 
						|
/*           Reduce columns i:i+nb-1 to tridiagonal form and form the */
 | 
						|
/*           matrix W which is needed to update the unreduced part of */
 | 
						|
/*           the matrix */
 | 
						|
 | 
						|
	    i__3 = *n - i__ + 1;
 | 
						|
	    dlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
 | 
						|
		    tau[i__], &work[1], &ldwork);
 | 
						|
 | 
						|
/*           Update the unreduced submatrix A(i+ib:n,i+ib:n), using */
 | 
						|
/*           an update of the form:  A := A - V*W' - W*V' */
 | 
						|
 | 
						|
	    i__3 = *n - i__ - nb + 1;
 | 
						|
	    dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb + 
 | 
						|
		    i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[
 | 
						|
		    i__ + nb + (i__ + nb) * a_dim1], lda);
 | 
						|
 | 
						|
/*           Copy subdiagonal elements back into A, and diagonal */
 | 
						|
/*           elements into D */
 | 
						|
 | 
						|
	    i__3 = i__ + nb - 1;
 | 
						|
	    for (j = i__; j <= i__3; ++j) {
 | 
						|
		a[j + 1 + j * a_dim1] = e[j];
 | 
						|
		d__[j] = a[j + j * a_dim1];
 | 
						|
/* L30: */
 | 
						|
	    }
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Use unblocked code to reduce the last or only block */
 | 
						|
 | 
						|
	i__1 = *n - i__ + 1;
 | 
						|
	dsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], 
 | 
						|
		&tau[i__], &iinfo);
 | 
						|
    }
 | 
						|
 | 
						|
    work[1] = (doublereal) lwkopt;
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DSYTRD */
 | 
						|
 | 
						|
} /* dsytrd_ */
 |