609 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* dsytf2.f -- translated by f2c (version 20061008).
 | 
						|
   You must link the resulting object file with libf2c:
 | 
						|
	on Microsoft Windows system, link with libf2c.lib;
 | 
						|
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | 
						|
	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | 
						|
	-- in that order, at the end of the command line, as in
 | 
						|
		cc *.o -lf2c -lm
 | 
						|
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | 
						|
 | 
						|
		http://www.netlib.org/f2c/libf2c.zip
 | 
						|
*/
 | 
						|
 | 
						|
#include "clapack.h"
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
 | 
						|
/* Subroutine */ int dsytf2_(char *uplo, integer *n, doublereal *a, integer *
 | 
						|
	lda, integer *ipiv, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2;
 | 
						|
    doublereal d__1, d__2, d__3;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    double sqrt(doublereal);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j, k;
 | 
						|
    doublereal t, r1, d11, d12, d21, d22;
 | 
						|
    integer kk, kp;
 | 
						|
    doublereal wk, wkm1, wkp1;
 | 
						|
    integer imax, jmax;
 | 
						|
    extern /* Subroutine */ int dsyr_(char *, integer *, doublereal *, 
 | 
						|
	    doublereal *, integer *, doublereal *, integer *);
 | 
						|
    doublereal alpha;
 | 
						|
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 | 
						|
	    doublereal *, integer *);
 | 
						|
    integer kstep;
 | 
						|
    logical upper;
 | 
						|
    doublereal absakk;
 | 
						|
    extern integer idamax_(integer *, doublereal *, integer *);
 | 
						|
    extern logical disnan_(doublereal *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *);
 | 
						|
    doublereal colmax, rowmax;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK routine (version 3.2) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DSYTF2 computes the factorization of a real symmetric matrix A using */
 | 
						|
/*  the Bunch-Kaufman diagonal pivoting method: */
 | 
						|
 | 
						|
/*     A = U*D*U'  or  A = L*D*L' */
 | 
						|
 | 
						|
/*  where U (or L) is a product of permutation and unit upper (lower) */
 | 
						|
/*  triangular matrices, U' is the transpose of U, and D is symmetric and */
 | 
						|
/*  block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
 | 
						|
 | 
						|
/*  This is the unblocked version of the algorithm, calling Level 2 BLAS. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  UPLO    (input) CHARACTER*1 */
 | 
						|
/*          Specifies whether the upper or lower triangular part of the */
 | 
						|
/*          symmetric matrix A is stored: */
 | 
						|
/*          = 'U':  Upper triangular */
 | 
						|
/*          = 'L':  Lower triangular */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The order of the matrix A.  N >= 0. */
 | 
						|
 | 
						|
/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 | 
						|
/*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 | 
						|
/*          n-by-n upper triangular part of A contains the upper */
 | 
						|
/*          triangular part of the matrix A, and the strictly lower */
 | 
						|
/*          triangular part of A is not referenced.  If UPLO = 'L', the */
 | 
						|
/*          leading n-by-n lower triangular part of A contains the lower */
 | 
						|
/*          triangular part of the matrix A, and the strictly upper */
 | 
						|
/*          triangular part of A is not referenced. */
 | 
						|
 | 
						|
/*          On exit, the block diagonal matrix D and the multipliers used */
 | 
						|
/*          to obtain the factor U or L (see below for further details). */
 | 
						|
 | 
						|
/*  LDA     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array A.  LDA >= max(1,N). */
 | 
						|
 | 
						|
/*  IPIV    (output) INTEGER array, dimension (N) */
 | 
						|
/*          Details of the interchanges and the block structure of D. */
 | 
						|
/*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
 | 
						|
/*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
 | 
						|
/*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
 | 
						|
/*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
 | 
						|
/*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
 | 
						|
/*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
 | 
						|
/*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
 | 
						|
 | 
						|
/*  INFO    (output) INTEGER */
 | 
						|
/*          = 0: successful exit */
 | 
						|
/*          < 0: if INFO = -k, the k-th argument had an illegal value */
 | 
						|
/*          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization */
 | 
						|
/*               has been completed, but the block diagonal matrix D is */
 | 
						|
/*               exactly singular, and division by zero will occur if it */
 | 
						|
/*               is used to solve a system of equations. */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  09-29-06 - patch from */
 | 
						|
/*    Bobby Cheng, MathWorks */
 | 
						|
 | 
						|
/*    Replace l.204 and l.372 */
 | 
						|
/*         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
 | 
						|
/*    by */
 | 
						|
/*         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN */
 | 
						|
 | 
						|
/*  01-01-96 - Based on modifications by */
 | 
						|
/*    J. Lewis, Boeing Computer Services Company */
 | 
						|
/*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
 | 
						|
/*  1-96 - Based on modifications by J. Lewis, Boeing Computer Services */
 | 
						|
/*         Company */
 | 
						|
 | 
						|
/*  If UPLO = 'U', then A = U*D*U', where */
 | 
						|
/*     U = P(n)*U(n)* ... *P(k)U(k)* ..., */
 | 
						|
/*  i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
 | 
						|
/*  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
 | 
						|
/*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
 | 
						|
/*  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
 | 
						|
/*  that if the diagonal block D(k) is of order s (s = 1 or 2), then */
 | 
						|
 | 
						|
/*             (   I    v    0   )   k-s */
 | 
						|
/*     U(k) =  (   0    I    0   )   s */
 | 
						|
/*             (   0    0    I   )   n-k */
 | 
						|
/*                k-s   s   n-k */
 | 
						|
 | 
						|
/*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
 | 
						|
/*  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
 | 
						|
/*  and A(k,k), and v overwrites A(1:k-2,k-1:k). */
 | 
						|
 | 
						|
/*  If UPLO = 'L', then A = L*D*L', where */
 | 
						|
/*     L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
 | 
						|
/*  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
 | 
						|
/*  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
 | 
						|
/*  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
 | 
						|
/*  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
 | 
						|
/*  that if the diagonal block D(k) is of order s (s = 1 or 2), then */
 | 
						|
 | 
						|
/*             (   I    0     0   )  k-1 */
 | 
						|
/*     L(k) =  (   0    I     0   )  s */
 | 
						|
/*             (   0    v     I   )  n-k-s+1 */
 | 
						|
/*                k-1   s  n-k-s+1 */
 | 
						|
 | 
						|
/*  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
 | 
						|
/*  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
 | 
						|
/*  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
    --ipiv;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    upper = lsame_(uplo, "U");
 | 
						|
    if (! upper && ! lsame_(uplo, "L")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*lda < max(1,*n)) {
 | 
						|
	*info = -4;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DSYTF2", &i__1);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize ALPHA for use in choosing pivot block size. */
 | 
						|
 | 
						|
    alpha = (sqrt(17.) + 1.) / 8.;
 | 
						|
 | 
						|
    if (upper) {
 | 
						|
 | 
						|
/*        Factorize A as U*D*U' using the upper triangle of A */
 | 
						|
 | 
						|
/*        K is the main loop index, decreasing from N to 1 in steps of */
 | 
						|
/*        1 or 2 */
 | 
						|
 | 
						|
	k = *n;
 | 
						|
L10:
 | 
						|
 | 
						|
/*        If K < 1, exit from loop */
 | 
						|
 | 
						|
	if (k < 1) {
 | 
						|
	    goto L70;
 | 
						|
	}
 | 
						|
	kstep = 1;
 | 
						|
 | 
						|
/*        Determine rows and columns to be interchanged and whether */
 | 
						|
/*        a 1-by-1 or 2-by-2 pivot block will be used */
 | 
						|
 | 
						|
	absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
 | 
						|
 | 
						|
/*        IMAX is the row-index of the largest off-diagonal element in */
 | 
						|
/*        column K, and COLMAX is its absolute value */
 | 
						|
 | 
						|
	if (k > 1) {
 | 
						|
	    i__1 = k - 1;
 | 
						|
	    imax = idamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
 | 
						|
	    colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
 | 
						|
	} else {
 | 
						|
	    colmax = 0.;
 | 
						|
	}
 | 
						|
 | 
						|
	if (max(absakk,colmax) == 0. || disnan_(&absakk)) {
 | 
						|
 | 
						|
/*           Column K is zero or contains a NaN: set INFO and continue */
 | 
						|
 | 
						|
	    if (*info == 0) {
 | 
						|
		*info = k;
 | 
						|
	    }
 | 
						|
	    kp = k;
 | 
						|
	} else {
 | 
						|
	    if (absakk >= alpha * colmax) {
 | 
						|
 | 
						|
/*              no interchange, use 1-by-1 pivot block */
 | 
						|
 | 
						|
		kp = k;
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              JMAX is the column-index of the largest off-diagonal */
 | 
						|
/*              element in row IMAX, and ROWMAX is its absolute value */
 | 
						|
 | 
						|
		i__1 = k - imax;
 | 
						|
		jmax = imax + idamax_(&i__1, &a[imax + (imax + 1) * a_dim1], 
 | 
						|
			lda);
 | 
						|
		rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
 | 
						|
		if (imax > 1) {
 | 
						|
		    i__1 = imax - 1;
 | 
						|
		    jmax = idamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
 | 
						|
/* Computing MAX */
 | 
						|
		    d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1], 
 | 
						|
			    abs(d__1));
 | 
						|
		    rowmax = max(d__2,d__3);
 | 
						|
		}
 | 
						|
 | 
						|
		if (absakk >= alpha * colmax * (colmax / rowmax)) {
 | 
						|
 | 
						|
/*                 no interchange, use 1-by-1 pivot block */
 | 
						|
 | 
						|
		    kp = k;
 | 
						|
		} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >= 
 | 
						|
			alpha * rowmax) {
 | 
						|
 | 
						|
/*                 interchange rows and columns K and IMAX, use 1-by-1 */
 | 
						|
/*                 pivot block */
 | 
						|
 | 
						|
		    kp = imax;
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 interchange rows and columns K-1 and IMAX, use 2-by-2 */
 | 
						|
/*                 pivot block */
 | 
						|
 | 
						|
		    kp = imax;
 | 
						|
		    kstep = 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    kk = k - kstep + 1;
 | 
						|
	    if (kp != kk) {
 | 
						|
 | 
						|
/*              Interchange rows and columns KK and KP in the leading */
 | 
						|
/*              submatrix A(1:k,1:k) */
 | 
						|
 | 
						|
		i__1 = kp - 1;
 | 
						|
		dswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], 
 | 
						|
			 &c__1);
 | 
						|
		i__1 = kk - kp - 1;
 | 
						|
		dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 
 | 
						|
			1) * a_dim1], lda);
 | 
						|
		t = a[kk + kk * a_dim1];
 | 
						|
		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
 | 
						|
		a[kp + kp * a_dim1] = t;
 | 
						|
		if (kstep == 2) {
 | 
						|
		    t = a[k - 1 + k * a_dim1];
 | 
						|
		    a[k - 1 + k * a_dim1] = a[kp + k * a_dim1];
 | 
						|
		    a[kp + k * a_dim1] = t;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Update the leading submatrix */
 | 
						|
 | 
						|
	    if (kstep == 1) {
 | 
						|
 | 
						|
/*              1-by-1 pivot block D(k): column k now holds */
 | 
						|
 | 
						|
/*              W(k) = U(k)*D(k) */
 | 
						|
 | 
						|
/*              where U(k) is the k-th column of U */
 | 
						|
 | 
						|
/*              Perform a rank-1 update of A(1:k-1,1:k-1) as */
 | 
						|
 | 
						|
/*              A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
 | 
						|
 | 
						|
		r1 = 1. / a[k + k * a_dim1];
 | 
						|
		i__1 = k - 1;
 | 
						|
		d__1 = -r1;
 | 
						|
		dsyr_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &a[
 | 
						|
			a_offset], lda);
 | 
						|
 | 
						|
/*              Store U(k) in column k */
 | 
						|
 | 
						|
		i__1 = k - 1;
 | 
						|
		dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              2-by-2 pivot block D(k): columns k and k-1 now hold */
 | 
						|
 | 
						|
/*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
 | 
						|
 | 
						|
/*              where U(k) and U(k-1) are the k-th and (k-1)-th columns */
 | 
						|
/*              of U */
 | 
						|
 | 
						|
/*              Perform a rank-2 update of A(1:k-2,1:k-2) as */
 | 
						|
 | 
						|
/*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
 | 
						|
/*                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
 | 
						|
 | 
						|
		if (k > 2) {
 | 
						|
 | 
						|
		    d12 = a[k - 1 + k * a_dim1];
 | 
						|
		    d22 = a[k - 1 + (k - 1) * a_dim1] / d12;
 | 
						|
		    d11 = a[k + k * a_dim1] / d12;
 | 
						|
		    t = 1. / (d11 * d22 - 1.);
 | 
						|
		    d12 = t / d12;
 | 
						|
 | 
						|
		    for (j = k - 2; j >= 1; --j) {
 | 
						|
			wkm1 = d12 * (d11 * a[j + (k - 1) * a_dim1] - a[j + k 
 | 
						|
				* a_dim1]);
 | 
						|
			wk = d12 * (d22 * a[j + k * a_dim1] - a[j + (k - 1) * 
 | 
						|
				a_dim1]);
 | 
						|
			for (i__ = j; i__ >= 1; --i__) {
 | 
						|
			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
 | 
						|
				    + k * a_dim1] * wk - a[i__ + (k - 1) * 
 | 
						|
				    a_dim1] * wkm1;
 | 
						|
/* L20: */
 | 
						|
			}
 | 
						|
			a[j + k * a_dim1] = wk;
 | 
						|
			a[j + (k - 1) * a_dim1] = wkm1;
 | 
						|
/* L30: */
 | 
						|
		    }
 | 
						|
 | 
						|
		}
 | 
						|
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Store details of the interchanges in IPIV */
 | 
						|
 | 
						|
	if (kstep == 1) {
 | 
						|
	    ipiv[k] = kp;
 | 
						|
	} else {
 | 
						|
	    ipiv[k] = -kp;
 | 
						|
	    ipiv[k - 1] = -kp;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Decrease K and return to the start of the main loop */
 | 
						|
 | 
						|
	k -= kstep;
 | 
						|
	goto L10;
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Factorize A as L*D*L' using the lower triangle of A */
 | 
						|
 | 
						|
/*        K is the main loop index, increasing from 1 to N in steps of */
 | 
						|
/*        1 or 2 */
 | 
						|
 | 
						|
	k = 1;
 | 
						|
L40:
 | 
						|
 | 
						|
/*        If K > N, exit from loop */
 | 
						|
 | 
						|
	if (k > *n) {
 | 
						|
	    goto L70;
 | 
						|
	}
 | 
						|
	kstep = 1;
 | 
						|
 | 
						|
/*        Determine rows and columns to be interchanged and whether */
 | 
						|
/*        a 1-by-1 or 2-by-2 pivot block will be used */
 | 
						|
 | 
						|
	absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
 | 
						|
 | 
						|
/*        IMAX is the row-index of the largest off-diagonal element in */
 | 
						|
/*        column K, and COLMAX is its absolute value */
 | 
						|
 | 
						|
	if (k < *n) {
 | 
						|
	    i__1 = *n - k;
 | 
						|
	    imax = k + idamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
 | 
						|
	    colmax = (d__1 = a[imax + k * a_dim1], abs(d__1));
 | 
						|
	} else {
 | 
						|
	    colmax = 0.;
 | 
						|
	}
 | 
						|
 | 
						|
	if (max(absakk,colmax) == 0. || disnan_(&absakk)) {
 | 
						|
 | 
						|
/*           Column K is zero or contains a NaN: set INFO and continue */
 | 
						|
 | 
						|
	    if (*info == 0) {
 | 
						|
		*info = k;
 | 
						|
	    }
 | 
						|
	    kp = k;
 | 
						|
	} else {
 | 
						|
	    if (absakk >= alpha * colmax) {
 | 
						|
 | 
						|
/*              no interchange, use 1-by-1 pivot block */
 | 
						|
 | 
						|
		kp = k;
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              JMAX is the column-index of the largest off-diagonal */
 | 
						|
/*              element in row IMAX, and ROWMAX is its absolute value */
 | 
						|
 | 
						|
		i__1 = imax - k;
 | 
						|
		jmax = k - 1 + idamax_(&i__1, &a[imax + k * a_dim1], lda);
 | 
						|
		rowmax = (d__1 = a[imax + jmax * a_dim1], abs(d__1));
 | 
						|
		if (imax < *n) {
 | 
						|
		    i__1 = *n - imax;
 | 
						|
		    jmax = imax + idamax_(&i__1, &a[imax + 1 + imax * a_dim1], 
 | 
						|
			     &c__1);
 | 
						|
/* Computing MAX */
 | 
						|
		    d__2 = rowmax, d__3 = (d__1 = a[jmax + imax * a_dim1], 
 | 
						|
			    abs(d__1));
 | 
						|
		    rowmax = max(d__2,d__3);
 | 
						|
		}
 | 
						|
 | 
						|
		if (absakk >= alpha * colmax * (colmax / rowmax)) {
 | 
						|
 | 
						|
/*                 no interchange, use 1-by-1 pivot block */
 | 
						|
 | 
						|
		    kp = k;
 | 
						|
		} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >= 
 | 
						|
			alpha * rowmax) {
 | 
						|
 | 
						|
/*                 interchange rows and columns K and IMAX, use 1-by-1 */
 | 
						|
/*                 pivot block */
 | 
						|
 | 
						|
		    kp = imax;
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 interchange rows and columns K+1 and IMAX, use 2-by-2 */
 | 
						|
/*                 pivot block */
 | 
						|
 | 
						|
		    kp = imax;
 | 
						|
		    kstep = 2;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    kk = k + kstep - 1;
 | 
						|
	    if (kp != kk) {
 | 
						|
 | 
						|
/*              Interchange rows and columns KK and KP in the trailing */
 | 
						|
/*              submatrix A(k:n,k:n) */
 | 
						|
 | 
						|
		if (kp < *n) {
 | 
						|
		    i__1 = *n - kp;
 | 
						|
		    dswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 
 | 
						|
			    + kp * a_dim1], &c__1);
 | 
						|
		}
 | 
						|
		i__1 = kp - kk - 1;
 | 
						|
		dswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk + 
 | 
						|
			1) * a_dim1], lda);
 | 
						|
		t = a[kk + kk * a_dim1];
 | 
						|
		a[kk + kk * a_dim1] = a[kp + kp * a_dim1];
 | 
						|
		a[kp + kp * a_dim1] = t;
 | 
						|
		if (kstep == 2) {
 | 
						|
		    t = a[k + 1 + k * a_dim1];
 | 
						|
		    a[k + 1 + k * a_dim1] = a[kp + k * a_dim1];
 | 
						|
		    a[kp + k * a_dim1] = t;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Update the trailing submatrix */
 | 
						|
 | 
						|
	    if (kstep == 1) {
 | 
						|
 | 
						|
/*              1-by-1 pivot block D(k): column k now holds */
 | 
						|
 | 
						|
/*              W(k) = L(k)*D(k) */
 | 
						|
 | 
						|
/*              where L(k) is the k-th column of L */
 | 
						|
 | 
						|
		if (k < *n) {
 | 
						|
 | 
						|
/*                 Perform a rank-1 update of A(k+1:n,k+1:n) as */
 | 
						|
 | 
						|
/*                 A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
 | 
						|
 | 
						|
		    d11 = 1. / a[k + k * a_dim1];
 | 
						|
		    i__1 = *n - k;
 | 
						|
		    d__1 = -d11;
 | 
						|
		    dsyr_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &c__1, &
 | 
						|
			    a[k + 1 + (k + 1) * a_dim1], lda);
 | 
						|
 | 
						|
/*                 Store L(k) in column K */
 | 
						|
 | 
						|
		    i__1 = *n - k;
 | 
						|
		    dscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              2-by-2 pivot block D(k) */
 | 
						|
 | 
						|
		if (k < *n - 1) {
 | 
						|
 | 
						|
/*                 Perform a rank-2 update of A(k+2:n,k+2:n) as */
 | 
						|
 | 
						|
/*                 A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))' */
 | 
						|
 | 
						|
/*                 where L(k) and L(k+1) are the k-th and (k+1)-th */
 | 
						|
/*                 columns of L */
 | 
						|
 | 
						|
		    d21 = a[k + 1 + k * a_dim1];
 | 
						|
		    d11 = a[k + 1 + (k + 1) * a_dim1] / d21;
 | 
						|
		    d22 = a[k + k * a_dim1] / d21;
 | 
						|
		    t = 1. / (d11 * d22 - 1.);
 | 
						|
		    d21 = t / d21;
 | 
						|
 | 
						|
		    i__1 = *n;
 | 
						|
		    for (j = k + 2; j <= i__1; ++j) {
 | 
						|
 | 
						|
			wk = d21 * (d11 * a[j + k * a_dim1] - a[j + (k + 1) * 
 | 
						|
				a_dim1]);
 | 
						|
			wkp1 = d21 * (d22 * a[j + (k + 1) * a_dim1] - a[j + k 
 | 
						|
				* a_dim1]);
 | 
						|
 | 
						|
			i__2 = *n;
 | 
						|
			for (i__ = j; i__ <= i__2; ++i__) {
 | 
						|
			    a[i__ + j * a_dim1] = a[i__ + j * a_dim1] - a[i__ 
 | 
						|
				    + k * a_dim1] * wk - a[i__ + (k + 1) * 
 | 
						|
				    a_dim1] * wkp1;
 | 
						|
/* L50: */
 | 
						|
			}
 | 
						|
 | 
						|
			a[j + k * a_dim1] = wk;
 | 
						|
			a[j + (k + 1) * a_dim1] = wkp1;
 | 
						|
 | 
						|
/* L60: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Store details of the interchanges in IPIV */
 | 
						|
 | 
						|
	if (kstep == 1) {
 | 
						|
	    ipiv[k] = kp;
 | 
						|
	} else {
 | 
						|
	    ipiv[k] = -kp;
 | 
						|
	    ipiv[k + 1] = -kp;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Increase K and return to the start of the main loop */
 | 
						|
 | 
						|
	k += kstep;
 | 
						|
	goto L40;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
L70:
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DSYTF2 */
 | 
						|
 | 
						|
} /* dsytf2_ */
 |