276 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* dsyr2.f -- translated by f2c (version 20061008).
 | 
						|
   You must link the resulting object file with libf2c:
 | 
						|
	on Microsoft Windows system, link with libf2c.lib;
 | 
						|
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | 
						|
	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | 
						|
	-- in that order, at the end of the command line, as in
 | 
						|
		cc *.o -lf2c -lm
 | 
						|
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | 
						|
 | 
						|
		http://www.netlib.org/f2c/libf2c.zip
 | 
						|
*/
 | 
						|
 | 
						|
#include "clapack.h"
 | 
						|
 | 
						|
 | 
						|
/* Subroutine */ int dsyr2_(char *uplo, integer *n, doublereal *alpha, 
 | 
						|
	doublereal *x, integer *incx, doublereal *y, integer *incy, 
 | 
						|
	doublereal *a, integer *lda)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__, j, ix, iy, jx, jy, kx, ky, info;
 | 
						|
    doublereal temp1, temp2;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ int xerbla_(char *, integer *);
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DSYR2  performs the symmetric rank 2 operation */
 | 
						|
 | 
						|
/*     A := alpha*x*y' + alpha*y*x' + A, */
 | 
						|
 | 
						|
/*  where alpha is a scalar, x and y are n element vectors and A is an n */
 | 
						|
/*  by n symmetric matrix. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/*  UPLO   - CHARACTER*1. */
 | 
						|
/*           On entry, UPLO specifies whether the upper or lower */
 | 
						|
/*           triangular part of the array A is to be referenced as */
 | 
						|
/*           follows: */
 | 
						|
 | 
						|
/*              UPLO = 'U' or 'u'   Only the upper triangular part of A */
 | 
						|
/*                                  is to be referenced. */
 | 
						|
 | 
						|
/*              UPLO = 'L' or 'l'   Only the lower triangular part of A */
 | 
						|
/*                                  is to be referenced. */
 | 
						|
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  N      - INTEGER. */
 | 
						|
/*           On entry, N specifies the order of the matrix A. */
 | 
						|
/*           N must be at least zero. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  ALPHA  - DOUBLE PRECISION. */
 | 
						|
/*           On entry, ALPHA specifies the scalar alpha. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  X      - DOUBLE PRECISION array of dimension at least */
 | 
						|
/*           ( 1 + ( n - 1 )*abs( INCX ) ). */
 | 
						|
/*           Before entry, the incremented array X must contain the n */
 | 
						|
/*           element vector x. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  INCX   - INTEGER. */
 | 
						|
/*           On entry, INCX specifies the increment for the elements of */
 | 
						|
/*           X. INCX must not be zero. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  Y      - DOUBLE PRECISION array of dimension at least */
 | 
						|
/*           ( 1 + ( n - 1 )*abs( INCY ) ). */
 | 
						|
/*           Before entry, the incremented array Y must contain the n */
 | 
						|
/*           element vector y. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  INCY   - INTEGER. */
 | 
						|
/*           On entry, INCY specifies the increment for the elements of */
 | 
						|
/*           Y. INCY must not be zero. */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
 | 
						|
/*           Before entry with  UPLO = 'U' or 'u', the leading n by n */
 | 
						|
/*           upper triangular part of the array A must contain the upper */
 | 
						|
/*           triangular part of the symmetric matrix and the strictly */
 | 
						|
/*           lower triangular part of A is not referenced. On exit, the */
 | 
						|
/*           upper triangular part of the array A is overwritten by the */
 | 
						|
/*           upper triangular part of the updated matrix. */
 | 
						|
/*           Before entry with UPLO = 'L' or 'l', the leading n by n */
 | 
						|
/*           lower triangular part of the array A must contain the lower */
 | 
						|
/*           triangular part of the symmetric matrix and the strictly */
 | 
						|
/*           upper triangular part of A is not referenced. On exit, the */
 | 
						|
/*           lower triangular part of the array A is overwritten by the */
 | 
						|
/*           lower triangular part of the updated matrix. */
 | 
						|
 | 
						|
/*  LDA    - INTEGER. */
 | 
						|
/*           On entry, LDA specifies the first dimension of A as declared */
 | 
						|
/*           in the calling (sub) program. LDA must be at least */
 | 
						|
/*           max( 1, n ). */
 | 
						|
/*           Unchanged on exit. */
 | 
						|
 | 
						|
 | 
						|
/*  Level 2 Blas routine. */
 | 
						|
 | 
						|
/*  -- Written on 22-October-1986. */
 | 
						|
/*     Jack Dongarra, Argonne National Lab. */
 | 
						|
/*     Jeremy Du Croz, Nag Central Office. */
 | 
						|
/*     Sven Hammarling, Nag Central Office. */
 | 
						|
/*     Richard Hanson, Sandia National Labs. */
 | 
						|
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --x;
 | 
						|
    --y;
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    info = 0;
 | 
						|
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
 | 
						|
	info = 1;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	info = 2;
 | 
						|
    } else if (*incx == 0) {
 | 
						|
	info = 5;
 | 
						|
    } else if (*incy == 0) {
 | 
						|
	info = 7;
 | 
						|
    } else if (*lda < max(1,*n)) {
 | 
						|
	info = 9;
 | 
						|
    }
 | 
						|
    if (info != 0) {
 | 
						|
	xerbla_("DSYR2 ", &info);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible. */
 | 
						|
 | 
						|
    if (*n == 0 || *alpha == 0.) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Set up the start points in X and Y if the increments are not both */
 | 
						|
/*     unity. */
 | 
						|
 | 
						|
    if (*incx != 1 || *incy != 1) {
 | 
						|
	if (*incx > 0) {
 | 
						|
	    kx = 1;
 | 
						|
	} else {
 | 
						|
	    kx = 1 - (*n - 1) * *incx;
 | 
						|
	}
 | 
						|
	if (*incy > 0) {
 | 
						|
	    ky = 1;
 | 
						|
	} else {
 | 
						|
	    ky = 1 - (*n - 1) * *incy;
 | 
						|
	}
 | 
						|
	jx = kx;
 | 
						|
	jy = ky;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Start the operations. In this version the elements of A are */
 | 
						|
/*     accessed sequentially with one pass through the triangular part */
 | 
						|
/*     of A. */
 | 
						|
 | 
						|
    if (lsame_(uplo, "U")) {
 | 
						|
 | 
						|
/*        Form  A  when A is stored in the upper triangle. */
 | 
						|
 | 
						|
	if (*incx == 1 && *incy == 1) {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		if (x[j] != 0. || y[j] != 0.) {
 | 
						|
		    temp1 = *alpha * y[j];
 | 
						|
		    temp2 = *alpha * x[j];
 | 
						|
		    i__2 = j;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] * 
 | 
						|
				temp1 + y[i__] * temp2;
 | 
						|
/* L10: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		if (x[jx] != 0. || y[jy] != 0.) {
 | 
						|
		    temp1 = *alpha * y[jy];
 | 
						|
		    temp2 = *alpha * x[jx];
 | 
						|
		    ix = kx;
 | 
						|
		    iy = ky;
 | 
						|
		    i__2 = j;
 | 
						|
		    for (i__ = 1; i__ <= i__2; ++i__) {
 | 
						|
			a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] * 
 | 
						|
				temp1 + y[iy] * temp2;
 | 
						|
			ix += *incx;
 | 
						|
			iy += *incy;
 | 
						|
/* L30: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		jx += *incx;
 | 
						|
		jy += *incy;
 | 
						|
/* L40: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Form  A  when A is stored in the lower triangle. */
 | 
						|
 | 
						|
	if (*incx == 1 && *incy == 1) {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		if (x[j] != 0. || y[j] != 0.) {
 | 
						|
		    temp1 = *alpha * y[j];
 | 
						|
		    temp2 = *alpha * x[j];
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (i__ = j; i__ <= i__2; ++i__) {
 | 
						|
			a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[i__] * 
 | 
						|
				temp1 + y[i__] * temp2;
 | 
						|
/* L50: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
/* L60: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		if (x[jx] != 0. || y[jy] != 0.) {
 | 
						|
		    temp1 = *alpha * y[jy];
 | 
						|
		    temp2 = *alpha * x[jx];
 | 
						|
		    ix = jx;
 | 
						|
		    iy = jy;
 | 
						|
		    i__2 = *n;
 | 
						|
		    for (i__ = j; i__ <= i__2; ++i__) {
 | 
						|
			a[i__ + j * a_dim1] = a[i__ + j * a_dim1] + x[ix] * 
 | 
						|
				temp1 + y[iy] * temp2;
 | 
						|
			ix += *incx;
 | 
						|
			iy += *incy;
 | 
						|
/* L70: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		jx += *incx;
 | 
						|
		jy += *incy;
 | 
						|
/* L80: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DSYR2 . */
 | 
						|
 | 
						|
} /* dsyr2_ */
 |