335 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			335 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* dormlq.f -- translated by f2c (version 20061008).
 | 
						|
   You must link the resulting object file with libf2c:
 | 
						|
	on Microsoft Windows system, link with libf2c.lib;
 | 
						|
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | 
						|
	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | 
						|
	-- in that order, at the end of the command line, as in
 | 
						|
		cc *.o -lf2c -lm
 | 
						|
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | 
						|
 | 
						|
		http://www.netlib.org/f2c/libf2c.zip
 | 
						|
*/
 | 
						|
 | 
						|
#include "clapack.h"
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c_n1 = -1;
 | 
						|
static integer c__2 = 2;
 | 
						|
static integer c__65 = 65;
 | 
						|
 | 
						|
/* Subroutine */ int dormlq_(char *side, char *trans, integer *m, integer *n, 
 | 
						|
	integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
 | 
						|
	c__, integer *ldc, doublereal *work, integer *lwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    address a__1[2];
 | 
						|
    integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2], i__4, 
 | 
						|
	    i__5;
 | 
						|
    char ch__1[2];
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer i__;
 | 
						|
    doublereal t[4160]	/* was [65][64] */;
 | 
						|
    integer i1, i2, i3, ib, ic, jc, nb, mi, ni, nq, nw, iws;
 | 
						|
    logical left;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer nbmin, iinfo;
 | 
						|
    extern /* Subroutine */ int dorml2_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
 | 
						|
	    integer *, doublereal *, integer *), dlarfb_(char 
 | 
						|
	    *, char *, char *, char *, integer *, integer *, integer *, 
 | 
						|
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 | 
						|
	    integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *, doublereal 
 | 
						|
	    *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *);
 | 
						|
    logical notran;
 | 
						|
    integer ldwork;
 | 
						|
    char transt[1];
 | 
						|
    integer lwkopt;
 | 
						|
    logical lquery;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK routine (version 3.2) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  DORMLQ overwrites the general real M-by-N matrix C with */
 | 
						|
 | 
						|
/*                  SIDE = 'L'     SIDE = 'R' */
 | 
						|
/*  TRANS = 'N':      Q * C          C * Q */
 | 
						|
/*  TRANS = 'T':      Q**T * C       C * Q**T */
 | 
						|
 | 
						|
/*  where Q is a real orthogonal matrix defined as the product of k */
 | 
						|
/*  elementary reflectors */
 | 
						|
 | 
						|
/*        Q = H(k) . . . H(2) H(1) */
 | 
						|
 | 
						|
/*  as returned by DGELQF. Q is of order M if SIDE = 'L' and of order N */
 | 
						|
/*  if SIDE = 'R'. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  SIDE    (input) CHARACTER*1 */
 | 
						|
/*          = 'L': apply Q or Q**T from the Left; */
 | 
						|
/*          = 'R': apply Q or Q**T from the Right. */
 | 
						|
 | 
						|
/*  TRANS   (input) CHARACTER*1 */
 | 
						|
/*          = 'N':  No transpose, apply Q; */
 | 
						|
/*          = 'T':  Transpose, apply Q**T. */
 | 
						|
 | 
						|
/*  M       (input) INTEGER */
 | 
						|
/*          The number of rows of the matrix C. M >= 0. */
 | 
						|
 | 
						|
/*  N       (input) INTEGER */
 | 
						|
/*          The number of columns of the matrix C. N >= 0. */
 | 
						|
 | 
						|
/*  K       (input) INTEGER */
 | 
						|
/*          The number of elementary reflectors whose product defines */
 | 
						|
/*          the matrix Q. */
 | 
						|
/*          If SIDE = 'L', M >= K >= 0; */
 | 
						|
/*          if SIDE = 'R', N >= K >= 0. */
 | 
						|
 | 
						|
/*  A       (input) DOUBLE PRECISION array, dimension */
 | 
						|
/*                               (LDA,M) if SIDE = 'L', */
 | 
						|
/*                               (LDA,N) if SIDE = 'R' */
 | 
						|
/*          The i-th row must contain the vector which defines the */
 | 
						|
/*          elementary reflector H(i), for i = 1,2,...,k, as returned by */
 | 
						|
/*          DGELQF in the first k rows of its array argument A. */
 | 
						|
/*          A is modified by the routine but restored on exit. */
 | 
						|
 | 
						|
/*  LDA     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array A. LDA >= max(1,K). */
 | 
						|
 | 
						|
/*  TAU     (input) DOUBLE PRECISION array, dimension (K) */
 | 
						|
/*          TAU(i) must contain the scalar factor of the elementary */
 | 
						|
/*          reflector H(i), as returned by DGELQF. */
 | 
						|
 | 
						|
/*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
 | 
						|
/*          On entry, the M-by-N matrix C. */
 | 
						|
/*          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
 | 
						|
 | 
						|
/*  LDC     (input) INTEGER */
 | 
						|
/*          The leading dimension of the array C. LDC >= max(1,M). */
 | 
						|
 | 
						|
/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 | 
						|
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
 | 
						|
/*  LWORK   (input) INTEGER */
 | 
						|
/*          The dimension of the array WORK. */
 | 
						|
/*          If SIDE = 'L', LWORK >= max(1,N); */
 | 
						|
/*          if SIDE = 'R', LWORK >= max(1,M). */
 | 
						|
/*          For optimum performance LWORK >= N*NB if SIDE = 'L', and */
 | 
						|
/*          LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
 | 
						|
/*          blocksize. */
 | 
						|
 | 
						|
/*          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/*          only calculates the optimal size of the WORK array, returns */
 | 
						|
/*          this value as the first entry of the WORK array, and no error */
 | 
						|
/*          message related to LWORK is issued by XERBLA. */
 | 
						|
 | 
						|
/*  INFO    (output) INTEGER */
 | 
						|
/*          = 0:  successful exit */
 | 
						|
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Arrays .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Test the input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1;
 | 
						|
    a -= a_offset;
 | 
						|
    --tau;
 | 
						|
    c_dim1 = *ldc;
 | 
						|
    c_offset = 1 + c_dim1;
 | 
						|
    c__ -= c_offset;
 | 
						|
    --work;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    left = lsame_(side, "L");
 | 
						|
    notran = lsame_(trans, "N");
 | 
						|
    lquery = *lwork == -1;
 | 
						|
 | 
						|
/*     NQ is the order of Q and NW is the minimum dimension of WORK */
 | 
						|
 | 
						|
    if (left) {
 | 
						|
	nq = *m;
 | 
						|
	nw = *n;
 | 
						|
    } else {
 | 
						|
	nq = *n;
 | 
						|
	nw = *m;
 | 
						|
    }
 | 
						|
    if (! left && ! lsame_(side, "R")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! notran && ! lsame_(trans, "T")) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*m < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*k < 0 || *k > nq) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*lda < max(1,*k)) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldc < max(1,*m)) {
 | 
						|
	*info = -10;
 | 
						|
    } else if (*lwork < max(1,nw) && ! lquery) {
 | 
						|
	*info = -12;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
 | 
						|
/*        Determine the block size.  NB may be at most NBMAX, where NBMAX */
 | 
						|
/*        is used to define the local array T. */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
/* Writing concatenation */
 | 
						|
	i__3[0] = 1, a__1[0] = side;
 | 
						|
	i__3[1] = 1, a__1[1] = trans;
 | 
						|
	s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
 | 
						|
	i__1 = 64, i__2 = ilaenv_(&c__1, "DORMLQ", ch__1, m, n, k, &c_n1);
 | 
						|
	nb = min(i__1,i__2);
 | 
						|
	lwkopt = max(1,nw) * nb;
 | 
						|
	work[1] = (doublereal) lwkopt;
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("DORMLQ", &i__1);
 | 
						|
	return 0;
 | 
						|
    } else if (lquery) {
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*m == 0 || *n == 0 || *k == 0) {
 | 
						|
	work[1] = 1.;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    nbmin = 2;
 | 
						|
    ldwork = nw;
 | 
						|
    if (nb > 1 && nb < *k) {
 | 
						|
	iws = nw * nb;
 | 
						|
	if (*lwork < iws) {
 | 
						|
	    nb = *lwork / ldwork;
 | 
						|
/* Computing MAX */
 | 
						|
/* Writing concatenation */
 | 
						|
	    i__3[0] = 1, a__1[0] = side;
 | 
						|
	    i__3[1] = 1, a__1[1] = trans;
 | 
						|
	    s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
 | 
						|
	    i__1 = 2, i__2 = ilaenv_(&c__2, "DORMLQ", ch__1, m, n, k, &c_n1);
 | 
						|
	    nbmin = max(i__1,i__2);
 | 
						|
	}
 | 
						|
    } else {
 | 
						|
	iws = nw;
 | 
						|
    }
 | 
						|
 | 
						|
    if (nb < nbmin || nb >= *k) {
 | 
						|
 | 
						|
/*        Use unblocked code */
 | 
						|
 | 
						|
	dorml2_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
 | 
						|
		c_offset], ldc, &work[1], &iinfo);
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Use blocked code */
 | 
						|
 | 
						|
	if (left && notran || ! left && ! notran) {
 | 
						|
	    i1 = 1;
 | 
						|
	    i2 = *k;
 | 
						|
	    i3 = nb;
 | 
						|
	} else {
 | 
						|
	    i1 = (*k - 1) / nb * nb + 1;
 | 
						|
	    i2 = 1;
 | 
						|
	    i3 = -nb;
 | 
						|
	}
 | 
						|
 | 
						|
	if (left) {
 | 
						|
	    ni = *n;
 | 
						|
	    jc = 1;
 | 
						|
	} else {
 | 
						|
	    mi = *m;
 | 
						|
	    ic = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (notran) {
 | 
						|
	    *(unsigned char *)transt = 'T';
 | 
						|
	} else {
 | 
						|
	    *(unsigned char *)transt = 'N';
 | 
						|
	}
 | 
						|
 | 
						|
	i__1 = i2;
 | 
						|
	i__2 = i3;
 | 
						|
	for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
 | 
						|
/* Computing MIN */
 | 
						|
	    i__4 = nb, i__5 = *k - i__ + 1;
 | 
						|
	    ib = min(i__4,i__5);
 | 
						|
 | 
						|
/*           Form the triangular factor of the block reflector */
 | 
						|
/*           H = H(i) H(i+1) . . . H(i+ib-1) */
 | 
						|
 | 
						|
	    i__4 = nq - i__ + 1;
 | 
						|
	    dlarft_("Forward", "Rowwise", &i__4, &ib, &a[i__ + i__ * a_dim1], 
 | 
						|
		    lda, &tau[i__], t, &c__65);
 | 
						|
	    if (left) {
 | 
						|
 | 
						|
/*              H or H' is applied to C(i:m,1:n) */
 | 
						|
 | 
						|
		mi = *m - i__ + 1;
 | 
						|
		ic = i__;
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              H or H' is applied to C(1:m,i:n) */
 | 
						|
 | 
						|
		ni = *n - i__ + 1;
 | 
						|
		jc = i__;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Apply H or H' */
 | 
						|
 | 
						|
	    dlarfb_(side, transt, "Forward", "Rowwise", &mi, &ni, &ib, &a[i__ 
 | 
						|
		    + i__ * a_dim1], lda, t, &c__65, &c__[ic + jc * c_dim1], 
 | 
						|
		    ldc, &work[1], &ldwork);
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
    }
 | 
						|
    work[1] = (doublereal) lwkopt;
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DORMLQ */
 | 
						|
 | 
						|
} /* dormlq_ */
 |