1011 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1011 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* dlasd4.f -- translated by f2c (version 20061008).
 | 
						|
   You must link the resulting object file with libf2c:
 | 
						|
	on Microsoft Windows system, link with libf2c.lib;
 | 
						|
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | 
						|
	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | 
						|
	-- in that order, at the end of the command line, as in
 | 
						|
		cc *.o -lf2c -lm
 | 
						|
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | 
						|
 | 
						|
		http://www.netlib.org/f2c/libf2c.zip
 | 
						|
*/
 | 
						|
 | 
						|
#include "clapack.h"
 | 
						|
 | 
						|
 | 
						|
/* Subroutine */ int dlasd4_(integer *n, integer *i__, doublereal *d__, 
 | 
						|
	doublereal *z__, doublereal *delta, doublereal *rho, doublereal *
 | 
						|
	sigma, doublereal *work, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer i__1;
 | 
						|
    doublereal d__1;
 | 
						|
 | 
						|
    /* Builtin functions */
 | 
						|
    double sqrt(doublereal);
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    doublereal a, b, c__;
 | 
						|
    integer j;
 | 
						|
    doublereal w, dd[3];
 | 
						|
    integer ii;
 | 
						|
    doublereal dw, zz[3];
 | 
						|
    integer ip1;
 | 
						|
    doublereal eta, phi, eps, tau, psi;
 | 
						|
    integer iim1, iip1;
 | 
						|
    doublereal dphi, dpsi;
 | 
						|
    integer iter;
 | 
						|
    doublereal temp, prew, sg2lb, sg2ub, temp1, temp2, dtiim, delsq, dtiip;
 | 
						|
    integer niter;
 | 
						|
    doublereal dtisq;
 | 
						|
    logical swtch;
 | 
						|
    doublereal dtnsq;
 | 
						|
    extern /* Subroutine */ int dlaed6_(integer *, logical *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *, doublereal *, integer *)
 | 
						|
	    , dlasd5_(integer *, doublereal *, doublereal *, doublereal *, 
 | 
						|
	    doublereal *, doublereal *, doublereal *);
 | 
						|
    doublereal delsq2, dtnsq1;
 | 
						|
    logical swtch3;
 | 
						|
    extern doublereal dlamch_(char *);
 | 
						|
    logical orgati;
 | 
						|
    doublereal erretm, dtipsq, rhoinv;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.2) -- */
 | 
						|
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | 
						|
/*     November 2006 */
 | 
						|
 | 
						|
/*     .. Scalar Arguments .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Array Arguments .. */
 | 
						|
/*     .. */
 | 
						|
 | 
						|
/*  Purpose */
 | 
						|
/*  ======= */
 | 
						|
 | 
						|
/*  This subroutine computes the square root of the I-th updated */
 | 
						|
/*  eigenvalue of a positive symmetric rank-one modification to */
 | 
						|
/*  a positive diagonal matrix whose entries are given as the squares */
 | 
						|
/*  of the corresponding entries in the array d, and that */
 | 
						|
 | 
						|
/*         0 <= D(i) < D(j)  for  i < j */
 | 
						|
 | 
						|
/*  and that RHO > 0. This is arranged by the calling routine, and is */
 | 
						|
/*  no loss in generality.  The rank-one modified system is thus */
 | 
						|
 | 
						|
/*         diag( D ) * diag( D ) +  RHO *  Z * Z_transpose. */
 | 
						|
 | 
						|
/*  where we assume the Euclidean norm of Z is 1. */
 | 
						|
 | 
						|
/*  The method consists of approximating the rational functions in the */
 | 
						|
/*  secular equation by simpler interpolating rational functions. */
 | 
						|
 | 
						|
/*  Arguments */
 | 
						|
/*  ========= */
 | 
						|
 | 
						|
/*  N      (input) INTEGER */
 | 
						|
/*         The length of all arrays. */
 | 
						|
 | 
						|
/*  I      (input) INTEGER */
 | 
						|
/*         The index of the eigenvalue to be computed.  1 <= I <= N. */
 | 
						|
 | 
						|
/*  D      (input) DOUBLE PRECISION array, dimension ( N ) */
 | 
						|
/*         The original eigenvalues.  It is assumed that they are in */
 | 
						|
/*         order, 0 <= D(I) < D(J)  for I < J. */
 | 
						|
 | 
						|
/*  Z      (input) DOUBLE PRECISION array, dimension ( N ) */
 | 
						|
/*         The components of the updating vector. */
 | 
						|
 | 
						|
/*  DELTA  (output) DOUBLE PRECISION array, dimension ( N ) */
 | 
						|
/*         If N .ne. 1, DELTA contains (D(j) - sigma_I) in its  j-th */
 | 
						|
/*         component.  If N = 1, then DELTA(1) = 1.  The vector DELTA */
 | 
						|
/*         contains the information necessary to construct the */
 | 
						|
/*         (singular) eigenvectors. */
 | 
						|
 | 
						|
/*  RHO    (input) DOUBLE PRECISION */
 | 
						|
/*         The scalar in the symmetric updating formula. */
 | 
						|
 | 
						|
/*  SIGMA  (output) DOUBLE PRECISION */
 | 
						|
/*         The computed sigma_I, the I-th updated eigenvalue. */
 | 
						|
 | 
						|
/*  WORK   (workspace) DOUBLE PRECISION array, dimension ( N ) */
 | 
						|
/*         If N .ne. 1, WORK contains (D(j) + sigma_I) in its  j-th */
 | 
						|
/*         component.  If N = 1, then WORK( 1 ) = 1. */
 | 
						|
 | 
						|
/*  INFO   (output) INTEGER */
 | 
						|
/*         = 0:  successful exit */
 | 
						|
/*         > 0:  if INFO = 1, the updating process failed. */
 | 
						|
 | 
						|
/*  Internal Parameters */
 | 
						|
/*  =================== */
 | 
						|
 | 
						|
/*  Logical variable ORGATI (origin-at-i?) is used for distinguishing */
 | 
						|
/*  whether D(i) or D(i+1) is treated as the origin. */
 | 
						|
 | 
						|
/*            ORGATI = .true.    origin at i */
 | 
						|
/*            ORGATI = .false.   origin at i+1 */
 | 
						|
 | 
						|
/*  Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
 | 
						|
/*  if we are working with THREE poles! */
 | 
						|
 | 
						|
/*  MAXIT is the maximum number of iterations allowed for each */
 | 
						|
/*  eigenvalue. */
 | 
						|
 | 
						|
/*  Further Details */
 | 
						|
/*  =============== */
 | 
						|
 | 
						|
/*  Based on contributions by */
 | 
						|
/*     Ren-Cang Li, Computer Science Division, University of California */
 | 
						|
/*     at Berkeley, USA */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     .. Parameters .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Scalars .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Local Arrays .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Subroutines .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. External Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Intrinsic Functions .. */
 | 
						|
/*     .. */
 | 
						|
/*     .. Executable Statements .. */
 | 
						|
 | 
						|
/*     Since this routine is called in an inner loop, we do no argument */
 | 
						|
/*     checking. */
 | 
						|
 | 
						|
/*     Quick return for N=1 and 2. */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --work;
 | 
						|
    --delta;
 | 
						|
    --z__;
 | 
						|
    --d__;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    if (*n == 1) {
 | 
						|
 | 
						|
/*        Presumably, I=1 upon entry */
 | 
						|
 | 
						|
	*sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
 | 
						|
	delta[1] = 1.;
 | 
						|
	work[1] = 1.;
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
    if (*n == 2) {
 | 
						|
	dlasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
 | 
						|
	return 0;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute machine epsilon */
 | 
						|
 | 
						|
    eps = dlamch_("Epsilon");
 | 
						|
    rhoinv = 1. / *rho;
 | 
						|
 | 
						|
/*     The case I = N */
 | 
						|
 | 
						|
    if (*i__ == *n) {
 | 
						|
 | 
						|
/*        Initialize some basic variables */
 | 
						|
 | 
						|
	ii = *n - 1;
 | 
						|
	niter = 1;
 | 
						|
 | 
						|
/*        Calculate initial guess */
 | 
						|
 | 
						|
	temp = *rho / 2.;
 | 
						|
 | 
						|
/*        If ||Z||_2 is not one, then TEMP should be set to */
 | 
						|
/*        RHO * ||Z||_2^2 / TWO */
 | 
						|
 | 
						|
	temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    work[j] = d__[j] + d__[*n] + temp1;
 | 
						|
	    delta[j] = d__[j] - d__[*n] - temp1;
 | 
						|
/* L10: */
 | 
						|
	}
 | 
						|
 | 
						|
	psi = 0.;
 | 
						|
	i__1 = *n - 2;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    psi += z__[j] * z__[j] / (delta[j] * work[j]);
 | 
						|
/* L20: */
 | 
						|
	}
 | 
						|
 | 
						|
	c__ = rhoinv + psi;
 | 
						|
	w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
 | 
						|
		n] / (delta[*n] * work[*n]);
 | 
						|
 | 
						|
	if (w <= 0.) {
 | 
						|
	    temp1 = sqrt(d__[*n] * d__[*n] + *rho);
 | 
						|
	    temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
 | 
						|
		    n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] * 
 | 
						|
		    z__[*n] / *rho;
 | 
						|
 | 
						|
/*           The following TAU is to approximate */
 | 
						|
/*           SIGMA_n^2 - D( N )*D( N ) */
 | 
						|
 | 
						|
	    if (c__ <= temp) {
 | 
						|
		tau = *rho;
 | 
						|
	    } else {
 | 
						|
		delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
 | 
						|
		a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
 | 
						|
			n];
 | 
						|
		b = z__[*n] * z__[*n] * delsq;
 | 
						|
		if (a < 0.) {
 | 
						|
		    tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
 | 
						|
		} else {
 | 
						|
		    tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           It can be proved that */
 | 
						|
/*               D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU <= D(N)^2+RHO */
 | 
						|
 | 
						|
	} else {
 | 
						|
	    delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
 | 
						|
	    a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
 | 
						|
	    b = z__[*n] * z__[*n] * delsq;
 | 
						|
 | 
						|
/*           The following TAU is to approximate */
 | 
						|
/*           SIGMA_n^2 - D( N )*D( N ) */
 | 
						|
 | 
						|
	    if (a < 0.) {
 | 
						|
		tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
 | 
						|
	    } else {
 | 
						|
		tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           It can be proved that */
 | 
						|
/*           D(N)^2 < D(N)^2+TAU < SIGMA(N)^2 < D(N)^2+RHO/2 */
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
/*        The following ETA is to approximate SIGMA_n - D( N ) */
 | 
						|
 | 
						|
	eta = tau / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau));
 | 
						|
 | 
						|
	*sigma = d__[*n] + eta;
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] = d__[j] - d__[*i__] - eta;
 | 
						|
	    work[j] = d__[j] + d__[*i__] + eta;
 | 
						|
/* L30: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.;
 | 
						|
	psi = 0.;
 | 
						|
	erretm = 0.;
 | 
						|
	i__1 = ii;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / (delta[j] * work[j]);
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L40: */
 | 
						|
	}
 | 
						|
	erretm = abs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	temp = z__[*n] / (delta[*n] * work[*n]);
 | 
						|
	phi = z__[*n] * temp;
 | 
						|
	dphi = temp * temp;
 | 
						|
	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 
 | 
						|
		+ dphi);
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        Test for convergence */
 | 
						|
 | 
						|
	if (abs(w) <= eps * erretm) {
 | 
						|
	    goto L240;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Calculate the new step */
 | 
						|
 | 
						|
	++niter;
 | 
						|
	dtnsq1 = work[*n - 1] * delta[*n - 1];
 | 
						|
	dtnsq = work[*n] * delta[*n];
 | 
						|
	c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
 | 
						|
	a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
 | 
						|
	b = dtnsq * dtnsq1 * w;
 | 
						|
	if (c__ < 0.) {
 | 
						|
	    c__ = abs(c__);
 | 
						|
	}
 | 
						|
	if (c__ == 0.) {
 | 
						|
	    eta = *rho - *sigma * *sigma;
 | 
						|
	} else if (a >= 0.) {
 | 
						|
	    eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__ 
 | 
						|
		    * 2.);
 | 
						|
	} else {
 | 
						|
	    eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
 | 
						|
		    );
 | 
						|
	}
 | 
						|
 | 
						|
/*        Note, eta should be positive if w is negative, and */
 | 
						|
/*        eta should be negative otherwise. However, */
 | 
						|
/*        if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*        we simply use one Newton step instead. This way */
 | 
						|
/*        will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	if (w * eta > 0.) {
 | 
						|
	    eta = -w / (dpsi + dphi);
 | 
						|
	}
 | 
						|
	temp = eta - dtnsq;
 | 
						|
	if (temp > *rho) {
 | 
						|
	    eta = *rho + dtnsq;
 | 
						|
	}
 | 
						|
 | 
						|
	tau += eta;
 | 
						|
	eta /= *sigma + sqrt(eta + *sigma * *sigma);
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    delta[j] -= eta;
 | 
						|
	    work[j] += eta;
 | 
						|
/* L50: */
 | 
						|
	}
 | 
						|
 | 
						|
	*sigma += eta;
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.;
 | 
						|
	psi = 0.;
 | 
						|
	erretm = 0.;
 | 
						|
	i__1 = ii;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / (work[j] * delta[j]);
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L60: */
 | 
						|
	}
 | 
						|
	erretm = abs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	temp = z__[*n] / (work[*n] * delta[*n]);
 | 
						|
	phi = z__[*n] * temp;
 | 
						|
	dphi = temp * temp;
 | 
						|
	erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi 
 | 
						|
		+ dphi);
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        Main loop to update the values of the array   DELTA */
 | 
						|
 | 
						|
	iter = niter + 1;
 | 
						|
 | 
						|
	for (niter = iter; niter <= 20; ++niter) {
 | 
						|
 | 
						|
/*           Test for convergence */
 | 
						|
 | 
						|
	    if (abs(w) <= eps * erretm) {
 | 
						|
		goto L240;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Calculate the new step */
 | 
						|
 | 
						|
	    dtnsq1 = work[*n - 1] * delta[*n - 1];
 | 
						|
	    dtnsq = work[*n] * delta[*n];
 | 
						|
	    c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
 | 
						|
	    a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
 | 
						|
	    b = dtnsq1 * dtnsq * w;
 | 
						|
	    if (a >= 0.) {
 | 
						|
		eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | 
						|
			c__ * 2.);
 | 
						|
	    } else {
 | 
						|
		eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
 | 
						|
			d__1))));
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Note, eta should be positive if w is negative, and */
 | 
						|
/*           eta should be negative otherwise. However, */
 | 
						|
/*           if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*           we simply use one Newton step instead. This way */
 | 
						|
/*           will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	    if (w * eta > 0.) {
 | 
						|
		eta = -w / (dpsi + dphi);
 | 
						|
	    }
 | 
						|
	    temp = eta - dtnsq;
 | 
						|
	    if (temp <= 0.) {
 | 
						|
		eta /= 2.;
 | 
						|
	    }
 | 
						|
 | 
						|
	    tau += eta;
 | 
						|
	    eta /= *sigma + sqrt(eta + *sigma * *sigma);
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		delta[j] -= eta;
 | 
						|
		work[j] += eta;
 | 
						|
/* L70: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    *sigma += eta;
 | 
						|
 | 
						|
/*           Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	    dpsi = 0.;
 | 
						|
	    psi = 0.;
 | 
						|
	    erretm = 0.;
 | 
						|
	    i__1 = ii;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		temp = z__[j] / (work[j] * delta[j]);
 | 
						|
		psi += z__[j] * temp;
 | 
						|
		dpsi += temp * temp;
 | 
						|
		erretm += psi;
 | 
						|
/* L80: */
 | 
						|
	    }
 | 
						|
	    erretm = abs(erretm);
 | 
						|
 | 
						|
/*           Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	    temp = z__[*n] / (work[*n] * delta[*n]);
 | 
						|
	    phi = z__[*n] * temp;
 | 
						|
	    dphi = temp * temp;
 | 
						|
	    erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
 | 
						|
		    dpsi + dphi);
 | 
						|
 | 
						|
	    w = rhoinv + phi + psi;
 | 
						|
/* L90: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Return with INFO = 1, NITER = MAXIT and not converged */
 | 
						|
 | 
						|
	*info = 1;
 | 
						|
	goto L240;
 | 
						|
 | 
						|
/*        End for the case I = N */
 | 
						|
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        The case for I < N */
 | 
						|
 | 
						|
	niter = 1;
 | 
						|
	ip1 = *i__ + 1;
 | 
						|
 | 
						|
/*        Calculate initial guess */
 | 
						|
 | 
						|
	delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
 | 
						|
	delsq2 = delsq / 2.;
 | 
						|
	temp = delsq2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + delsq2));
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    work[j] = d__[j] + d__[*i__] + temp;
 | 
						|
	    delta[j] = d__[j] - d__[*i__] - temp;
 | 
						|
/* L100: */
 | 
						|
	}
 | 
						|
 | 
						|
	psi = 0.;
 | 
						|
	i__1 = *i__ - 1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    psi += z__[j] * z__[j] / (work[j] * delta[j]);
 | 
						|
/* L110: */
 | 
						|
	}
 | 
						|
 | 
						|
	phi = 0.;
 | 
						|
	i__1 = *i__ + 2;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    phi += z__[j] * z__[j] / (work[j] * delta[j]);
 | 
						|
/* L120: */
 | 
						|
	}
 | 
						|
	c__ = rhoinv + psi + phi;
 | 
						|
	w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
 | 
						|
		ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
 | 
						|
 | 
						|
	if (w > 0.) {
 | 
						|
 | 
						|
/*           d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 */
 | 
						|
 | 
						|
/*           We choose d(i) as origin. */
 | 
						|
 | 
						|
	    orgati = TRUE_;
 | 
						|
	    sg2lb = 0.;
 | 
						|
	    sg2ub = delsq2;
 | 
						|
	    a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
 | 
						|
	    b = z__[*i__] * z__[*i__] * delsq;
 | 
						|
	    if (a > 0.) {
 | 
						|
		tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
 | 
						|
			d__1))));
 | 
						|
	    } else {
 | 
						|
		tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | 
						|
			c__ * 2.);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           TAU now is an estimation of SIGMA^2 - D( I )^2. The */
 | 
						|
/*           following, however, is the corresponding estimation of */
 | 
						|
/*           SIGMA - D( I ). */
 | 
						|
 | 
						|
	    eta = tau / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau));
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 */
 | 
						|
 | 
						|
/*           We choose d(i+1) as origin. */
 | 
						|
 | 
						|
	    orgati = FALSE_;
 | 
						|
	    sg2lb = -delsq2;
 | 
						|
	    sg2ub = 0.;
 | 
						|
	    a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
 | 
						|
	    b = z__[ip1] * z__[ip1] * delsq;
 | 
						|
	    if (a < 0.) {
 | 
						|
		tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
 | 
						|
			d__1))));
 | 
						|
	    } else {
 | 
						|
		tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) / 
 | 
						|
			(c__ * 2.);
 | 
						|
	    }
 | 
						|
 | 
						|
/*           TAU now is an estimation of SIGMA^2 - D( IP1 )^2. The */
 | 
						|
/*           following, however, is the corresponding estimation of */
 | 
						|
/*           SIGMA - D( IP1 ). */
 | 
						|
 | 
						|
	    eta = tau / (d__[ip1] + sqrt((d__1 = d__[ip1] * d__[ip1] + tau, 
 | 
						|
		    abs(d__1))));
 | 
						|
	}
 | 
						|
 | 
						|
	if (orgati) {
 | 
						|
	    ii = *i__;
 | 
						|
	    *sigma = d__[*i__] + eta;
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		work[j] = d__[j] + d__[*i__] + eta;
 | 
						|
		delta[j] = d__[j] - d__[*i__] - eta;
 | 
						|
/* L130: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    ii = *i__ + 1;
 | 
						|
	    *sigma = d__[ip1] + eta;
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		work[j] = d__[j] + d__[ip1] + eta;
 | 
						|
		delta[j] = d__[j] - d__[ip1] - eta;
 | 
						|
/* L140: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	iim1 = ii - 1;
 | 
						|
	iip1 = ii + 1;
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.;
 | 
						|
	psi = 0.;
 | 
						|
	erretm = 0.;
 | 
						|
	i__1 = iim1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / (work[j] * delta[j]);
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L150: */
 | 
						|
	}
 | 
						|
	erretm = abs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	dphi = 0.;
 | 
						|
	phi = 0.;
 | 
						|
	i__1 = iip1;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    temp = z__[j] / (work[j] * delta[j]);
 | 
						|
	    phi += z__[j] * temp;
 | 
						|
	    dphi += temp * temp;
 | 
						|
	    erretm += phi;
 | 
						|
/* L160: */
 | 
						|
	}
 | 
						|
 | 
						|
	w = rhoinv + phi + psi;
 | 
						|
 | 
						|
/*        W is the value of the secular function with */
 | 
						|
/*        its ii-th element removed. */
 | 
						|
 | 
						|
	swtch3 = FALSE_;
 | 
						|
	if (orgati) {
 | 
						|
	    if (w < 0.) {
 | 
						|
		swtch3 = TRUE_;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    if (w > 0.) {
 | 
						|
		swtch3 = TRUE_;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (ii == 1 || ii == *n) {
 | 
						|
	    swtch3 = FALSE_;
 | 
						|
	}
 | 
						|
 | 
						|
	temp = z__[ii] / (work[ii] * delta[ii]);
 | 
						|
	dw = dpsi + dphi + temp * temp;
 | 
						|
	temp = z__[ii] * temp;
 | 
						|
	w += temp;
 | 
						|
	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 
 | 
						|
		abs(tau) * dw;
 | 
						|
 | 
						|
/*        Test for convergence */
 | 
						|
 | 
						|
	if (abs(w) <= eps * erretm) {
 | 
						|
	    goto L240;
 | 
						|
	}
 | 
						|
 | 
						|
	if (w <= 0.) {
 | 
						|
	    sg2lb = max(sg2lb,tau);
 | 
						|
	} else {
 | 
						|
	    sg2ub = min(sg2ub,tau);
 | 
						|
	}
 | 
						|
 | 
						|
/*        Calculate the new step */
 | 
						|
 | 
						|
	++niter;
 | 
						|
	if (! swtch3) {
 | 
						|
	    dtipsq = work[ip1] * delta[ip1];
 | 
						|
	    dtisq = work[*i__] * delta[*i__];
 | 
						|
	    if (orgati) {
 | 
						|
/* Computing 2nd power */
 | 
						|
		d__1 = z__[*i__] / dtisq;
 | 
						|
		c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
 | 
						|
	    } else {
 | 
						|
/* Computing 2nd power */
 | 
						|
		d__1 = z__[ip1] / dtipsq;
 | 
						|
		c__ = w - dtisq * dw - delsq * (d__1 * d__1);
 | 
						|
	    }
 | 
						|
	    a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
 | 
						|
	    b = dtipsq * dtisq * w;
 | 
						|
	    if (c__ == 0.) {
 | 
						|
		if (a == 0.) {
 | 
						|
		    if (orgati) {
 | 
						|
			a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi + 
 | 
						|
				dphi);
 | 
						|
		    } else {
 | 
						|
			a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi + 
 | 
						|
				dphi);
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		eta = b / a;
 | 
						|
	    } else if (a <= 0.) {
 | 
						|
		eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
 | 
						|
			c__ * 2.);
 | 
						|
	    } else {
 | 
						|
		eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
 | 
						|
			d__1))));
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Interpolation using THREE most relevant poles */
 | 
						|
 | 
						|
	    dtiim = work[iim1] * delta[iim1];
 | 
						|
	    dtiip = work[iip1] * delta[iip1];
 | 
						|
	    temp = rhoinv + psi + phi;
 | 
						|
	    if (orgati) {
 | 
						|
		temp1 = z__[iim1] / dtiim;
 | 
						|
		temp1 *= temp1;
 | 
						|
		c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
 | 
						|
			 (d__[iim1] + d__[iip1]) * temp1;
 | 
						|
		zz[0] = z__[iim1] * z__[iim1];
 | 
						|
		if (dpsi < temp1) {
 | 
						|
		    zz[2] = dtiip * dtiip * dphi;
 | 
						|
		} else {
 | 
						|
		    zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		temp1 = z__[iip1] / dtiip;
 | 
						|
		temp1 *= temp1;
 | 
						|
		c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
 | 
						|
			 (d__[iim1] + d__[iip1]) * temp1;
 | 
						|
		if (dphi < temp1) {
 | 
						|
		    zz[0] = dtiim * dtiim * dpsi;
 | 
						|
		} else {
 | 
						|
		    zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
 | 
						|
		}
 | 
						|
		zz[2] = z__[iip1] * z__[iip1];
 | 
						|
	    }
 | 
						|
	    zz[1] = z__[ii] * z__[ii];
 | 
						|
	    dd[0] = dtiim;
 | 
						|
	    dd[1] = delta[ii] * work[ii];
 | 
						|
	    dd[2] = dtiip;
 | 
						|
	    dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
 | 
						|
	    if (*info != 0) {
 | 
						|
		goto L240;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Note, eta should be positive if w is negative, and */
 | 
						|
/*        eta should be negative otherwise. However, */
 | 
						|
/*        if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*        we simply use one Newton step instead. This way */
 | 
						|
/*        will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	if (w * eta >= 0.) {
 | 
						|
	    eta = -w / dw;
 | 
						|
	}
 | 
						|
	if (orgati) {
 | 
						|
	    temp1 = work[*i__] * delta[*i__];
 | 
						|
	    temp = eta - temp1;
 | 
						|
	} else {
 | 
						|
	    temp1 = work[ip1] * delta[ip1];
 | 
						|
	    temp = eta - temp1;
 | 
						|
	}
 | 
						|
	if (temp > sg2ub || temp < sg2lb) {
 | 
						|
	    if (w < 0.) {
 | 
						|
		eta = (sg2ub - tau) / 2.;
 | 
						|
	    } else {
 | 
						|
		eta = (sg2lb - tau) / 2.;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	tau += eta;
 | 
						|
	eta /= *sigma + sqrt(*sigma * *sigma + eta);
 | 
						|
 | 
						|
	prew = w;
 | 
						|
 | 
						|
	*sigma += eta;
 | 
						|
	i__1 = *n;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    work[j] += eta;
 | 
						|
	    delta[j] -= eta;
 | 
						|
/* L170: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	dpsi = 0.;
 | 
						|
	psi = 0.;
 | 
						|
	erretm = 0.;
 | 
						|
	i__1 = iim1;
 | 
						|
	for (j = 1; j <= i__1; ++j) {
 | 
						|
	    temp = z__[j] / (work[j] * delta[j]);
 | 
						|
	    psi += z__[j] * temp;
 | 
						|
	    dpsi += temp * temp;
 | 
						|
	    erretm += psi;
 | 
						|
/* L180: */
 | 
						|
	}
 | 
						|
	erretm = abs(erretm);
 | 
						|
 | 
						|
/*        Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	dphi = 0.;
 | 
						|
	phi = 0.;
 | 
						|
	i__1 = iip1;
 | 
						|
	for (j = *n; j >= i__1; --j) {
 | 
						|
	    temp = z__[j] / (work[j] * delta[j]);
 | 
						|
	    phi += z__[j] * temp;
 | 
						|
	    dphi += temp * temp;
 | 
						|
	    erretm += phi;
 | 
						|
/* L190: */
 | 
						|
	}
 | 
						|
 | 
						|
	temp = z__[ii] / (work[ii] * delta[ii]);
 | 
						|
	dw = dpsi + dphi + temp * temp;
 | 
						|
	temp = z__[ii] * temp;
 | 
						|
	w = rhoinv + phi + psi + temp;
 | 
						|
	erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + 
 | 
						|
		abs(tau) * dw;
 | 
						|
 | 
						|
	if (w <= 0.) {
 | 
						|
	    sg2lb = max(sg2lb,tau);
 | 
						|
	} else {
 | 
						|
	    sg2ub = min(sg2ub,tau);
 | 
						|
	}
 | 
						|
 | 
						|
	swtch = FALSE_;
 | 
						|
	if (orgati) {
 | 
						|
	    if (-w > abs(prew) / 10.) {
 | 
						|
		swtch = TRUE_;
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    if (w > abs(prew) / 10.) {
 | 
						|
		swtch = TRUE_;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
/*        Main loop to update the values of the array   DELTA and WORK */
 | 
						|
 | 
						|
	iter = niter + 1;
 | 
						|
 | 
						|
	for (niter = iter; niter <= 20; ++niter) {
 | 
						|
 | 
						|
/*           Test for convergence */
 | 
						|
 | 
						|
	    if (abs(w) <= eps * erretm) {
 | 
						|
		goto L240;
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Calculate the new step */
 | 
						|
 | 
						|
	    if (! swtch3) {
 | 
						|
		dtipsq = work[ip1] * delta[ip1];
 | 
						|
		dtisq = work[*i__] * delta[*i__];
 | 
						|
		if (! swtch) {
 | 
						|
		    if (orgati) {
 | 
						|
/* Computing 2nd power */
 | 
						|
			d__1 = z__[*i__] / dtisq;
 | 
						|
			c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
 | 
						|
		    } else {
 | 
						|
/* Computing 2nd power */
 | 
						|
			d__1 = z__[ip1] / dtipsq;
 | 
						|
			c__ = w - dtisq * dw - delsq * (d__1 * d__1);
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    temp = z__[ii] / (work[ii] * delta[ii]);
 | 
						|
		    if (orgati) {
 | 
						|
			dpsi += temp * temp;
 | 
						|
		    } else {
 | 
						|
			dphi += temp * temp;
 | 
						|
		    }
 | 
						|
		    c__ = w - dtisq * dpsi - dtipsq * dphi;
 | 
						|
		}
 | 
						|
		a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
 | 
						|
		b = dtipsq * dtisq * w;
 | 
						|
		if (c__ == 0.) {
 | 
						|
		    if (a == 0.) {
 | 
						|
			if (! swtch) {
 | 
						|
			    if (orgati) {
 | 
						|
				a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * 
 | 
						|
					(dpsi + dphi);
 | 
						|
			    } else {
 | 
						|
				a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
 | 
						|
					dpsi + dphi);
 | 
						|
			    }
 | 
						|
			} else {
 | 
						|
			    a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		    eta = b / a;
 | 
						|
		} else if (a <= 0.) {
 | 
						|
		    eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
 | 
						|
			     / (c__ * 2.);
 | 
						|
		} else {
 | 
						|
		    eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, 
 | 
						|
			    abs(d__1))));
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
 | 
						|
/*              Interpolation using THREE most relevant poles */
 | 
						|
 | 
						|
		dtiim = work[iim1] * delta[iim1];
 | 
						|
		dtiip = work[iip1] * delta[iip1];
 | 
						|
		temp = rhoinv + psi + phi;
 | 
						|
		if (swtch) {
 | 
						|
		    c__ = temp - dtiim * dpsi - dtiip * dphi;
 | 
						|
		    zz[0] = dtiim * dtiim * dpsi;
 | 
						|
		    zz[2] = dtiip * dtiip * dphi;
 | 
						|
		} else {
 | 
						|
		    if (orgati) {
 | 
						|
			temp1 = z__[iim1] / dtiim;
 | 
						|
			temp1 *= temp1;
 | 
						|
			temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
 | 
						|
				iip1]) * temp1;
 | 
						|
			c__ = temp - dtiip * (dpsi + dphi) - temp2;
 | 
						|
			zz[0] = z__[iim1] * z__[iim1];
 | 
						|
			if (dpsi < temp1) {
 | 
						|
			    zz[2] = dtiip * dtiip * dphi;
 | 
						|
			} else {
 | 
						|
			    zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
 | 
						|
			}
 | 
						|
		    } else {
 | 
						|
			temp1 = z__[iip1] / dtiip;
 | 
						|
			temp1 *= temp1;
 | 
						|
			temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
 | 
						|
				iip1]) * temp1;
 | 
						|
			c__ = temp - dtiim * (dpsi + dphi) - temp2;
 | 
						|
			if (dphi < temp1) {
 | 
						|
			    zz[0] = dtiim * dtiim * dpsi;
 | 
						|
			} else {
 | 
						|
			    zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
 | 
						|
			}
 | 
						|
			zz[2] = z__[iip1] * z__[iip1];
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		dd[0] = dtiim;
 | 
						|
		dd[1] = delta[ii] * work[ii];
 | 
						|
		dd[2] = dtiip;
 | 
						|
		dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
 | 
						|
		if (*info != 0) {
 | 
						|
		    goto L240;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
/*           Note, eta should be positive if w is negative, and */
 | 
						|
/*           eta should be negative otherwise. However, */
 | 
						|
/*           if for some reason caused by roundoff, eta*w > 0, */
 | 
						|
/*           we simply use one Newton step instead. This way */
 | 
						|
/*           will guarantee eta*w < 0. */
 | 
						|
 | 
						|
	    if (w * eta >= 0.) {
 | 
						|
		eta = -w / dw;
 | 
						|
	    }
 | 
						|
	    if (orgati) {
 | 
						|
		temp1 = work[*i__] * delta[*i__];
 | 
						|
		temp = eta - temp1;
 | 
						|
	    } else {
 | 
						|
		temp1 = work[ip1] * delta[ip1];
 | 
						|
		temp = eta - temp1;
 | 
						|
	    }
 | 
						|
	    if (temp > sg2ub || temp < sg2lb) {
 | 
						|
		if (w < 0.) {
 | 
						|
		    eta = (sg2ub - tau) / 2.;
 | 
						|
		} else {
 | 
						|
		    eta = (sg2lb - tau) / 2.;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	    tau += eta;
 | 
						|
	    eta /= *sigma + sqrt(*sigma * *sigma + eta);
 | 
						|
 | 
						|
	    *sigma += eta;
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		work[j] += eta;
 | 
						|
		delta[j] -= eta;
 | 
						|
/* L200: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    prew = w;
 | 
						|
 | 
						|
/*           Evaluate PSI and the derivative DPSI */
 | 
						|
 | 
						|
	    dpsi = 0.;
 | 
						|
	    psi = 0.;
 | 
						|
	    erretm = 0.;
 | 
						|
	    i__1 = iim1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		temp = z__[j] / (work[j] * delta[j]);
 | 
						|
		psi += z__[j] * temp;
 | 
						|
		dpsi += temp * temp;
 | 
						|
		erretm += psi;
 | 
						|
/* L210: */
 | 
						|
	    }
 | 
						|
	    erretm = abs(erretm);
 | 
						|
 | 
						|
/*           Evaluate PHI and the derivative DPHI */
 | 
						|
 | 
						|
	    dphi = 0.;
 | 
						|
	    phi = 0.;
 | 
						|
	    i__1 = iip1;
 | 
						|
	    for (j = *n; j >= i__1; --j) {
 | 
						|
		temp = z__[j] / (work[j] * delta[j]);
 | 
						|
		phi += z__[j] * temp;
 | 
						|
		dphi += temp * temp;
 | 
						|
		erretm += phi;
 | 
						|
/* L220: */
 | 
						|
	    }
 | 
						|
 | 
						|
	    temp = z__[ii] / (work[ii] * delta[ii]);
 | 
						|
	    dw = dpsi + dphi + temp * temp;
 | 
						|
	    temp = z__[ii] * temp;
 | 
						|
	    w = rhoinv + phi + psi + temp;
 | 
						|
	    erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. 
 | 
						|
		    + abs(tau) * dw;
 | 
						|
	    if (w * prew > 0. && abs(w) > abs(prew) / 10.) {
 | 
						|
		swtch = ! swtch;
 | 
						|
	    }
 | 
						|
 | 
						|
	    if (w <= 0.) {
 | 
						|
		sg2lb = max(sg2lb,tau);
 | 
						|
	    } else {
 | 
						|
		sg2ub = min(sg2ub,tau);
 | 
						|
	    }
 | 
						|
 | 
						|
/* L230: */
 | 
						|
	}
 | 
						|
 | 
						|
/*        Return with INFO = 1, NITER = MAXIT and not converged */
 | 
						|
 | 
						|
	*info = 1;
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
L240:
 | 
						|
    return 0;
 | 
						|
 | 
						|
/*     End of DLASD4 */
 | 
						|
 | 
						|
} /* dlasd4_ */
 |