162 lines
5.5 KiB
C++
162 lines
5.5 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
/*
|
|
* FeatureDetector
|
|
*/
|
|
|
|
FeatureDetector::~FeatureDetector()
|
|
{}
|
|
|
|
void FeatureDetector::detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask ) const
|
|
{
|
|
keypoints.clear();
|
|
|
|
if( image.empty() )
|
|
return;
|
|
|
|
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
|
|
|
|
detectImpl( image, keypoints, mask );
|
|
}
|
|
|
|
void FeatureDetector::detect(InputArrayOfArrays _imageCollection, std::vector<std::vector<KeyPoint> >& pointCollection,
|
|
InputArrayOfArrays _masks ) const
|
|
{
|
|
if (_imageCollection.isUMatVector())
|
|
{
|
|
std::vector<UMat> uimageCollection, umasks;
|
|
_imageCollection.getUMatVector(uimageCollection);
|
|
_masks.getUMatVector(umasks);
|
|
|
|
pointCollection.resize( uimageCollection.size() );
|
|
for( size_t i = 0; i < uimageCollection.size(); i++ )
|
|
detect( uimageCollection[i], pointCollection[i], umasks.empty() ? noArray() : umasks[i] );
|
|
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> imageCollection, masks;
|
|
_imageCollection.getMatVector(imageCollection);
|
|
_masks.getMatVector(masks);
|
|
|
|
pointCollection.resize( imageCollection.size() );
|
|
for( size_t i = 0; i < imageCollection.size(); i++ )
|
|
detect( imageCollection[i], pointCollection[i], masks.empty() ? noArray() : masks[i] );
|
|
}
|
|
|
|
/*void FeatureDetector::read( const FileNode& )
|
|
{}
|
|
|
|
void FeatureDetector::write( FileStorage& ) const
|
|
{}*/
|
|
|
|
bool FeatureDetector::empty() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void FeatureDetector::removeInvalidPoints( const Mat& mask, std::vector<KeyPoint>& keypoints )
|
|
{
|
|
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
|
}
|
|
|
|
Ptr<FeatureDetector> FeatureDetector::create( const String& detectorType )
|
|
{
|
|
if( detectorType.compare( "HARRIS" ) == 0 )
|
|
{
|
|
Ptr<FeatureDetector> fd = FeatureDetector::create("GFTT");
|
|
fd->set("useHarrisDetector", true);
|
|
return fd;
|
|
}
|
|
|
|
return Algorithm::create<FeatureDetector>("Feature2D." + detectorType);
|
|
}
|
|
|
|
|
|
GFTTDetector::GFTTDetector( int _nfeatures, double _qualityLevel,
|
|
double _minDistance, int _blockSize,
|
|
bool _useHarrisDetector, double _k )
|
|
: nfeatures(_nfeatures), qualityLevel(_qualityLevel), minDistance(_minDistance),
|
|
blockSize(_blockSize), useHarrisDetector(_useHarrisDetector), k(_k)
|
|
{
|
|
}
|
|
|
|
void GFTTDetector::detectImpl( InputArray _image, std::vector<KeyPoint>& keypoints, InputArray _mask) const
|
|
{
|
|
std::vector<Point2f> corners;
|
|
|
|
if (_image.isUMat())
|
|
{
|
|
UMat ugrayImage;
|
|
if( _image.type() != CV_8U )
|
|
cvtColor( _image, ugrayImage, COLOR_BGR2GRAY );
|
|
else
|
|
ugrayImage = _image.getUMat();
|
|
|
|
goodFeaturesToTrack( ugrayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
|
blockSize, useHarrisDetector, k );
|
|
}
|
|
else
|
|
{
|
|
Mat image = _image.getMat(), grayImage = image;
|
|
if( image.type() != CV_8U )
|
|
cvtColor( image, grayImage, COLOR_BGR2GRAY );
|
|
|
|
goodFeaturesToTrack( grayImage, corners, nfeatures, qualityLevel, minDistance, _mask,
|
|
blockSize, useHarrisDetector, k );
|
|
}
|
|
|
|
keypoints.resize(corners.size());
|
|
std::vector<Point2f>::const_iterator corner_it = corners.begin();
|
|
std::vector<KeyPoint>::iterator keypoint_it = keypoints.begin();
|
|
for( ; corner_it != corners.end(); ++corner_it, ++keypoint_it )
|
|
*keypoint_it = KeyPoint( *corner_it, (float)blockSize );
|
|
|
|
}
|
|
|
|
}
|