/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2013, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and / or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" cv::softcascade::Detection::Detection(const cv::Rect& b, const float c, int k) : x(static_cast(b.x)), y(static_cast(b.y)), w(static_cast(b.width)), h(static_cast(b.height)), confidence(c), kind(k) {} cv::Rect cv::softcascade::Detection::bb() const { return cv::Rect(x, y, w, h); } namespace { struct SOctave { SOctave(const int i, const cv::Size& origObjSize, const cv::FileNode& fn) : index(i), weaks((int)fn[SC_OCT_WEAKS]), scale((float)std::pow(2,(float)fn[SC_OCT_SCALE])), size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)) {} int index; int weaks; float scale; cv::Size size; static const char *const SC_OCT_SCALE; static const char *const SC_OCT_WEAKS; static const char *const SC_OCT_SHRINKAGE; }; struct Weak { Weak(){} Weak(const cv::FileNode& fn) : threshold((float)fn[SC_WEAK_THRESHOLD]) {} float threshold; static const char *const SC_WEAK_THRESHOLD; }; struct Node { Node(){} Node(const int offset, cv::FileNodeIterator& fIt) : feature((int)(*(fIt +=2)++) + offset), threshold((float)(*(fIt++))) {} int feature; float threshold; }; struct Feature { Feature() {} Feature(const cv::FileNode& fn, bool useBoxes = false) : channel((int)fn[SC_F_CHANNEL]) { cv::FileNode rn = fn[SC_F_RECT]; cv::FileNodeIterator r_it = rn.begin(); int x = *r_it++; int y = *r_it++; int w = *r_it++; int h = *r_it++; // ToDo: fix me if (useBoxes) rect = cv::Rect(x, y, w, h); else rect = cv::Rect(x, y, w + x, h + y); // 1 / area rarea = 1.f / ((rect.width - rect.x) * (rect.height - rect.y)); } int channel; cv::Rect rect; float rarea; static const char *const SC_F_CHANNEL; static const char *const SC_F_RECT; }; const char *const SOctave::SC_OCT_SCALE = "scale"; const char *const SOctave::SC_OCT_WEAKS = "weaks"; const char *const SOctave::SC_OCT_SHRINKAGE = "shrinkingFactor"; const char *const Weak::SC_WEAK_THRESHOLD = "treeThreshold"; const char *const Feature::SC_F_CHANNEL = "channel"; const char *const Feature::SC_F_RECT = "rect"; struct Level { const SOctave* octave; float origScale; float relScale; int scaleshift; cv::Size workRect; cv::Size objSize; float scaling[2]; // 0-th for channels <= 6, 1-st otherwise Level(const SOctave& oct, const float scale, const int shrinkage, const int w, const int h) : octave(&oct), origScale(scale), relScale(scale / oct.scale), workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))), objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale))) { scaling[0] = ((relScale >= 1.f)? 1.f : (0.89f * std::pow(relScale, 1.099f / std::log(2.f)))) / (relScale * relScale); scaling[1] = 1.f; scaleshift = static_cast(relScale * (1 << 16)); } void addDetection(const int x, const int y, float confidence, std::vector& detections) const { // fix me int shrinkage = 4;//(*octave).shrinkage; cv::Rect rect(cvRound(x * shrinkage), cvRound(y * shrinkage), objSize.width, objSize.height); detections.push_back(cv::softcascade::Detection(rect, confidence)); } float rescale(cv::Rect& scaledRect, const float threshold, int idx) const { #define SSHIFT(a) ((a) + (1 << 15)) >> 16 // rescale scaledRect.x = SSHIFT(scaleshift * scaledRect.x); scaledRect.y = SSHIFT(scaleshift * scaledRect.y); scaledRect.width = SSHIFT(scaleshift * scaledRect.width); scaledRect.height = SSHIFT(scaleshift * scaledRect.height); #undef SSHIFT float sarea = static_cast((scaledRect.width - scaledRect.x) * (scaledRect.height - scaledRect.y)); // compensation areas rounding return (sarea == 0.0f)? threshold : (threshold * scaling[idx] * sarea); } }; struct ChannelStorage { cv::Mat hog; int shrinkage; int offset; size_t step; int model_height; cv::Ptr builder; enum {HOG_BINS = 6, HOG_LUV_BINS = 10}; ChannelStorage(const cv::Mat& colored, int shr, cv::String featureTypeStr) : shrinkage(shr) { model_height = cvRound(colored.rows / (float)shrinkage); if (featureTypeStr == "ICF") featureTypeStr = "HOG6MagLuv"; builder = cv::softcascade::ChannelFeatureBuilder::create(featureTypeStr); (*builder)(colored, hog, cv::Size(cvRound(colored.cols / (float)shrinkage), model_height)); step = hog.step1(); } float get(const int channel, const cv::Rect& area) const { const int *ptr = hog.ptr(0) + model_height * channel * step + offset; int a = ptr[area.y * step + area.x]; int b = ptr[area.y * step + area.width]; int c = ptr[area.height * step + area.width]; int d = ptr[area.height * step + area.x]; return static_cast(a - b + c - d); } }; } struct cv::softcascade::Detector::Fields { float minScale; float maxScale; int scales; int origObjWidth; int origObjHeight; int shrinkage; std::vector octaves; std::vector weaks; std::vector nodes; std::vector leaves; std::vector features; std::vector levels; cv::Size frameSize; typedef std::vector::iterator octIt_t; typedef std::vector dvector; String featureTypeStr; void detectAt(const int dx, const int dy, const Level& level, const ChannelStorage& storage, dvector& detections) const { float detectionScore = 0.f; const SOctave& octave = *(level.octave); int stBegin = octave.index * octave.weaks, stEnd = stBegin + octave.weaks; for(int st = stBegin; st < stEnd; ++st) { const Weak& weak = weaks[st]; int nId = st * 3; // work with root node const Node& node = nodes[nId]; const Feature& feature = features[node.feature]; cv::Rect scaledRect(feature.rect); float threshold = level.rescale(scaledRect, node.threshold, (int)(feature.channel > 6)) * feature.rarea; float sum = storage.get(feature.channel, scaledRect); int next = (sum >= threshold)? 2 : 1; // leaves const Node& leaf = nodes[nId + next]; const Feature& fLeaf = features[leaf.feature]; scaledRect = fLeaf.rect; threshold = level.rescale(scaledRect, leaf.threshold, (int)(fLeaf.channel > 6)) * fLeaf.rarea; sum = storage.get(fLeaf.channel, scaledRect); int lShift = (next - 1) * 2 + ((sum >= threshold) ? 1 : 0); float impact = leaves[(st * 4) + lShift]; detectionScore += impact; if (detectionScore <= weak.threshold) return; } if (detectionScore > 0) level.addDetection(dx, dy, detectionScore, detections); } octIt_t fitOctave(const float& logFactor) { float minAbsLog = FLT_MAX; octIt_t res = octaves.begin(); for (octIt_t oct = octaves.begin(); oct < octaves.end(); ++oct) { const SOctave& octave =*oct; float logOctave = std::log(octave.scale); float logAbsScale = fabs(logFactor - logOctave); if(logAbsScale < minAbsLog) { res = oct; minAbsLog = logAbsScale; } } return res; } // compute levels of full pyramid void calcLevels(const cv::Size& curr, float mins, float maxs, int total) { if (frameSize == curr && maxs == maxScale && mins == minScale && total == scales) return; frameSize = curr; maxScale = maxs; minScale = mins; scales = total; CV_Assert(scales > 1); levels.clear(); float logFactor = (std::log(maxScale) - std::log(minScale)) / (scales -1); float scale = minScale; for (int sc = 0; sc < scales; ++sc) { int width = static_cast(std::max(0.0f, frameSize.width - (origObjWidth * scale))); int height = static_cast(std::max(0.0f, frameSize.height - (origObjHeight * scale))); float logScale = std::log(scale); octIt_t fit = fitOctave(logScale); Level level(*fit, scale, shrinkage, width, height); if (!width || !height) break; else levels.push_back(level); if (fabs(scale - maxScale) < FLT_EPSILON) break; scale = std::min(maxScale, expf(std::log(scale) + logFactor)); } } bool fill(const FileNode &root) { // cascade properties static const char *const SC_STAGE_TYPE = "stageType"; static const char *const SC_BOOST = "BOOST"; static const char *const SC_FEATURE_TYPE = "featureType"; static const char *const SC_HOG6_MAG_LUV = "HOG6MagLuv"; static const char *const SC_ICF = "ICF"; static const char *const SC_ORIG_W = "width"; static const char *const SC_ORIG_H = "height"; static const char *const SC_OCTAVES = "octaves"; static const char *const SC_TREES = "trees"; static const char *const SC_FEATURES = "features"; static const char *const SC_INTERNAL = "internalNodes"; static const char *const SC_LEAF = "leafValues"; static const char *const SC_SHRINKAGE = "shrinkage"; static const char *const FEATURE_FORMAT = "featureFormat"; // only Ada Boost supported String stageTypeStr = (String)root[SC_STAGE_TYPE]; CV_Assert(stageTypeStr == SC_BOOST); String fformat = (String)root[FEATURE_FORMAT]; bool useBoxes = (fformat == "BOX"); // only HOG-like integral channel features supported featureTypeStr = (String)root[SC_FEATURE_TYPE]; CV_Assert(featureTypeStr == SC_ICF || featureTypeStr == SC_HOG6_MAG_LUV); origObjWidth = (int)root[SC_ORIG_W]; origObjHeight = (int)root[SC_ORIG_H]; shrinkage = (int)root[SC_SHRINKAGE]; FileNode fn = root[SC_OCTAVES]; if (fn.empty()) return false; // for each octave FileNodeIterator it = fn.begin(), it_end = fn.end(); for (int octIndex = 0; it != it_end; ++it, ++octIndex) { FileNode fns = *it; SOctave octave(octIndex, cv::Size(origObjWidth, origObjHeight), fns); CV_Assert(octave.weaks > 0); octaves.push_back(octave); FileNode ffs = fns[SC_FEATURES]; if (ffs.empty()) return false; fns = fns[SC_TREES]; if (fn.empty()) return false; FileNodeIterator st = fns.begin(), st_end = fns.end(); for (; st != st_end; ++st ) { weaks.push_back(Weak(*st)); fns = (*st)[SC_INTERNAL]; FileNodeIterator inIt = fns.begin(), inIt_end = fns.end(); for (; inIt != inIt_end;) nodes.push_back(Node((int)features.size(), inIt)); fns = (*st)[SC_LEAF]; inIt = fns.begin(), inIt_end = fns.end(); for (; inIt != inIt_end; ++inIt) leaves.push_back((float)(*inIt)); } st = ffs.begin(), st_end = ffs.end(); for (; st != st_end; ++st ) features.push_back(Feature(*st, useBoxes)); } return true; } }; cv::softcascade::Detector::Detector(const double mins, const double maxs, const int nsc, const int rej) : fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejCriteria(rej) {} cv::softcascade::Detector::~Detector() { delete fields;} void cv::softcascade::Detector::read(const cv::FileNode& fn) { Algorithm::read(fn); } bool cv::softcascade::Detector::load(const cv::FileNode& fn) { if (fields) delete fields; fields = new Fields; return fields->fill(fn); } namespace { using cv::softcascade::Detection; typedef std::vector dvector; struct ConfidenceGt { bool operator()(const Detection& a, const Detection& b) const { return a.confidence > b.confidence; } }; static float overlap(const cv::Rect &a, const cv::Rect &b) { int w = std::min(a.x + a.width, b.x + b.width) - std::max(a.x, b.x); int h = std::min(a.y + a.height, b.y + b.height) - std::max(a.y, b.y); return (w < 0 || h < 0)? 0.f : (float)(w * h); } void DollarNMS(dvector& objects) { static const float DollarThreshold = 0.65f; std::sort(objects.begin(), objects.end(), ConfidenceGt()); for (dvector::iterator dIt = objects.begin(); dIt != objects.end(); ++dIt) { const Detection &a = *dIt; for (dvector::iterator next = dIt + 1; next != objects.end(); ) { const Detection &b = *next; const float ovl = overlap(a.bb(), b.bb()) / std::min(a.bb().area(), b.bb().area()); if (ovl > DollarThreshold) next = objects.erase(next); else ++next; } } } static void suppress(int type, std::vector& objects) { CV_Assert(type == cv::softcascade::Detector::DOLLAR); DollarNMS(objects); } } void cv::softcascade::Detector::detectNoRoi(const cv::Mat& image, std::vector& objects) const { Fields& fld = *fields; // create integrals ChannelStorage storage(image, fld.shrinkage, fld.featureTypeStr); typedef std::vector::const_iterator lIt; for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it) { const Level& level = *it; // we train only 3 scales. if (level.origScale > 2.5) break; for (int dy = 0; dy < level.workRect.height; ++dy) { for (int dx = 0; dx < level.workRect.width; ++dx) { storage.offset = (int)(dy * storage.step + dx); fld.detectAt(dx, dy, level, storage, objects); } } } if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects); } void cv::softcascade::Detector::detect(cv::InputArray _image, cv::InputArray _rois, std::vector& objects) const { // only color images are suppered cv::Mat image = _image.getMat(); CV_Assert(image.type() == CV_8UC3); Fields& fld = *fields; fld.calcLevels(image.size(),(float) minScale, (float)maxScale, scales); objects.clear(); if (_rois.empty()) return detectNoRoi(image, objects); int shr = fld.shrinkage; cv::Mat roi = _rois.getMat(); cv::Mat mask(image.rows / shr, image.cols / shr, CV_8UC1); mask.setTo(cv::Scalar::all(0)); cv::Rect* r = roi.ptr(0); for (int i = 0; i < (int)roi.cols; ++i) cv::Mat(mask, cv::Rect(r[i].x / shr, r[i].y / shr, r[i].width / shr , r[i].height / shr)).setTo(cv::Scalar::all(1)); // create integrals ChannelStorage storage(image, shr, fld.featureTypeStr); typedef std::vector::const_iterator lIt; for (lIt it = fld.levels.begin(); it != fld.levels.end(); ++it) { const Level& level = *it; // we train only 3 scales. if (level.origScale > 2.5) break; for (int dy = 0; dy < level.workRect.height; ++dy) { uchar* m = mask.ptr(dy); for (int dx = 0; dx < level.workRect.width; ++dx) { if (m[dx]) { storage.offset = (int)(dy * storage.step + dx); fld.detectAt(dx, dy, level, storage, objects); } } } } if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects); } void cv::softcascade::Detector::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const { std::vector objects; detect( _image, _rois, objects); _rects.create(1, (int)objects.size(), CV_32SC4); cv::Mat_ rects = (cv::Mat_)_rects.getMat(); cv::Rect* rectPtr = rects.ptr(0); _confs.create(1, (int)objects.size(), CV_32F); cv::Mat confs = _confs.getMat(); float* confPtr = confs.ptr(0); typedef std::vector::const_iterator IDet; int i = 0; for (IDet it = objects.begin(); it != objects.end(); ++it, ++i) { rectPtr[i] = (*it).bb(); confPtr[i] = (*it).confidence; } }