// freak.cpp // // Copyright (C) 2011-2012 Signal processing laboratory 2, EPFL, // Kirell Benzi (kirell.benzi@epfl.ch), // Raphael Ortiz (raphael.ortiz@a3.epfl.ch) // Alexandre Alahi (alexandre.alahi@epfl.ch) // and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch) // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. #include "precomp.hpp" #include #include #include #include #include #include #include #include #include namespace cv { static const double FREAK_SQRT2 = 1.4142135623731; static const double FREAK_INV_SQRT2 = 1.0 / FREAK_SQRT2; static const double FREAK_LOG2 = 0.693147180559945; static const int FREAK_NB_ORIENTATION = 256; static const int FREAK_NB_POINTS = 43; static const int FREAK_SMALLEST_KP_SIZE = 7; // smallest size of keypoints static const int FREAK_NB_SCALES = FREAK::NB_SCALES; static const int FREAK_NB_PAIRS = FREAK::NB_PAIRS; static const int FREAK_NB_ORIENPAIRS = FREAK::NB_ORIENPAIRS; static const int FREAK_DEF_PAIRS[FREAK::NB_PAIRS] = { // default pairs 404,431,818,511,181,52,311,874,774,543,719,230,417,205,11, 560,149,265,39,306,165,857,250,8,61,15,55,717,44,412, 592,134,761,695,660,782,625,487,549,516,271,665,762,392,178, 796,773,31,672,845,548,794,677,654,241,831,225,238,849,83, 691,484,826,707,122,517,583,731,328,339,571,475,394,472,580, 381,137,93,380,327,619,729,808,218,213,459,141,806,341,95, 382,568,124,750,193,749,706,843,79,199,317,329,768,198,100, 466,613,78,562,783,689,136,838,94,142,164,679,219,419,366, 418,423,77,89,523,259,683,312,555,20,470,684,123,458,453,833, 72,113,253,108,313,25,153,648,411,607,618,128,305,232,301,84, 56,264,371,46,407,360,38,99,176,710,114,578,66,372,653, 129,359,424,159,821,10,323,393,5,340,891,9,790,47,0,175,346, 236,26,172,147,574,561,32,294,429,724,755,398,787,288,299, 769,565,767,722,757,224,465,723,498,467,235,127,802,446,233, 544,482,800,318,16,532,801,441,554,173,60,530,713,469,30, 212,630,899,170,266,799,88,49,512,399,23,500,107,524,90, 194,143,135,192,206,345,148,71,119,101,563,870,158,254,214, 276,464,332,725,188,385,24,476,40,231,620,171,258,67,109, 844,244,187,388,701,690,50,7,850,479,48,522,22,154,12,659, 736,655,577,737,830,811,174,21,237,335,353,234,53,270,62, 182,45,177,245,812,673,355,556,612,166,204,54,248,365,226, 242,452,700,685,573,14,842,481,468,781,564,416,179,405,35, 819,608,624,367,98,643,448,2,460,676,440,240,130,146,184, 185,430,65,807,377,82,121,708,239,310,138,596,730,575,477, 851,797,247,27,85,586,307,779,326,494,856,324,827,96,748, 13,397,125,688,702,92,293,716,277,140,112,4,80,855,839,1, 413,347,584,493,289,696,19,751,379,76,73,115,6,590,183,734, 197,483,217,344,330,400,186,243,587,220,780,200,793,246,824, 41,735,579,81,703,322,760,720,139,480,490,91,814,813,163, 152,488,763,263,425,410,576,120,319,668,150,160,302,491,515, 260,145,428,97,251,395,272,252,18,106,358,854,485,144,550, 131,133,378,68,102,104,58,361,275,209,697,582,338,742,589, 325,408,229,28,304,191,189,110,126,486,211,547,533,70,215, 670,249,36,581,389,605,331,518,442,822 }; struct PairStat { // used to sort pairs during pairs selection double mean; int idx; }; struct sortMean { bool operator()( const PairStat& a, const PairStat& b ) const { return a.mean < b.mean; } }; void FREAK::buildPattern() { if( patternScale == patternScale0 && nOctaves == nOctaves0 && !patternLookup.empty() ) return; nOctaves0 = nOctaves; patternScale0 = patternScale; patternLookup.resize(FREAK_NB_SCALES*FREAK_NB_ORIENTATION*FREAK_NB_POINTS); double scaleStep = std::pow(2.0, (double)(nOctaves)/FREAK_NB_SCALES ); // 2 ^ ( (nOctaves-1) /nbScales) double scalingFactor, alpha, beta, theta = 0; // pattern definition, radius normalized to 1.0 (outer point position+sigma=1.0) const int n[8] = {6,6,6,6,6,6,6,1}; // number of points on each concentric circle (from outer to inner) const double bigR(2.0/3.0); // bigger radius const double smallR(2.0/24.0); // smaller radius const double unitSpace( (bigR-smallR)/21.0 ); // define spaces between concentric circles (from center to outer: 1,2,3,4,5,6) // radii of the concentric cirles (from outer to inner) const double radius[8] = {bigR, bigR-6*unitSpace, bigR-11*unitSpace, bigR-15*unitSpace, bigR-18*unitSpace, bigR-20*unitSpace, smallR, 0.0}; // sigma of pattern points (each group of 6 points on a concentric cirle has the same sigma) const double sigma[8] = {radius[0]/2.0, radius[1]/2.0, radius[2]/2.0, radius[3]/2.0, radius[4]/2.0, radius[5]/2.0, radius[6]/2.0, radius[6]/2.0 }; // fill the lookup table for( int scaleIdx=0; scaleIdx < FREAK_NB_SCALES; ++scaleIdx ) { patternSizes[scaleIdx] = 0; // proper initialization scalingFactor = std::pow(scaleStep,scaleIdx); //scale of the pattern, scaleStep ^ scaleIdx for( int orientationIdx = 0; orientationIdx < FREAK_NB_ORIENTATION; ++orientationIdx ) { theta = double(orientationIdx)* 2*CV_PI/double(FREAK_NB_ORIENTATION); // orientation of the pattern int pointIdx = 0; PatternPoint* patternLookupPtr = &patternLookup[0]; for( size_t i = 0; i < 8; ++i ) { for( int k = 0 ; k < n[i]; ++k ) { beta = CV_PI/n[i] * (i%2); // orientation offset so that groups of points on each circles are staggered alpha = double(k)* 2*CV_PI/double(n[i])+beta+theta; // add the point to the look-up table PatternPoint& point = patternLookupPtr[ scaleIdx*FREAK_NB_ORIENTATION*FREAK_NB_POINTS+orientationIdx*FREAK_NB_POINTS+pointIdx ]; point.x = static_cast(radius[i] * cos(alpha) * scalingFactor * patternScale); point.y = static_cast(radius[i] * sin(alpha) * scalingFactor * patternScale); point.sigma = static_cast(sigma[i] * scalingFactor * patternScale); // adapt the sizeList if necessary const int sizeMax = static_cast(ceil((radius[i]+sigma[i])*scalingFactor*patternScale)) + 1; if( patternSizes[scaleIdx] < sizeMax ) patternSizes[scaleIdx] = sizeMax; ++pointIdx; } } } } // build the list of orientation pairs orientationPairs[0].i=0; orientationPairs[0].j=3; orientationPairs[1].i=1; orientationPairs[1].j=4; orientationPairs[2].i=2; orientationPairs[2].j=5; orientationPairs[3].i=0; orientationPairs[3].j=2; orientationPairs[4].i=1; orientationPairs[4].j=3; orientationPairs[5].i=2; orientationPairs[5].j=4; orientationPairs[6].i=3; orientationPairs[6].j=5; orientationPairs[7].i=4; orientationPairs[7].j=0; orientationPairs[8].i=5; orientationPairs[8].j=1; orientationPairs[9].i=6; orientationPairs[9].j=9; orientationPairs[10].i=7; orientationPairs[10].j=10; orientationPairs[11].i=8; orientationPairs[11].j=11; orientationPairs[12].i=6; orientationPairs[12].j=8; orientationPairs[13].i=7; orientationPairs[13].j=9; orientationPairs[14].i=8; orientationPairs[14].j=10; orientationPairs[15].i=9; orientationPairs[15].j=11; orientationPairs[16].i=10; orientationPairs[16].j=6; orientationPairs[17].i=11; orientationPairs[17].j=7; orientationPairs[18].i=12; orientationPairs[18].j=15; orientationPairs[19].i=13; orientationPairs[19].j=16; orientationPairs[20].i=14; orientationPairs[20].j=17; orientationPairs[21].i=12; orientationPairs[21].j=14; orientationPairs[22].i=13; orientationPairs[22].j=15; orientationPairs[23].i=14; orientationPairs[23].j=16; orientationPairs[24].i=15; orientationPairs[24].j=17; orientationPairs[25].i=16; orientationPairs[25].j=12; orientationPairs[26].i=17; orientationPairs[26].j=13; orientationPairs[27].i=18; orientationPairs[27].j=21; orientationPairs[28].i=19; orientationPairs[28].j=22; orientationPairs[29].i=20; orientationPairs[29].j=23; orientationPairs[30].i=18; orientationPairs[30].j=20; orientationPairs[31].i=19; orientationPairs[31].j=21; orientationPairs[32].i=20; orientationPairs[32].j=22; orientationPairs[33].i=21; orientationPairs[33].j=23; orientationPairs[34].i=22; orientationPairs[34].j=18; orientationPairs[35].i=23; orientationPairs[35].j=19; orientationPairs[36].i=24; orientationPairs[36].j=27; orientationPairs[37].i=25; orientationPairs[37].j=28; orientationPairs[38].i=26; orientationPairs[38].j=29; orientationPairs[39].i=30; orientationPairs[39].j=33; orientationPairs[40].i=31; orientationPairs[40].j=34; orientationPairs[41].i=32; orientationPairs[41].j=35; orientationPairs[42].i=36; orientationPairs[42].j=39; orientationPairs[43].i=37; orientationPairs[43].j=40; orientationPairs[44].i=38; orientationPairs[44].j=41; for( unsigned m = FREAK_NB_ORIENPAIRS; m--; ) { const float dx = patternLookup[orientationPairs[m].i].x-patternLookup[orientationPairs[m].j].x; const float dy = patternLookup[orientationPairs[m].i].y-patternLookup[orientationPairs[m].j].y; const float norm_sq = (dx*dx+dy*dy); orientationPairs[m].weight_dx = int((dx/(norm_sq))*4096.0+0.5); orientationPairs[m].weight_dy = int((dy/(norm_sq))*4096.0+0.5); } // build the list of description pairs std::vector allPairs; for( unsigned int i = 1; i < (unsigned int)FREAK_NB_POINTS; ++i ) { // (generate all the pairs) for( unsigned int j = 0; (unsigned int)j < i; ++j ) { DescriptionPair pair = {(uchar)i,(uchar)j}; allPairs.push_back(pair); } } // Input vector provided if( !selectedPairs0.empty() ) { if( (int)selectedPairs0.size() == FREAK_NB_PAIRS ) { for( int i = 0; i < FREAK_NB_PAIRS; ++i ) descriptionPairs[i] = allPairs[selectedPairs0.at(i)]; } else { CV_Error(CV_StsVecLengthErr, "Input vector does not match the required size"); } } else { // default selected pairs for( int i = 0; i < FREAK_NB_PAIRS; ++i ) descriptionPairs[i] = allPairs[FREAK_DEF_PAIRS[i]]; } } void FREAK::computeImpl( const Mat& image, std::vector& keypoints, Mat& descriptors ) const { if( image.empty() ) return; if( keypoints.empty() ) return; ((FREAK*)this)->buildPattern(); Mat imgIntegral; integral(image, imgIntegral); std::vector kpScaleIdx(keypoints.size()); // used to save pattern scale index corresponding to each keypoints const std::vector::iterator ScaleIdxBegin = kpScaleIdx.begin(); // used in std::vector erase function const std::vector::iterator kpBegin = keypoints.begin(); // used in std::vector erase function const float sizeCst = static_cast(FREAK_NB_SCALES/(FREAK_LOG2* nOctaves)); uchar pointsValue[FREAK_NB_POINTS]; int thetaIdx = 0; int direction0; int direction1; // compute the scale index corresponding to the keypoint size and remove keypoints close to the border if( scaleNormalized ) { for( size_t k = keypoints.size(); k--; ) { //Is k non-zero? If so, decrement it and continue" kpScaleIdx[k] = std::max( (int)(std::log(keypoints[k].size/FREAK_SMALLEST_KP_SIZE)*sizeCst+0.5) ,0); if( kpScaleIdx[k] >= FREAK_NB_SCALES ) kpScaleIdx[k] = FREAK_NB_SCALES-1; if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] || //check if the description at this specific position and scale fits inside the image keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] || keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] || keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]] ) { keypoints.erase(kpBegin+k); kpScaleIdx.erase(ScaleIdxBegin+k); } } } else { const int scIdx = std::max( (int)(1.0986122886681*sizeCst+0.5) ,0); for( size_t k = keypoints.size(); k--; ) { kpScaleIdx[k] = scIdx; // equivalent to the formule when the scale is normalized with a constant size of keypoints[k].size=3*SMALLEST_KP_SIZE if( kpScaleIdx[k] >= FREAK_NB_SCALES ) { kpScaleIdx[k] = FREAK_NB_SCALES-1; } if( keypoints[k].pt.x <= patternSizes[kpScaleIdx[k]] || keypoints[k].pt.y <= patternSizes[kpScaleIdx[k]] || keypoints[k].pt.x >= image.cols-patternSizes[kpScaleIdx[k]] || keypoints[k].pt.y >= image.rows-patternSizes[kpScaleIdx[k]] ) { keypoints.erase(kpBegin+k); kpScaleIdx.erase(ScaleIdxBegin+k); } } } // allocate descriptor memory, estimate orientations, extract descriptors if( !extAll ) { // extract the best comparisons only descriptors = cv::Mat::zeros((int)keypoints.size(), FREAK_NB_PAIRS/8, CV_8U); #if CV_SSE2 __m128i* ptr= (__m128i*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]); #else std::bitset* ptr = (std::bitset*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]); #endif for( size_t k = keypoints.size(); k--; ) { // estimate orientation (gradient) if( !orientationNormalized ) { thetaIdx = 0; // assign 0° to all keypoints keypoints[k].angle = 0.0; } else { // get the points intensity value in the un-rotated pattern for( int i = FREAK_NB_POINTS; i--; ) { pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i); } direction0 = 0; direction1 = 0; for( int m = 45; m--; ) { //iterate through the orientation pairs const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]); direction0 += delta*(orientationPairs[m].weight_dx)/2048; direction1 += delta*(orientationPairs[m].weight_dy)/2048; } keypoints[k].angle = static_cast(atan2((float)direction1,(float)direction0)*(180.0/CV_PI));//estimate orientation thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5); if( thetaIdx < 0 ) thetaIdx += FREAK_NB_ORIENTATION; if( thetaIdx >= FREAK_NB_ORIENTATION ) thetaIdx -= FREAK_NB_ORIENTATION; } // extract descriptor at the computed orientation for( int i = FREAK_NB_POINTS; i--; ) { pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i); } #if CV_SSE2 // note that comparisons order is modified in each block (but first 128 comparisons remain globally the same-->does not affect the 128,384 bits segmanted matching strategy) int cnt = 0; for( int n = FREAK_NB_PAIRS/128; n-- ; ) { __m128i result128 = _mm_setzero_si128(); for( int m = 128/16; m--; cnt += 16 ) { __m128i operand1 = _mm_set_epi8( pointsValue[descriptionPairs[cnt+0].i], pointsValue[descriptionPairs[cnt+1].i], pointsValue[descriptionPairs[cnt+2].i], pointsValue[descriptionPairs[cnt+3].i], pointsValue[descriptionPairs[cnt+4].i], pointsValue[descriptionPairs[cnt+5].i], pointsValue[descriptionPairs[cnt+6].i], pointsValue[descriptionPairs[cnt+7].i], pointsValue[descriptionPairs[cnt+8].i], pointsValue[descriptionPairs[cnt+9].i], pointsValue[descriptionPairs[cnt+10].i], pointsValue[descriptionPairs[cnt+11].i], pointsValue[descriptionPairs[cnt+12].i], pointsValue[descriptionPairs[cnt+13].i], pointsValue[descriptionPairs[cnt+14].i], pointsValue[descriptionPairs[cnt+15].i]); __m128i operand2 = _mm_set_epi8( pointsValue[descriptionPairs[cnt+0].j], pointsValue[descriptionPairs[cnt+1].j], pointsValue[descriptionPairs[cnt+2].j], pointsValue[descriptionPairs[cnt+3].j], pointsValue[descriptionPairs[cnt+4].j], pointsValue[descriptionPairs[cnt+5].j], pointsValue[descriptionPairs[cnt+6].j], pointsValue[descriptionPairs[cnt+7].j], pointsValue[descriptionPairs[cnt+8].j], pointsValue[descriptionPairs[cnt+9].j], pointsValue[descriptionPairs[cnt+10].j], pointsValue[descriptionPairs[cnt+11].j], pointsValue[descriptionPairs[cnt+12].j], pointsValue[descriptionPairs[cnt+13].j], pointsValue[descriptionPairs[cnt+14].j], pointsValue[descriptionPairs[cnt+15].j]); __m128i workReg = _mm_min_epu8(operand1, operand2); // emulated "not less than" for 8-bit UNSIGNED integers workReg = _mm_cmpeq_epi8(workReg, operand2); // emulated "not less than" for 8-bit UNSIGNED integers workReg = _mm_and_si128(_mm_set1_epi16(short(0x8080 >> m)), workReg); // merge the last 16 bits with the 128bits std::vector until full result128 = _mm_or_si128(result128, workReg); } (*ptr) = result128; ++ptr; } ptr -= 8; #else // extracting descriptor preserving the order of SSE version int cnt = 0; for( int n = 7; n < FREAK_NB_PAIRS; n += 128) { for( int m = 8; m--; ) { int nm = n-m; for(int kk = nm+15*8; kk >= nm; kk-=8, ++cnt) { ptr->set(kk, pointsValue[descriptionPairs[cnt].i] >= pointsValue[descriptionPairs[cnt].j]); } } } --ptr; #endif } } else { // extract all possible comparisons for selection descriptors = cv::Mat::zeros((int)keypoints.size(), 128, CV_8U); std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(keypoints.size()-1)*descriptors.step[0]); for( size_t k = keypoints.size(); k--; ) { //estimate orientation (gradient) if( !orientationNormalized ) { thetaIdx = 0;//assign 0° to all keypoints keypoints[k].angle = 0.0; } else { //get the points intensity value in the un-rotated pattern for( int i = FREAK_NB_POINTS;i--; ) pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x,keypoints[k].pt.y, kpScaleIdx[k], 0, i); direction0 = 0; direction1 = 0; for( int m = 45; m--; ) { //iterate through the orientation pairs const int delta = (pointsValue[ orientationPairs[m].i ]-pointsValue[ orientationPairs[m].j ]); direction0 += delta*(orientationPairs[m].weight_dx)/2048; direction1 += delta*(orientationPairs[m].weight_dy)/2048; } keypoints[k].angle = static_cast(atan2((float)direction1,(float)direction0)*(180.0/CV_PI)); //estimate orientation thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5); if( thetaIdx < 0 ) thetaIdx += FREAK_NB_ORIENTATION; if( thetaIdx >= FREAK_NB_ORIENTATION ) thetaIdx -= FREAK_NB_ORIENTATION; } // get the points intensity value in the rotated pattern for( int i = FREAK_NB_POINTS; i--; ) { pointsValue[i] = meanIntensity(image, imgIntegral, keypoints[k].pt.x, keypoints[k].pt.y, kpScaleIdx[k], thetaIdx, i); } int cnt(0); for( int i = 1; i < FREAK_NB_POINTS; ++i ) { //(generate all the pairs) for( int j = 0; j < i; ++j ) { ptr->set(cnt, pointsValue[i] >= pointsValue[j] ); ++cnt; } } --ptr; } } } // simply take average on a square patch, not even gaussian approx uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral, const float kp_x, const float kp_y, const unsigned int scale, const unsigned int rot, const unsigned int point) const { // get point position in image const PatternPoint& FreakPoint = patternLookup[scale*FREAK_NB_ORIENTATION*FREAK_NB_POINTS + rot*FREAK_NB_POINTS + point]; const float xf = FreakPoint.x+kp_x; const float yf = FreakPoint.y+kp_y; const int x = int(xf); const int y = int(yf); const int& imagecols = image.cols; // get the sigma: const float radius = FreakPoint.sigma; // calculate output: if( radius < 0.5 ) { // interpolation multipliers: const int r_x = static_cast((xf-x)*1024); const int r_y = static_cast((yf-y)*1024); const int r_x_1 = (1024-r_x); const int r_y_1 = (1024-r_y); uchar* ptr = image.data+x+y*imagecols; unsigned int ret_val; // linear interpolation: ret_val = (r_x_1*r_y_1*int(*ptr)); ptr++; ret_val += (r_x*r_y_1*int(*ptr)); ptr += imagecols; ret_val += (r_x*r_y*int(*ptr)); ptr--; ret_val += (r_x_1*r_y*int(*ptr)); //return the rounded mean ret_val += 2 * 1024 * 1024; return static_cast(ret_val / (4 * 1024 * 1024)); } // expected case: // calculate borders const int x_left = int(xf-radius+0.5); const int y_top = int(yf-radius+0.5); const int x_right = int(xf+radius+1.5);//integral image is 1px wider const int y_bottom = int(yf+radius+1.5);//integral image is 1px higher int ret_val; ret_val = integral.at(y_bottom,x_right);//bottom right corner ret_val -= integral.at(y_bottom,x_left); ret_val += integral.at(y_top,x_left); ret_val -= integral.at(y_top,x_right); ret_val = ret_val/( (x_right-x_left)* (y_bottom-y_top) ); //~ std::cout<(ret_val); } // pair selection algorithm from a set of training images and corresponding keypoints std::vector FREAK::selectPairs(const std::vector& images , std::vector >& keypoints , const double corrTresh , bool verbose ) { extAll = true; // compute descriptors with all pairs Mat descriptors; if( verbose ) std::cout << "Number of images: " << images.size() << std::endl; for( size_t i = 0;i < images.size(); ++i ) { Mat descriptorsTmp; computeImpl(images[i],keypoints[i],descriptorsTmp); descriptors.push_back(descriptorsTmp); } if( verbose ) std::cout << "number of keypoints: " << descriptors.rows << std::endl; //descriptor in floating point format (each bit is a float) Mat descriptorsFloat = Mat::zeros(descriptors.rows, 903, CV_32F); std::bitset<1024>* ptr = (std::bitset<1024>*) (descriptors.data+(descriptors.rows-1)*descriptors.step[0]); for( int m = descriptors.rows; m--; ) { for( int n = 903; n--; ) { if( ptr->test(n) == true ) descriptorsFloat.at(m,n)=1.0f; } --ptr; } std::vector pairStat; for( int n = 903; n--; ) { // the higher the variance, the better --> mean = 0.5 PairStat tmp = { fabs( mean(descriptorsFloat.col(n))[0]-0.5 ) ,n}; pairStat.push_back(tmp); } std::sort( pairStat.begin(),pairStat.end(), sortMean() ); std::vector bestPairs; for( int m = 0; m < 903; ++m ) { if( verbose ) std::cout << m << ":" << bestPairs.size() << " " << std::flush; double corrMax(0); for( size_t n = 0; n < bestPairs.size(); ++n ) { int idxA = bestPairs[n].idx; int idxB = pairStat[m].idx; double corr(0); // compute correlation between 2 pairs corr = fabs(compareHist(descriptorsFloat.col(idxA), descriptorsFloat.col(idxB), CV_COMP_CORREL)); if( corr > corrMax ) { corrMax = corr; if( corrMax >= corrTresh ) break; } } if( corrMax < corrTresh/*0.7*/ ) bestPairs.push_back(pairStat[m]); if( bestPairs.size() >= 512 ) { if( verbose ) std::cout << m << std::endl; break; } } std::vector idxBestPairs; if( (int)bestPairs.size() >= FREAK_NB_PAIRS ) { for( int i = 0; i < FREAK_NB_PAIRS; ++i ) idxBestPairs.push_back(bestPairs[i].idx); } else { if( verbose ) std::cout << "correlation threshold too small (restrictive)" << std::endl; CV_Error(CV_StsError, "correlation threshold too small (restrictive)"); } extAll = false; return idxBestPairs; } /* void FREAKImpl::drawPattern() { // create an image showing the brisk pattern Mat pattern = Mat::zeros(1000, 1000, CV_8UC3) + Scalar(255,255,255); int sFac = 500 / patternScale; for( int n = 0; n < kNB_POINTS; ++n ) { PatternPoint& pt = patternLookup[n]; circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), pt.sigma*sFac, Scalar(0,0,255),2); // rectangle(pattern, Point( (pt.x-pt.sigma)*sFac,(pt.y-pt.sigma)*sFac)+Point(500,500), Point( (pt.x+pt.sigma)*sFac,(pt.y+pt.sigma)*sFac)+Point(500,500), Scalar(0,0,255),2); circle(pattern, Point( pt.x*sFac,pt.y*sFac)+Point(500,500), 1, Scalar(0,0,0),3); std::ostringstream oss; oss << n; putText( pattern, oss.str(), Point( pt.x*sFac,pt.y*sFac)+Point(500,500), FONT_HERSHEY_SIMPLEX,0.5, Scalar(0,0,0), 1); } imshow( "FreakDescriptorExtractor pattern", pattern ); waitKey(0); } */ // ------------------------------------------------- /* FREAK interface implementation */ FREAK::FREAK( bool _orientationNormalized, bool _scaleNormalized , float _patternScale, int _nOctaves, const std::vector& _selectedPairs ) : orientationNormalized(_orientationNormalized), scaleNormalized(_scaleNormalized), patternScale(_patternScale), nOctaves(_nOctaves), extAll(false), nOctaves0(0), selectedPairs0(_selectedPairs) { } FREAK::~FREAK() { } int FREAK::descriptorSize() const { return FREAK_NB_PAIRS / 8; // descriptor length in bytes } int FREAK::descriptorType() const { return CV_8U; } } // END NAMESPACE CV