#include "opencv2/videoio/videoio.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include using namespace cv; using namespace std; static void help() { cout << "\nThis program demonstrates usage of depth sensors (Kinect, XtionPRO,...).\n" "The user gets some of the supported output images.\n" "\nAll supported output map types:\n" "1.) Data given from depth generator\n" " CAP_OPENNI_DEPTH_MAP - depth values in mm (CV_16UC1)\n" " CAP_OPENNI_POINT_CLOUD_MAP - XYZ in meters (CV_32FC3)\n" " CAP_OPENNI_DISPARITY_MAP - disparity in pixels (CV_8UC1)\n" " CAP_OPENNI_DISPARITY_MAP_32F - disparity in pixels (CV_32FC1)\n" " CAP_OPENNI_VALID_DEPTH_MASK - mask of valid pixels (not ocluded, not shaded etc.) (CV_8UC1)\n" "2.) Data given from RGB image generator\n" " CAP_OPENNI_BGR_IMAGE - color image (CV_8UC3)\n" " CAP_OPENNI_GRAY_IMAGE - gray image (CV_8UC1)\n" "2.) Data given from IR image generator\n" " CAP_OPENNI_IR_IMAGE - gray image (CV_16UC1)\n" << endl; } static void colorizeDisparity( const Mat& gray, Mat& rgb, double maxDisp=-1.f, float S=1.f, float V=1.f ) { CV_Assert( !gray.empty() ); CV_Assert( gray.type() == CV_8UC1 ); if( maxDisp <= 0 ) { maxDisp = 0; minMaxLoc( gray, 0, &maxDisp ); } rgb.create( gray.size(), CV_8UC3 ); rgb = Scalar::all(0); if( maxDisp < 1 ) return; for( int y = 0; y < gray.rows; y++ ) { for( int x = 0; x < gray.cols; x++ ) { uchar d = gray.at(y,x); unsigned int H = ((uchar)maxDisp - d) * 240 / (uchar)maxDisp; unsigned int hi = (H/60) % 6; float f = H/60.f - H/60; float p = V * (1 - S); float q = V * (1 - f * S); float t = V * (1 - (1 - f) * S); Point3f res; if( hi == 0 ) //R = V, G = t, B = p res = Point3f( p, t, V ); if( hi == 1 ) // R = q, G = V, B = p res = Point3f( p, V, q ); if( hi == 2 ) // R = p, G = V, B = t res = Point3f( t, V, p ); if( hi == 3 ) // R = p, G = q, B = V res = Point3f( V, q, p ); if( hi == 4 ) // R = t, G = p, B = V res = Point3f( V, p, t ); if( hi == 5 ) // R = V, G = p, B = q res = Point3f( q, p, V ); uchar b = (uchar)(std::max(0.f, std::min (res.x, 1.f)) * 255.f); uchar g = (uchar)(std::max(0.f, std::min (res.y, 1.f)) * 255.f); uchar r = (uchar)(std::max(0.f, std::min (res.z, 1.f)) * 255.f); rgb.at >(y,x) = Point3_(b, g, r); } } } static float getMaxDisparity( VideoCapture& capture ) { const int minDistance = 400; // mm float b = (float)capture.get( CAP_OPENNI_DEPTH_GENERATOR_BASELINE ); // mm float F = (float)capture.get( CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH ); // pixels return b * F / minDistance; } static void printCommandLineParams() { cout << "-cd= Colorized disparity? (0 or 1; 1 by default) Ignored if disparity map is not selected to show." << endl; cout << "-fmd= Fixed max disparity? (0 or 1; 0 by default) Ignored if disparity map is not colorized (-cd 0)." << endl; cout << "-mode= image mode: resolution and fps, supported three values: 0 - CAP_OPENNI_VGA_30HZ, 1 - CAP_OPENNI_SXGA_15HZ," << endl; cout << " 2 - CAP_OPENNI_SXGA_30HZ (0 by default). Ignored if rgb image or gray image are not selected to show." << endl; cout << "-m= Mask to set which output images are need. It is a string of size 5. Each element of this is '0' or '1' and" << endl; cout << " determine: is depth map, disparity map, valid pixels mask, rgb image, gray image need or not (correspondently), ir image" << endl ; cout << " By default -m=010100 i.e. disparity map and rgb image will be shown." << endl ; cout << "-r= Filename of .oni video file. The data will grabbed from it." << endl ; } static void parseCommandLine( int argc, char* argv[], bool& isColorizeDisp, bool& isFixedMaxDisp, int& imageMode, bool retrievedImageFlags[], string& filename, bool& isFileReading ) { filename.clear(); cv::CommandLineParser parser(argc, argv, "{h help||}{cd|1|}{fmd|0|}{mode|-1|}{m|010100|}{r||}"); if (parser.has("h")) { help(); printCommandLineParams(); exit(0); } isColorizeDisp = (parser.get("cd") != 0); isFixedMaxDisp = (parser.get("fmd") != 0); imageMode = parser.get("mode"); int flags = parser.get("m"); isFileReading = parser.has("r"); if (isFileReading) filename = parser.get("r"); if (!parser.check()) { parser.printErrors(); help(); exit(-1); } if (flags % 1000000 == 0) { cout << "No one output image is selected." << endl; exit(0); } for (int i = 0; i < 6; i++) { retrievedImageFlags[5 - i] = (flags % 10 != 0); flags /= 10; } } /* * To work with Kinect or XtionPRO the user must install OpenNI library and PrimeSensorModule for OpenNI and * configure OpenCV with WITH_OPENNI flag is ON (using CMake). */ int main( int argc, char* argv[] ) { bool isColorizeDisp, isFixedMaxDisp; int imageMode; bool retrievedImageFlags[6]; string filename; bool isVideoReading; parseCommandLine( argc, argv, isColorizeDisp, isFixedMaxDisp, imageMode, retrievedImageFlags, filename, isVideoReading ); cout << "Device opening ..." << endl; VideoCapture capture; if( isVideoReading ) capture.open( filename ); else { capture.open( CAP_OPENNI2 ); if( !capture.isOpened() ) capture.open( CAP_OPENNI ); } cout << "done." << endl; if( !capture.isOpened() ) { cout << "Can not open a capture object." << endl; return -1; } if( !isVideoReading && imageMode >= 0 ) { bool modeRes=false; switch ( imageMode ) { case 0: modeRes = capture.set( CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE, CAP_OPENNI_VGA_30HZ ); break; case 1: modeRes = capture.set( CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE, CAP_OPENNI_SXGA_15HZ ); break; case 2: modeRes = capture.set( CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE, CAP_OPENNI_SXGA_30HZ ); break; //The following modes are only supported by the Xtion Pro Live case 3: modeRes = capture.set( CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE, CAP_OPENNI_QVGA_30HZ ); break; case 4: modeRes = capture.set( CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE, CAP_OPENNI_QVGA_60HZ ); break; default: CV_Error( Error::StsBadArg, "Unsupported image mode property.\n"); } if (!modeRes) cout << "\nThis image mode is not supported by the device, the default value (CV_CAP_OPENNI_SXGA_15HZ) will be used.\n" << endl; } // turn on depth, color and IR if needed if (retrievedImageFlags[0] || retrievedImageFlags[1] || retrievedImageFlags[2]) capture.set(CAP_OPENNI_DEPTH_GENERATOR_PRESENT, true); else capture.set(CAP_OPENNI_DEPTH_GENERATOR_PRESENT, false); if (retrievedImageFlags[3] || retrievedImageFlags[4]) capture.set(CAP_OPENNI_IMAGE_GENERATOR_PRESENT, true); else capture.set(CAP_OPENNI_IMAGE_GENERATOR_PRESENT, false); if (retrievedImageFlags[5]) capture.set(CAP_OPENNI_IR_GENERATOR_PRESENT, true); else capture.set(CAP_OPENNI_IR_GENERATOR_PRESENT, false); // Print some avalible device settings. if (capture.get(CAP_OPENNI_DEPTH_GENERATOR_PRESENT)) { cout << "\nDepth generator output mode:" << endl << "FRAME_WIDTH " << capture.get(CAP_PROP_FRAME_WIDTH) << endl << "FRAME_HEIGHT " << capture.get(CAP_PROP_FRAME_HEIGHT) << endl << "FRAME_MAX_DEPTH " << capture.get(CAP_PROP_OPENNI_FRAME_MAX_DEPTH) << " mm" << endl << "FPS " << capture.get(CAP_PROP_FPS) << endl << "REGISTRATION " << capture.get(CAP_PROP_OPENNI_REGISTRATION) << endl; } else { cout << "\nDevice doesn't contain depth generator or it is not selected." << endl; } if( capture.get( CAP_OPENNI_IMAGE_GENERATOR_PRESENT ) ) { cout << "\nImage generator output mode:" << endl << "FRAME_WIDTH " << capture.get( CAP_OPENNI_IMAGE_GENERATOR+CAP_PROP_FRAME_WIDTH ) << endl << "FRAME_HEIGHT " << capture.get( CAP_OPENNI_IMAGE_GENERATOR+CAP_PROP_FRAME_HEIGHT ) << endl << "FPS " << capture.get( CAP_OPENNI_IMAGE_GENERATOR+CAP_PROP_FPS ) << endl; } else { cout << "\nDevice doesn't contain image generator or it is not selected." << endl; } if( capture.get(CAP_OPENNI_IR_GENERATOR_PRESENT) ) { cout << "\nIR generator output mode:" << endl << "FRAME_WIDTH " << capture.get(CAP_OPENNI_IR_GENERATOR + CAP_PROP_FRAME_WIDTH) << endl << "FRAME_HEIGHT " << capture.get(CAP_OPENNI_IR_GENERATOR + CAP_PROP_FRAME_HEIGHT) << endl << "FPS " << capture.get(CAP_OPENNI_IR_GENERATOR + CAP_PROP_FPS) << endl; } else { cout << "\nDevice doesn't contain IR generator or it is not selected." << endl; } for(;;) { Mat depthMap; Mat validDepthMap; Mat disparityMap; Mat bgrImage; Mat grayImage; Mat irImage; if( !capture.grab() ) { cout << "Can not grab images." << endl; return -1; } else { if( retrievedImageFlags[0] && capture.retrieve( depthMap, CAP_OPENNI_DEPTH_MAP ) ) { const float scaleFactor = 0.05f; Mat show; depthMap.convertTo( show, CV_8UC1, scaleFactor ); imshow( "depth map", show ); } if( retrievedImageFlags[1] && capture.retrieve( disparityMap, CAP_OPENNI_DISPARITY_MAP ) ) { if( isColorizeDisp ) { Mat colorDisparityMap; colorizeDisparity( disparityMap, colorDisparityMap, isFixedMaxDisp ? getMaxDisparity(capture) : -1 ); Mat validColorDisparityMap; colorDisparityMap.copyTo( validColorDisparityMap, disparityMap != 0 ); imshow( "colorized disparity map", validColorDisparityMap ); } else { imshow( "original disparity map", disparityMap ); } } if( retrievedImageFlags[2] && capture.retrieve( validDepthMap, CAP_OPENNI_VALID_DEPTH_MASK ) ) imshow( "valid depth mask", validDepthMap ); if( retrievedImageFlags[3] && capture.retrieve( bgrImage, CAP_OPENNI_BGR_IMAGE ) ) imshow( "rgb image", bgrImage ); if( retrievedImageFlags[4] && capture.retrieve( grayImage, CAP_OPENNI_GRAY_IMAGE ) ) imshow( "gray image", grayImage ); if( retrievedImageFlags[5] && capture.retrieve( irImage, CAP_OPENNI_IR_IMAGE ) ) { Mat ir8; irImage.convertTo(ir8, CV_8U, 256.0 / 3500, 0.0); imshow("IR image", ir8); } } if( waitKey( 30 ) >= 0 ) break; } return 0; }