/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* //////////////////////////////////////////////////////////////////// // // Mat basic operations: Copy, Set // // */ #include "precomp.hpp" namespace cv { template static void copyMask_(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size) { for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep ) { const T* src = (const T*)_src; T* dst = (T*)_dst; int x = 0; for( ; x <= size.width - 4; x += 4 ) { if( mask[x] ) dst[x] = src[x]; if( mask[x+1] ) dst[x+1] = src[x+1]; if( mask[x+2] ) dst[x+2] = src[x+2]; if( mask[x+3] ) dst[x+3] = src[x+3]; } for( ; x < size.width; x++ ) if( mask[x] ) dst[x] = src[x]; } } static void copyMaskGeneric(const uchar* _src, size_t sstep, const uchar* mask, size_t mstep, uchar* _dst, size_t dstep, Size size, void* _esz) { size_t k, esz = *(size_t*)_esz; for( ; size.height--; mask += mstep, _src += sstep, _dst += dstep ) { const uchar* src = _src; uchar* dst = _dst; int x = 0; for( ; x < size.width; x++, src += esz, dst += esz ) { if( !mask[x] ) continue; for( k = 0; k < esz; k++ ) dst[k] = src[k]; } } } #define DEF_COPY_MASK(suffix, type) \ static void copyMask##suffix(const uchar* src, size_t sstep, const uchar* mask, size_t mstep, \ uchar* dst, size_t dstep, Size size, void*) \ { \ copyMask_(src, sstep, mask, mstep, dst, dstep, size); \ } DEF_COPY_MASK(8u, uchar); DEF_COPY_MASK(16u, ushort); DEF_COPY_MASK(8uC3, Vec3b); DEF_COPY_MASK(32s, int); DEF_COPY_MASK(16uC3, Vec3s); DEF_COPY_MASK(32sC2, Vec2i); DEF_COPY_MASK(32sC3, Vec3i); DEF_COPY_MASK(32sC4, Vec4i); DEF_COPY_MASK(32sC6, Vec6i); DEF_COPY_MASK(32sC8, Vec8i); BinaryFunc copyMaskTab[] = { 0, copyMask8u, copyMask16u, copyMask8uC3, copyMask32s, 0, copyMask16uC3, 0, copyMask32sC2, 0, 0, 0, copyMask32sC3, 0, 0, 0, copyMask32sC4, 0, 0, 0, 0, 0, 0, 0, copyMask32sC6, 0, 0, 0, 0, 0, 0, 0, copyMask32sC8 }; BinaryFunc getCopyMaskFunc(size_t esz) { return esz <= 32 && copyMaskTab[esz] ? copyMaskTab[esz] : copyMaskGeneric; } /* dst = src */ void Mat::copyTo( OutputArray _dst ) const { int dtype = _dst.type(); if( _dst.fixedType() && dtype != type() ) { convertTo( _dst, dtype ); return; } if( empty() ) { _dst.release(); return; } if( dims <= 2 ) { _dst.create( rows, cols, type() ); Mat dst = _dst.getMat(); if( data == dst.data ) return; if( rows > 0 && cols > 0 ) { const uchar* sptr = data; uchar* dptr = dst.data; // to handle the copying 1xn matrix => nx1 std vector. Size sz = size() == dst.size() ? getContinuousSize(*this, dst, (int)elemSize()) : getContinuousSize(*this, (int)elemSize()); for( ; sz.height--; sptr += step, dptr += dst.step ) memcpy( dptr, sptr, sz.width ); } return; } _dst.create( dims, size, type() ); Mat dst = _dst.getMat(); if( data == dst.data ) return; if( total() != 0 ) { const Mat* arrays[] = { this, &dst }; uchar* ptrs[2]; NAryMatIterator it(arrays, ptrs, 2); size_t size = it.size*elemSize(); for( size_t i = 0; i < it.nplanes; i++, ++it ) memcpy(ptrs[1], ptrs[0], size); } } void Mat::copyTo( OutputArray _dst, InputArray _mask ) const { Mat mask = _mask.getMat(); if( !mask.data ) { copyTo(_dst); return; } CV_Assert( mask.type() == CV_8U ); size_t esz = elemSize(); BinaryFunc copymask = getCopyMaskFunc(esz); uchar* data0 = _dst.getMat().data; _dst.create( dims, size, type() ); Mat dst = _dst.getMat(); if( dst.data != data0 ) // do not leave dst uninitialized dst = Scalar(0); if( dims <= 2 ) { Size sz = getContinuousSize(*this, dst, mask); copymask(data, step, mask.data, mask.step, dst.data, dst.step, sz, &esz); return; } const Mat* arrays[] = { this, &dst, &mask, 0 }; uchar* ptrs[3]; NAryMatIterator it(arrays, ptrs); Size sz((int)it.size, 1); for( size_t i = 0; i < it.nplanes; i++, ++it ) copymask(ptrs[0], 0, ptrs[2], 0, ptrs[1], 0, sz, &esz); } Mat& Mat::operator = (const Scalar& s) { const Mat* arrays[] = { this }; uchar* ptr; NAryMatIterator it(arrays, &ptr, 1); size_t size = it.size*elemSize(); if( s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0 ) { for( size_t i = 0; i < it.nplanes; i++, ++it ) memset( ptr, 0, size ); } else { if( it.nplanes > 0 ) { double scalar[12]; scalarToRawData(s, scalar, type(), 12); size_t blockSize = 12*elemSize1(); for( size_t j = 0; j < size; j += blockSize ) { size_t sz = std::min(blockSize, size - j); memcpy( ptr + j, scalar, sz ); } } for( size_t i = 1; i < it.nplanes; i++ ) { ++it; memcpy( ptr, data, size ); } } return *this; } Mat& Mat::setTo(InputArray _value, InputArray _mask) { if( !data ) return *this; Mat value = _value.getMat(), mask = _mask.getMat(); CV_Assert( checkScalar(value, type(), _value.kind(), _InputArray::MAT )); CV_Assert( mask.empty() || mask.type() == CV_8U ); size_t esz = elemSize(); BinaryFunc copymask = getCopyMaskFunc(esz); const Mat* arrays[] = { this, !mask.empty() ? &mask : 0, 0 }; uchar* ptrs[2]={0,0}; NAryMatIterator it(arrays, ptrs); int total = (int)it.size, blockSize0 = std::min(total, (int)((BLOCK_SIZE + esz-1)/esz)); AutoBuffer _scbuf(blockSize0*esz + 32); uchar* scbuf = alignPtr((uchar*)_scbuf, (int)sizeof(double)); convertAndUnrollScalar( value, type(), scbuf, blockSize0 ); for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( int j = 0; j < total; j += blockSize0 ) { Size sz(std::min(blockSize0, total - j), 1); size_t blockSize = sz.width*esz; if( ptrs[1] ) { copymask(scbuf, 0, ptrs[1], 0, ptrs[0], 0, sz, &esz); ptrs[1] += sz.width; } else memcpy(ptrs[0], scbuf, blockSize); ptrs[0] += blockSize; } } return *this; } static void flipHoriz( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size size, size_t esz ) { int i, j, limit = ((size.width + 1)/2)*esz; AutoBuffer _tab(size.width*esz); int* tab = _tab; for( i = 0; i < size.width; i++ ) for( size_t k = 0; k < esz; k++ ) tab[i*esz + k] = (size.width - i - 1)*esz + k; for( ; size.height--; src += sstep, dst += dstep ) { for( i = 0; i < limit; i++ ) { j = tab[i]; uchar t0 = src[i], t1 = src[j]; dst[i] = t1; dst[j] = t0; } } } static void flipVert( const uchar* src0, size_t sstep, uchar* dst0, size_t dstep, Size size, size_t esz ) { const uchar* src1 = src0 + (size.height - 1)*sstep; uchar* dst1 = dst0 + (size.height - 1)*dstep; size.width *= (int)esz; for( int y = 0; y < (size.height + 1)/2; y++, src0 += sstep, src1 -= sstep, dst0 += dstep, dst1 -= dstep ) { int i = 0; if( ((size_t)src0|(size_t)dst0|(size_t)src1|(size_t)dst1) % sizeof(int) == 0 ) { for( ; i <= size.width - 16; i += 16 ) { int t0 = ((int*)(src0 + i))[0]; int t1 = ((int*)(src1 + i))[0]; ((int*)(dst0 + i))[0] = t1; ((int*)(dst1 + i))[0] = t0; t0 = ((int*)(src0 + i))[1]; t1 = ((int*)(src1 + i))[1]; ((int*)(dst0 + i))[1] = t1; ((int*)(dst1 + i))[1] = t0; t0 = ((int*)(src0 + i))[2]; t1 = ((int*)(src1 + i))[2]; ((int*)(dst0 + i))[2] = t1; ((int*)(dst1 + i))[2] = t0; t0 = ((int*)(src0 + i))[3]; t1 = ((int*)(src1 + i))[3]; ((int*)(dst0 + i))[3] = t1; ((int*)(dst1 + i))[3] = t0; } for( ; i <= size.width - 4; i += 4 ) { int t0 = ((int*)(src0 + i))[0]; int t1 = ((int*)(src1 + i))[0]; ((int*)(dst0 + i))[0] = t1; ((int*)(dst1 + i))[0] = t0; } } for( ; i < size.width; i++ ) { uchar t0 = src0[i]; uchar t1 = src1[i]; dst0[i] = t1; dst1[i] = t0; } } } void flip( InputArray _src, OutputArray _dst, int flip_mode ) { Mat src = _src.getMat(); CV_Assert( src.dims <= 2 ); _dst.create( src.size(), src.type() ); Mat dst = _dst.getMat(); size_t esz = src.elemSize(); if( flip_mode <= 0 ) flipVert( src.data, src.step, dst.data, dst.step, src.size(), esz ); else flipHoriz( src.data, src.step, dst.data, dst.step, src.size(), esz ); if( flip_mode < 0 ) flipHoriz( dst.data, dst.step, dst.data, dst.step, dst.size(), esz ); } void repeat(InputArray _src, int ny, int nx, OutputArray _dst) { Mat src = _src.getMat(); CV_Assert( src.dims <= 2 ); _dst.create(src.rows*ny, src.cols*nx, src.type()); Mat dst = _dst.getMat(); Size ssize = src.size(), dsize = dst.size(); int esz = (int)src.elemSize(); int x, y; ssize.width *= esz; dsize.width *= esz; for( y = 0; y < ssize.height; y++ ) { for( x = 0; x < dsize.width; x += ssize.width ) memcpy( dst.data + y*dst.step + x, src.data + y*src.step, ssize.width ); } for( ; y < dsize.height; y++ ) memcpy( dst.data + y*dst.step, dst.data + (y - ssize.height)*dst.step, dsize.width ); } Mat repeat(const Mat& src, int ny, int nx) { if( nx == 1 && ny == 1 ) return src; Mat dst; repeat(src, ny, nx, dst); return dst; } } /* dst = src */ CV_IMPL void cvCopy( const void* srcarr, void* dstarr, const void* maskarr ) { if( CV_IS_SPARSE_MAT(srcarr) && CV_IS_SPARSE_MAT(dstarr)) { CV_Assert( maskarr == 0 ); CvSparseMat* src1 = (CvSparseMat*)srcarr; CvSparseMat* dst1 = (CvSparseMat*)dstarr; CvSparseMatIterator iterator; CvSparseNode* node; dst1->dims = src1->dims; memcpy( dst1->size, src1->size, src1->dims*sizeof(src1->size[0])); dst1->valoffset = src1->valoffset; dst1->idxoffset = src1->idxoffset; cvClearSet( dst1->heap ); if( src1->heap->active_count >= dst1->hashsize*CV_SPARSE_HASH_RATIO ) { cvFree( &dst1->hashtable ); dst1->hashsize = src1->hashsize; dst1->hashtable = (void**)cvAlloc( dst1->hashsize*sizeof(dst1->hashtable[0])); } memset( dst1->hashtable, 0, dst1->hashsize*sizeof(dst1->hashtable[0])); for( node = cvInitSparseMatIterator( src1, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { CvSparseNode* node_copy = (CvSparseNode*)cvSetNew( dst1->heap ); int tabidx = node->hashval & (dst1->hashsize - 1); memcpy( node_copy, node, dst1->heap->elem_size ); node_copy->next = (CvSparseNode*)dst1->hashtable[tabidx]; dst1->hashtable[tabidx] = node_copy; } return; } cv::Mat src = cv::cvarrToMat(srcarr, false, true, 1), dst = cv::cvarrToMat(dstarr, false, true, 1); CV_Assert( src.depth() == dst.depth() && src.size == dst.size ); int coi1 = 0, coi2 = 0; if( CV_IS_IMAGE(srcarr) ) coi1 = cvGetImageCOI((const IplImage*)srcarr); if( CV_IS_IMAGE(dstarr) ) coi2 = cvGetImageCOI((const IplImage*)dstarr); if( coi1 || coi2 ) { CV_Assert( (coi1 != 0 || src.channels() == 1) && (coi2 != 0 || dst.channels() == 1) ); int pair[] = { std::max(coi1-1, 0), std::max(coi2-1, 0) }; cv::mixChannels( &src, 1, &dst, 1, pair, 1 ); return; } else CV_Assert( src.channels() == dst.channels() ); if( !maskarr ) src.copyTo(dst); else src.copyTo(dst, cv::cvarrToMat(maskarr)); } CV_IMPL void cvSet( void* arr, CvScalar value, const void* maskarr ) { cv::Mat m = cv::cvarrToMat(arr); if( !maskarr ) m = value; else m.setTo(cv::Scalar(value), cv::cvarrToMat(maskarr)); } CV_IMPL void cvSetZero( CvArr* arr ) { if( CV_IS_SPARSE_MAT(arr) ) { CvSparseMat* mat1 = (CvSparseMat*)arr; cvClearSet( mat1->heap ); if( mat1->hashtable ) memset( mat1->hashtable, 0, mat1->hashsize*sizeof(mat1->hashtable[0])); return; } cv::Mat m = cv::cvarrToMat(arr); m = cv::Scalar(0); } CV_IMPL void cvFlip( const CvArr* srcarr, CvArr* dstarr, int flip_mode ) { cv::Mat src = cv::cvarrToMat(srcarr); cv::Mat dst; if (!dstarr) dst = src; else dst = cv::cvarrToMat(dstarr); CV_Assert( src.type() == dst.type() && src.size() == dst.size() ); cv::flip( src, dst, flip_mode ); } CV_IMPL void cvRepeat( const CvArr* srcarr, CvArr* dstarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); CV_Assert( src.type() == dst.type() && dst.rows % src.rows == 0 && dst.cols % src.cols == 0 ); cv::repeat(src, dst.rows/src.rows, dst.cols/src.cols, dst); } /* End of file. */