#include #include #include #include #include "focal_estimators.hpp" #include "motion_estimators.hpp" #include "util.hpp" using namespace std; using namespace cv; using namespace cv::gpu; ////////////////////////////////////////////////////////////////////////////// namespace { class CpuSurfFeaturesFinder : public FeaturesFinder { public: inline CpuSurfFeaturesFinder() { detector_ = new SurfFeatureDetector(500.0); extractor_ = new SurfDescriptorExtractor; } protected: void find(const vector &images, vector &features); private: Ptr detector_; Ptr extractor_; }; void CpuSurfFeaturesFinder::find(const vector &images, vector &features) { // Make images gray vector gray_images(images.size()); for (size_t i = 0; i < images.size(); ++i) { CV_Assert(images[i].depth() == CV_8U); cvtColor(images[i], gray_images[i], CV_BGR2GRAY); } features.resize(images.size()); // Find keypoints in all images for (size_t i = 0; i < images.size(); ++i) { detector_->detect(gray_images[i], features[i].keypoints); extractor_->compute(gray_images[i], features[i].keypoints, features[i].descriptors); } } class GpuSurfFeaturesFinder : public FeaturesFinder { public: inline GpuSurfFeaturesFinder() { surf.hessianThreshold = 500.0; surf.extended = false; } protected: void find(const vector &images, vector &features); private: SURF_GPU surf; }; void GpuSurfFeaturesFinder::find(const vector &images, vector &features) { // Make images gray vector gray_images(images.size()); for (size_t i = 0; i < images.size(); ++i) { CV_Assert(images[i].depth() == CV_8U); cvtColor(GpuMat(images[i]), gray_images[i], CV_BGR2GRAY); } features.resize(images.size()); // Find keypoints in all images GpuMat d_keypoints; GpuMat d_descriptors; for (size_t i = 0; i < images.size(); ++i) { surf.nOctaves = 3; surf.nOctaveLayers = 4; surf(gray_images[i], GpuMat(), d_keypoints); surf.nOctaves = 4; surf.nOctaveLayers = 2; surf(gray_images[i], GpuMat(), d_keypoints, d_descriptors, true); surf.downloadKeypoints(d_keypoints, features[i].keypoints); d_descriptors.download(features[i].descriptors); } } } SurfFeaturesFinder::SurfFeaturesFinder(bool gpu_hint) { if (gpu_hint && getCudaEnabledDeviceCount() > 0) impl_ = new GpuSurfFeaturesFinder; else impl_ = new CpuSurfFeaturesFinder; } void SurfFeaturesFinder::find(const vector &images, vector &features) { (*impl_)(images, features); } ////////////////////////////////////////////////////////////////////////////// MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0) {} MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; } const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other) { src_img_idx = other.src_img_idx; dst_img_idx = other.dst_img_idx; matches = other.matches; num_inliers = other.num_inliers; H = other.H.clone(); return *this; } ////////////////////////////////////////////////////////////////////////////// void FeaturesMatcher::operator ()(const vector &images, const vector &features, vector &pairwise_matches) { pairwise_matches.resize(images.size() * images.size()); for (size_t i = 0; i < images.size(); ++i) { LOGLN("Processing image " << i << "... "); for (size_t j = 0; j < images.size(); ++j) { if (i == j) continue; size_t pair_idx = i * images.size() + j; (*this)(images[i], features[i], images[j], features[j], pairwise_matches[pair_idx]); pairwise_matches[pair_idx].src_img_idx = i; pairwise_matches[pair_idx].dst_img_idx = j; } } } ////////////////////////////////////////////////////////////////////////////// namespace { class CpuMatcher : public FeaturesMatcher { public: inline CpuMatcher(float match_conf) : match_conf_(match_conf) {} void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info); private: float match_conf_; }; void CpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info) { matches_info.matches.clear(); BruteForceMatcher< L2 > matcher; vector< vector > pair_matches; // Find 1->2 matches matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) matches_info.matches.push_back(m0); } // Find 2->1 matches pair_matches.clear(); matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; if (m0.distance < (1.f - match_conf_) * m1.distance) matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } } class GpuMatcher : public FeaturesMatcher { public: inline GpuMatcher(float match_conf) : match_conf_(match_conf) {} void match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info); private: float match_conf_; GpuMat descriptors1_; GpuMat descriptors2_; GpuMat trainIdx_, distance_, allDist_; }; void GpuMatcher::match(const cv::Mat&, const ImageFeatures &features1, const cv::Mat&, const ImageFeatures &features2, MatchesInfo& matches_info) { matches_info.matches.clear(); BruteForceMatcher_GPU< L2 > matcher; descriptors1_.upload(features1.descriptors); descriptors2_.upload(features2.descriptors); vector< vector > pair_matches; // Find 1->2 matches matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2); matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; CV_Assert(m0.queryIdx < static_cast(features1.keypoints.size())); CV_Assert(m0.trainIdx < static_cast(features2.keypoints.size())); if (m0.distance < (1.f - match_conf_) * m1.distance) matches_info.matches.push_back(m0); } // Find 2->1 matches pair_matches.clear(); matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2); matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); for (size_t i = 0; i < pair_matches.size(); ++i) { if (pair_matches[i].size() < 2) continue; const DMatch& m0 = pair_matches[i][0]; const DMatch& m1 = pair_matches[i][1]; CV_Assert(m0.trainIdx < static_cast(features1.keypoints.size())); CV_Assert(m0.queryIdx < static_cast(features2.keypoints.size())); if (m0.distance < (1.f - match_conf_) * m1.distance) matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); } } } BestOf2NearestMatcher::BestOf2NearestMatcher(bool gpu_hint, float match_conf, int num_matches_thresh1, int num_matches_thresh2) { if (gpu_hint && getCudaEnabledDeviceCount() > 0) impl_ = new GpuMatcher(match_conf); else impl_ = new CpuMatcher(match_conf); num_matches_thresh1_ = num_matches_thresh1; num_matches_thresh2_ = num_matches_thresh2; } void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features1, const Mat &img2, const ImageFeatures &features2, MatchesInfo &matches_info) { (*impl_)(img1, features1, img2, features2, matches_info); // Check if it makes sense to find homography if (matches_info.matches.size() < static_cast(num_matches_thresh1_)) return; // Construct point-point correspondences for homography estimation Mat src_points(1, matches_info.matches.size(), CV_32FC2); Mat dst_points(1, matches_info.matches.size(), CV_32FC2); for (size_t i = 0; i < matches_info.matches.size(); ++i) { const DMatch& m = matches_info.matches[i]; Point2f p = features1.keypoints[m.queryIdx].pt; p.x -= img1.cols * 0.5f; p.y -= img1.rows * 0.5f; src_points.at(0, i) = p; p = features2.keypoints[m.trainIdx].pt; p.x -= img2.cols * 0.5f; p.y -= img2.rows * 0.5f; dst_points.at(0, i) = p; } // Find pair-wise motion vector inlier_mask; matches_info.H = findHomography(src_points, dst_points, inlier_mask, CV_RANSAC); // Find number of inliers matches_info.num_inliers = 0; for (size_t i = 0; i < inlier_mask.size(); ++i) if (inlier_mask[i]) matches_info.num_inliers++; // Check if we should try to refine motion if (matches_info.num_inliers < num_matches_thresh2_) return; // Construct point-point correspondences for inliers only src_points.create(1, matches_info.num_inliers, CV_32FC2); dst_points.create(1, matches_info.num_inliers, CV_32FC2); int inlier_idx = 0; for (size_t i = 0; i < matches_info.matches.size(); ++i) { if (!inlier_mask[i]) continue; const DMatch& m = matches_info.matches[i]; Point2f p = features1.keypoints[m.queryIdx].pt; p.x -= img1.cols * 0.5f; p.y -= img2.rows * 0.5f; src_points.at(0, inlier_idx) = p; p = features2.keypoints[m.trainIdx].pt; p.x -= img2.cols * 0.5f; p.y -= img2.rows * 0.5f; dst_points.at(0, inlier_idx) = p; inlier_idx++; } // Rerun motion estimation on inliers only matches_info.H = findHomography(src_points, dst_points, inlier_mask, CV_RANSAC); // Find number of inliers matches_info.num_inliers = 0; for (size_t i = 0; i < inlier_mask.size(); ++i) if (inlier_mask[i]) matches_info.num_inliers++; } ////////////////////////////////////////////////////////////////////////////// CameraParams::CameraParams() : focal(1), M(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {} CameraParams::CameraParams(const CameraParams &other) { *this = other; } const CameraParams& CameraParams::operator =(const CameraParams &other) { focal = other.focal; M = other.M.clone(); t = other.t.clone(); return *this; } ////////////////////////////////////////////////////////////////////////////// struct IncDistance { IncDistance(vector &dists) : dists(&dists[0]) {} void operator ()(const GraphEdge &edge) { dists[edge.to] = dists[edge.from] + 1; } int* dists; }; struct CalcRotation { CalcRotation(int num_images, const vector &pairwise_matches, vector &cameras) : num_images(num_images), pairwise_matches(&pairwise_matches[0]), cameras(&cameras[0]) {} void operator ()(const GraphEdge &edge) { int pair_idx = edge.from * num_images + edge.to; double f_from = cameras[edge.from].focal; double f_to = cameras[edge.to].focal; Mat K_from = Mat::eye(3, 3, CV_64F); K_from.at(0, 0) = f_from; K_from.at(1, 1) = f_from; Mat K_to = Mat::eye(3, 3, CV_64F); K_to.at(0, 0) = f_to; K_to.at(1, 1) = f_to; Mat R = K_from.inv() * pairwise_matches[pair_idx].H.inv() * K_to; cameras[edge.to].M = cameras[edge.from].M * R; } int num_images; const MatchesInfo* pairwise_matches; CameraParams* cameras; }; void HomographyBasedEstimator::estimate(const vector &images, const vector &/*features*/, const vector &pairwise_matches, vector &cameras) { const int num_images = static_cast(images.size()); // Find focals from pair-wise homographies vector is_focal_estimated(num_images, false); vector focals; for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { int pair_idx = i * num_images + j; if (pairwise_matches[pair_idx].H.empty()) continue; double f_to, f_from; bool f_to_ok, f_from_ok; focalsFromHomography(pairwise_matches[pair_idx].H.inv(), f_to, f_from, f_to_ok, f_from_ok); if (f_from_ok) focals.push_back(f_from); if (f_to_ok) focals.push_back(f_to); if (f_from_ok && f_to_ok) { is_focal_estimated[i] = true; is_focal_estimated[j] = true; } } } is_focals_estimated_ = true; for (int i = 0; i < num_images; ++i) is_focals_estimated_ = is_focals_estimated_ && is_focal_estimated[i]; // Find focal medians and use them as true focal length nth_element(focals.begin(), focals.end(), focals.begin() + focals.size() / 2); cameras.resize(num_images); for (int i = 0; i < num_images; ++i) cameras[i].focal = focals[focals.size() / 2]; // Restore global motion Graph span_tree; vector span_tree_centers; findMaxSpanningTree(num_images, pairwise_matches, span_tree, span_tree_centers); span_tree.walkBreadthFirst(span_tree_centers[0], CalcRotation(num_images, pairwise_matches, cameras)); } ////////////////////////////////////////////////////////////////////////////// void BundleAdjuster::estimate(const vector &images, const vector &features, const vector &pairwise_matches, vector &cameras) { num_images_ = static_cast(images.size()); images_ = &images[0]; features_ = &features[0]; pairwise_matches_ = &pairwise_matches[0]; // Prepare focals and rotations cameras_.create(num_images_ * 4, 1, CV_64F); SVD svd; for (int i = 0; i < num_images_; ++i) { cameras_.at(i * 4, 0) = cameras[i].focal; svd(cameras[i].M, SVD::FULL_UV); Mat R = svd.u * svd.vt; if (determinant(R) < 0) R *= -1; Mat rvec; Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F); cameras_.at(i * 4 + 1, 0) = rvec.at(0, 0); cameras_.at(i * 4 + 2, 0) = rvec.at(1, 0); cameras_.at(i * 4 + 3, 0) = rvec.at(2, 0); } edges_.clear(); for (int i = 0; i < num_images_ - 1; ++i) { for (int j = i + 1; j < num_images_; ++j) { int pair_idx = i * num_images_ + j; const MatchesInfo& mi = pairwise_matches_[pair_idx]; float ni = static_cast(mi.num_inliers); float nf = static_cast(mi.matches.size()); if (ni / (8.f + 0.3f * nf) > 1.f) edges_.push_back(make_pair(i, j)); } } total_num_matches_ = 0; for (size_t i = 0; i < edges_.size(); ++i) total_num_matches_ += static_cast(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].matches.size()); CvLevMarq solver(num_images_ * 4, total_num_matches_ * 3, cvTermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 100, DBL_EPSILON)); CvMat matParams = cameras_; cvCopy(&matParams, solver.param); int count = 0; for(;;) { const CvMat* _param = 0; CvMat* _J = 0; CvMat* _err = 0; bool proceed = solver.update( _param, _J, _err ); cvCopy( _param, &matParams ); if( !proceed || !_err ) break; if( _J ) { calcJacobian(); CvMat matJ = J_; cvCopy( &matJ, _J ); } if (_err) { calcError(err_); //LOGLN("Error: " << sqrt(err_.dot(err_))); count++; CvMat matErr = err_; cvCopy( &matErr, _err ); } } LOGLN("BA final error: " << sqrt(err_.dot(err_))); LOGLN("BA iterations done: " << count); // Obtain global motion for (int i = 0; i < num_images_; ++i) { cameras[i].focal = cameras_.at(i * 4, 0); Mat rvec(3, 1, CV_64F); rvec.at(0, 0) = cameras_.at(i * 4 + 1, 0); rvec.at(1, 0) = cameras_.at(i * 4 + 2, 0); rvec.at(2, 0) = cameras_.at(i * 4 + 3, 0); Rodrigues(rvec, cameras[i].M); Mat Mf; cameras[i].M.convertTo(Mf, CV_32F); cameras[i].M = Mf; } // Normalize motion to center image Graph span_tree; vector span_tree_centers; findMaxSpanningTree(num_images_, pairwise_matches, span_tree, span_tree_centers); Mat R_inv = cameras[span_tree_centers[0]].M.inv(); for (int i = 0; i < num_images_; ++i) cameras[i].M = R_inv * cameras[i].M; } void BundleAdjuster::calcError(Mat &err) { err.create(total_num_matches_ * 3, 1, CV_64F); int match_idx = 0; for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx) { int i = edges_[edge_idx].first; int j = edges_[edge_idx].second; double f1 = cameras_.at(i * 4, 0); double f2 = cameras_.at(j * 4, 0); double R1[9], R2[9]; Mat R1_(3, 3, CV_64F, R1), R2_(3, 3, CV_64F, R2); Mat rvec(3, 1, CV_64F); rvec.at(0, 0) = cameras_.at(i * 4 + 1, 0); rvec.at(1, 0) = cameras_.at(i * 4 + 2, 0); rvec.at(2, 0) = cameras_.at(i * 4 + 3, 0); Rodrigues(rvec, R1_); CV_Assert(R1_.type() == CV_64F); rvec.at(0, 0) = cameras_.at(j * 4 + 1, 0); rvec.at(1, 0) = cameras_.at(j * 4 + 2, 0); rvec.at(2, 0) = cameras_.at(j * 4 + 3, 0); Rodrigues(rvec, R2_); CV_Assert(R2_.type() == CV_64F); const ImageFeatures& features1 = features_[i]; const ImageFeatures& features2 = features_[j]; const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j]; for (size_t k = 0; k < matches_info.matches.size(); ++k) { const DMatch& m = matches_info.matches[k]; Point2d kp1 = features1.keypoints[m.queryIdx].pt; kp1.x -= 0.5 * images_[i].cols; kp1.y -= 0.5 * images_[i].rows; Point2d kp2 = features2.keypoints[m.trainIdx].pt; kp2.x -= 0.5 * images_[j].cols; kp2.y -= 0.5 * images_[j].rows; double len1 = sqrt(kp1.x * kp1.x + kp1.y * kp1.y + f1 * f1); double len2 = sqrt(kp2.x * kp2.x + kp2.y * kp2.y + f2 * f2); Point3d p1(kp1.x / len1, kp1.y / len1, f1 / len1); Point3d p2(kp2.x / len2, kp2.y / len2, f2 / len2); Point3d d1(p1.x * R1[0] + p1.y * R1[1] + p1.z * R1[2], p1.x * R1[3] + p1.y * R1[4] + p1.z * R1[5], p1.x * R1[6] + p1.y * R1[7] + p1.z * R1[8]); Point3d d2(p2.x * R2[0] + p2.y * R2[1] + p2.z * R2[2], p2.x * R2[3] + p2.y * R2[4] + p2.z * R2[5], p2.x * R2[6] + p2.y * R2[7] + p2.z * R2[8]); double mult = 1; if (cost_space_ == FOCAL_RAY_SPACE) mult = sqrt(f1 * f2); err.at(3 * match_idx, 0) = mult * (d1.x - d2.x); err.at(3 * match_idx + 1, 0) = mult * (d1.y - d2.y); err.at(3 * match_idx + 2, 0) = mult * (d1.z - d2.z); match_idx++; } } } void calcDeriv(const Mat &err1, const Mat &err2, double h, Mat res) { for (int i = 0; i < err1.rows; ++i) res.at(i, 0) = (err2.at(i, 0) - err1.at(i, 0)) / h; } void BundleAdjuster::calcJacobian() { J_.create(total_num_matches_ * 3, num_images_ * 4, CV_64F); double f, r; const double df = 0.001; // Focal length step const double dr = 0.001; // Angle step for (int i = 0; i < num_images_; ++i) { f = cameras_.at(i * 4, 0); cameras_.at(i * 4, 0) = f - df; calcError(err1_); cameras_.at(i * 4, 0) = f + df; calcError(err2_); calcDeriv(err1_, err2_, 2 * df, J_.col(i * 4)); cameras_.at(i * 4, 0) = f; r = cameras_.at(i * 4 + 1, 0); cameras_.at(i * 4 + 1, 0) = r - dr; calcError(err1_); cameras_.at(i * 4 + 1, 0) = r + dr; calcError(err2_); calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 1)); cameras_.at(i * 4 + 1, 0) = r; r = cameras_.at(i * 4 + 2, 0); cameras_.at(i * 4 + 2, 0) = r - dr; calcError(err1_); cameras_.at(i * 4 + 2, 0) = r + dr; calcError(err2_); calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 2)); cameras_.at(i * 4 + 2, 0) = r; r = cameras_.at(i * 4 + 3, 0); cameras_.at(i * 4 + 3, 0) = r - dr; calcError(err1_); cameras_.at(i * 4 + 3, 0) = r + dr; calcError(err2_); calcDeriv(err1_, err2_, 2 * dr, J_.col(i * 4 + 3)); cameras_.at(i * 4 + 3, 0) = r; } } ////////////////////////////////////////////////////////////////////////////// void findMaxSpanningTree(int num_images, const vector &pairwise_matches, Graph &span_tree, vector ¢ers) { Graph graph(num_images); vector edges; // Construct images graph and remember its edges for (int i = 0; i < num_images; ++i) { for (int j = 0; j < num_images; ++j) { float conf = static_cast(pairwise_matches[i * num_images + j].num_inliers); graph.addEdge(i, j, conf); edges.push_back(GraphEdge(i, j, conf)); } } DjSets comps(num_images); span_tree.create(num_images); vector span_tree_powers(num_images, 0); // Find maximum spanning tree sort(edges.begin(), edges.end(), greater()); for (size_t i = 0; i < edges.size(); ++i) { int comp1 = comps.find(edges[i].from); int comp2 = comps.find(edges[i].to); if (comp1 != comp2) { comps.merge(comp1, comp2); span_tree.addEdge(edges[i].from, edges[i].to, edges[i].weight); span_tree.addEdge(edges[i].to, edges[i].from, edges[i].weight); span_tree_powers[edges[i].from]++; span_tree_powers[edges[i].to]++; } } // Find spanning tree leafs vector span_tree_leafs; for (int i = 0; i < num_images; ++i) if (span_tree_powers[i] == 1) span_tree_leafs.push_back(i); // Find maximum distance from each spanning tree vertex vector max_dists(num_images, 0); vector cur_dists; for (size_t i = 0; i < span_tree_leafs.size(); ++i) { cur_dists.assign(num_images, 0); span_tree.walkBreadthFirst(span_tree_leafs[i], IncDistance(cur_dists)); for (int j = 0; j < num_images; ++j) max_dists[j] = max(max_dists[j], cur_dists[j]); } // Find min-max distance int min_max_dist = max_dists[0]; for (int i = 1; i < num_images; ++i) if (min_max_dist > max_dists[i]) min_max_dist = max_dists[i]; // Find spanning tree centers centers.clear(); for (int i = 0; i < num_images; ++i) if (max_dists[i] == min_max_dist) centers.push_back(i); CV_Assert(centers.size() > 0 && centers.size() <= 2); }