/* -- translated by f2c (version 19940927). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ #include "clapack.h" /* Subroutine */ int dsyr_(char *uplo, integer *n, doublereal *alpha, doublereal *x, integer *incx, doublereal *a, integer *lda) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; /* Local variables */ static integer info; static doublereal temp; static integer i, j; extern logical lsame_(char *, char *); static integer ix, jx, kx; extern /* Subroutine */ int xerbla_(char *, integer *); /* Purpose ======= DSYR performs the symmetric rank 1 operation A := alpha*x*x' + A, where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix. Parameters ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. Test the input parameters. Parameter adjustments Function Body */ #define X(I) x[(I)-1] #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)] info = 0; if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { info = 1; } else if (*n < 0) { info = 2; } else if (*incx == 0) { info = 5; } else if (*lda < max(1,*n)) { info = 7; } if (info != 0) { xerbla_("DSYR ", &info); return 0; } /* Quick return if possible. */ if (*n == 0 || *alpha == 0.) { return 0; } /* Set the start point in X if the increment is not unity. */ if (*incx <= 0) { kx = 1 - (*n - 1) * *incx; } else if (*incx != 1) { kx = 1; } /* Start the operations. In this version the elements of A are accessed sequentially with one pass through the triangular part of A. */ if (lsame_(uplo, "U")) { /* Form A when A is stored in upper triangle. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(j) != 0.) { temp = *alpha * X(j); i__2 = j; for (i = 1; i <= j; ++i) { A(i,j) += X(i) * temp; /* L10: */ } } /* L20: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(jx) != 0.) { temp = *alpha * X(jx); ix = kx; i__2 = j; for (i = 1; i <= j; ++i) { A(i,j) += X(ix) * temp; ix += *incx; /* L30: */ } } jx += *incx; /* L40: */ } } } else { /* Form A when A is stored in lower triangle. */ if (*incx == 1) { i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(j) != 0.) { temp = *alpha * X(j); i__2 = *n; for (i = j; i <= *n; ++i) { A(i,j) += X(i) * temp; /* L50: */ } } /* L60: */ } } else { jx = kx; i__1 = *n; for (j = 1; j <= *n; ++j) { if (X(jx) != 0.) { temp = *alpha * X(jx); ix = jx; i__2 = *n; for (i = j; i <= *n; ++i) { A(i,j) += X(ix) * temp; ix += *incx; /* L70: */ } } jx += *incx; /* L80: */ } } } return 0; /* End of DSYR . */ } /* dsyr_ */