/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "test_chessboardgenerator.hpp" #include #include using namespace std; using namespace cv; #define _L2_ERR void show_points( const Mat& gray, const Mat& u, const vector& v, Size pattern_size, bool was_found ) { Mat rgb( gray.size(), CV_8U); merge(vector(3, gray), rgb); for(size_t i = 0; i < v.size(); i++ ) circle( rgb, v[i], 3, CV_RGB(255, 0, 0), CV_FILLED); if( !u.empty() ) { const Point2f* u_data = u.ptr(); size_t count = u.cols * u.rows; for(size_t i = 0; i < count; i++ ) circle( rgb, u_data[i], 3, CV_RGB(0, 255, 0), CV_FILLED); } if (!v.empty()) { Mat corners((int)v.size(), 1, CV_32FC2, (void*)&v[0]); drawChessboardCorners( rgb, pattern_size, corners, was_found ); } //namedWindow( "test", 0 ); imshow( "test", rgb ); waitKey(0); } enum Pattern { CHESSBOARD, CIRCLES_GRID, ASYMMETRIC_CIRCLES_GRID }; class CV_ChessboardDetectorTest : public cvtest::BaseTest { public: CV_ChessboardDetectorTest( Pattern pattern, int algorithmFlags = 0 ); protected: void run(int); void run_batch(const string& filename); bool checkByGenerator(); Pattern pattern; int algorithmFlags; }; CV_ChessboardDetectorTest::CV_ChessboardDetectorTest( Pattern _pattern, int _algorithmFlags ) { pattern = _pattern; algorithmFlags = _algorithmFlags; } double calcError(const vector& v, const Mat& u) { int count_exp = u.cols * u.rows; const Point2f* u_data = u.ptr(); double err = numeric_limits::max(); for( int k = 0; k < 2; ++k ) { double err1 = 0; for( int j = 0; j < count_exp; ++j ) { int j1 = k == 0 ? j : count_exp - j - 1; double dx = fabs( v[j].x - u_data[j1].x ); double dy = fabs( v[j].y - u_data[j1].y ); #if defined(_L2_ERR) err1 += dx*dx + dy*dy; #else dx = MAX( dx, dy ); if( dx > err1 ) err1 = dx; #endif //_L2_ERR //printf("dx = %f\n", dx); } //printf("\n"); err = min(err, err1); } #if defined(_L2_ERR) err = sqrt(err/count_exp); #endif //_L2_ERR return err; } const double rough_success_error_level = 2.5; const double precise_success_error_level = 2; /* ///////////////////// chess_corner_test ///////////////////////// */ void CV_ChessboardDetectorTest::run( int /*start_from */) { cvtest::TS& ts = *this->ts; ts.set_failed_test_info( cvtest::TS::OK ); /*if (!checkByGenerator()) return;*/ switch( pattern ) { case CHESSBOARD: checkByGenerator(); if (ts.get_err_code() != cvtest::TS::OK) { break; } run_batch("chessboard_list.dat"); if (ts.get_err_code() != cvtest::TS::OK) { break; } run_batch("chessboard_list_subpixel.dat"); break; case CIRCLES_GRID: run_batch("circles_list.dat"); break; case ASYMMETRIC_CIRCLES_GRID: run_batch("acircles_list.dat"); break; } } void CV_ChessboardDetectorTest::run_batch( const string& filename ) { cvtest::TS& ts = *this->ts; ts.printf(cvtest::TS::LOG, "\nRunning batch %s\n", filename.c_str()); //#define WRITE_POINTS 1 #ifndef WRITE_POINTS double max_rough_error = 0, max_precise_error = 0; #endif string folder; switch( pattern ) { case CHESSBOARD: folder = string(ts.get_data_path()) + "cameracalibration/"; break; case CIRCLES_GRID: folder = string(ts.get_data_path()) + "cameracalibration/circles/"; break; case ASYMMETRIC_CIRCLES_GRID: folder = string(ts.get_data_path()) + "cameracalibration/asymmetric_circles/"; break; } FileStorage fs( folder + filename, FileStorage::READ ); FileNode board_list = fs["boards"]; if( !fs.isOpened() || board_list.empty() || !board_list.isSeq() || board_list.size() % 2 != 0 ) { ts.printf( cvtest::TS::LOG, "%s can not be readed or is not valid\n", (folder + filename).c_str() ); ts.printf( cvtest::TS::LOG, "fs.isOpened=%d, board_list.empty=%d, board_list.isSeq=%d,board_list.size()%2=%d\n", fs.isOpened(), (int)board_list.empty(), board_list.isSeq(), board_list.size()%2); ts.set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); return; } int progress = 0; int max_idx = board_list.node->data.seq->total/2; double sum_error = 0.0; int count = 0; for(int idx = 0; idx < max_idx; ++idx ) { ts.update_context( this, idx, true ); /* read the image */ string img_file = board_list[idx * 2]; Mat gray = imread( folder + img_file, 0); if( gray.empty() ) { ts.printf( cvtest::TS::LOG, "one of chessboard images can't be read: %s\n", img_file.c_str() ); ts.set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); return; } string filename = folder + (string)board_list[idx * 2 + 1]; Mat expected; { CvMat *u = (CvMat*)cvLoad( filename.c_str() ); if(!u ) { ts.printf( cvtest::TS::LOG, "one of chessboard corner files can't be read: %s\n", filename.c_str() ); ts.set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA ); continue; } expected = Mat(u, true); cvReleaseMat( &u ); } size_t count_exp = static_cast(expected.cols * expected.rows); Size pattern_size = expected.size(); vector v; bool result = false; switch( pattern ) { case CHESSBOARD: result = findChessboardCorners(gray, pattern_size, v, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE); break; case CIRCLES_GRID: result = findCirclesGrid(gray, pattern_size, v); break; case ASYMMETRIC_CIRCLES_GRID: result = findCirclesGrid(gray, pattern_size, v, CALIB_CB_ASYMMETRIC_GRID | algorithmFlags); break; } show_points( gray, Mat(), v, pattern_size, result ); if( !result || v.size() != count_exp ) { ts.printf( cvtest::TS::LOG, "chessboard is not found in %s\n", img_file.c_str() ); ts.set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT ); return; } #ifndef WRITE_POINTS double err = calcError(v, expected); #if 0 if( err > rough_success_error_level ) { ts.printf( cvtest::TS::LOG, "bad accuracy of corner guesses\n" ); ts.set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); continue; } #endif max_rough_error = MAX( max_rough_error, err ); #endif if( pattern == CHESSBOARD ) cornerSubPix( gray, v, Size(5, 5), Size(-1,-1), TermCriteria(TermCriteria::EPS|TermCriteria::MAX_ITER, 30, 0.1)); //find4QuadCornerSubpix(gray, v, Size(5, 5)); show_points( gray, expected, v, pattern_size, result ); #ifndef WRITE_POINTS // printf("called find4QuadCornerSubpix\n"); err = calcError(v, expected); sum_error += err; count++; #if 1 if( err > precise_success_error_level ) { ts.printf( cvtest::TS::LOG, "Image %s: bad accuracy of adjusted corners %f\n", img_file.c_str(), err ); ts.set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } #endif ts.printf(cvtest::TS::LOG, "Error on %s is %f\n", img_file.c_str(), err); max_precise_error = MAX( max_precise_error, err ); #else Mat mat_v(pattern_size, CV_32FC2, (void*)&v[0]); CvMat cvmat_v = mat_v; cvSave( filename.c_str(), &cvmat_v ); #endif progress = update_progress( progress, idx, max_idx, 0 ); } sum_error /= count; ts.printf(cvtest::TS::LOG, "Average error is %f\n", sum_error); } double calcErrorMinError(const Size& cornSz, const vector& corners_found, const vector& corners_generated) { Mat m1(cornSz, CV_32FC2, (Point2f*)&corners_generated[0]); Mat m2; flip(m1, m2, 0); Mat m3; flip(m1, m3, 1); m3 = m3.t(); flip(m3, m3, 1); Mat m4 = m1.t(); flip(m4, m4, 1); double min1 = min(calcError(corners_found, m1), calcError(corners_found, m2)); double min2 = min(calcError(corners_found, m3), calcError(corners_found, m4)); return min(min1, min2); } bool validateData(const ChessBoardGenerator& cbg, const Size& imgSz, const vector& corners_generated) { Size cornersSize = cbg.cornersSize(); Mat_ mat(cornersSize.height, cornersSize.width, (Point2f*)&corners_generated[0]); double minNeibDist = std::numeric_limits::max(); double tmp = 0; for(int i = 1; i < mat.rows - 2; ++i) for(int j = 1; j < mat.cols - 2; ++j) { const Point2f& cur = mat(i, j); tmp = norm( cur - mat(i + 1, j + 1) ); if (tmp < minNeibDist) tmp = minNeibDist; tmp = norm( cur - mat(i - 1, j + 1 ) ); if (tmp < minNeibDist) tmp = minNeibDist; tmp = norm( cur - mat(i + 1, j - 1) ); if (tmp < minNeibDist) tmp = minNeibDist; tmp = norm( cur - mat(i - 1, j - 1) ); if (tmp < minNeibDist) tmp = minNeibDist; } const double threshold = 0.25; double cbsize = (max(cornersSize.width, cornersSize.height) + 1) * minNeibDist; int imgsize = min(imgSz.height, imgSz.width); return imgsize * threshold < cbsize; } bool CV_ChessboardDetectorTest::checkByGenerator() { bool res = true; //theRNG() = 0x58e6e895b9913160; //cv::DefaultRngAuto dra; //theRNG() = *ts->get_rng(); Mat bg(Size(800, 600), CV_8UC3, Scalar::all(255)); randu(bg, Scalar::all(0), Scalar::all(255)); GaussianBlur(bg, bg, Size(7,7), 3.0); Mat_ camMat(3, 3); camMat << 300.f, 0.f, bg.cols/2.f, 0, 300.f, bg.rows/2.f, 0.f, 0.f, 1.f; Mat_ distCoeffs(1, 5); distCoeffs << 1.2f, 0.2f, 0.f, 0.f, 0.f; const Size sizes[] = { Size(6, 6), Size(8, 6), Size(11, 12), Size(5, 4) }; const size_t sizes_num = sizeof(sizes)/sizeof(sizes[0]); const int test_num = 16; int progress = 0; for(int i = 0; i < test_num; ++i) { progress = update_progress( progress, i, test_num, 0 ); ChessBoardGenerator cbg(sizes[i % sizes_num]); vector corners_generated; Mat cb = cbg(bg, camMat, distCoeffs, corners_generated); if(!validateData(cbg, cb.size(), corners_generated)) { ts->printf( cvtest::TS::LOG, "Chess board skipped - too small" ); continue; } /*cb = cb * 0.8 + Scalar::all(30); GaussianBlur(cb, cb, Size(3, 3), 0.8); */ //cv::addWeighted(cb, 0.8, bg, 0.2, 20, cb); //cv::namedWindow("CB"); cv::imshow("CB", cb); cv::waitKey(); vector corners_found; int flags = i % 8; // need to check branches for all flags bool found = findChessboardCorners(cb, cbg.cornersSize(), corners_found, flags); if (!found) { ts->printf( cvtest::TS::LOG, "Chess board corners not found\n" ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); res = false; return res; } double err = calcErrorMinError(cbg.cornersSize(), corners_found, corners_generated); if( err > rough_success_error_level ) { ts->printf( cvtest::TS::LOG, "bad accuracy of corner guesses" ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); res = false; return res; } } /* ***** negative ***** */ { vector corners_found; bool found = findChessboardCorners(bg, Size(8, 7), corners_found); if (found) res = false; ChessBoardGenerator cbg(Size(8, 7)); vector cg; Mat cb = cbg(bg, camMat, distCoeffs, cg); found = findChessboardCorners(cb, Size(3, 4), corners_found); if (found) res = false; Point2f c = std::accumulate(cg.begin(), cg.end(), Point2f(), plus()) * (1.f/cg.size()); Mat_ aff(2, 3); aff << 1.0, 0.0, -(double)c.x, 0.0, 1.0, 0.0; Mat sh; warpAffine(cb, sh, aff, cb.size()); found = findChessboardCorners(sh, cbg.cornersSize(), corners_found); if (found) res = false; vector< vector > cnts(1); vector& cnt = cnts[0]; cnt.push_back(cg[ 0]); cnt.push_back(cg[0+2]); cnt.push_back(cg[7+0]); cnt.push_back(cg[7+2]); cv::drawContours(cb, cnts, -1, Scalar::all(128), CV_FILLED); found = findChessboardCorners(cb, cbg.cornersSize(), corners_found); if (found) res = false; cv::drawChessboardCorners(cb, cbg.cornersSize(), Mat(corners_found), found); } return res; } TEST(Calib3d_ChessboardDetector, accuracy) { CV_ChessboardDetectorTest test( CHESSBOARD ); test.safe_run(); } TEST(Calib3d_CirclesPatternDetector, accuracy) { CV_ChessboardDetectorTest test( CIRCLES_GRID ); test.safe_run(); } TEST(Calib3d_AsymmetricCirclesPatternDetector, accuracy) { CV_ChessboardDetectorTest test( ASYMMETRIC_CIRCLES_GRID ); test.safe_run(); } TEST(Calib3d_AsymmetricCirclesPatternDetectorWithClustering, accuracy) { CV_ChessboardDetectorTest test( ASYMMETRIC_CIRCLES_GRID, CALIB_CB_CLUSTERING ); test.safe_run(); } /* End of file. */