/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; const int angularBins=12; const int radialBins=4; const float minRad=0.2f; const float maxRad=2; const int NSN=5;//10;//20; //number of shapes per class const int NP=120; //number of points sympliying the contour const float outlierWeight=0.1f; const int numOutliers=20; const float CURRENT_MAX_ACCUR=95; //99% and 100% reached in several tests, 95 is fixed as minimum boundary class CV_ShapeTest : public cvtest::BaseTest { public: CV_ShapeTest(); ~CV_ShapeTest(); protected: void run(int); private: void mpegTest(); void listShapeNames(vector<string> &listHeaders); vector<Point2f> convertContourType(const Mat &, int n=0 ); float computeShapeDistance(vector <Point2f>& queryNormal, vector <Point2f>& queryFlipped1, vector <Point2f>& queryFlipped2, vector<Point2f>& testq); void displayMPEGResults(); }; CV_ShapeTest::CV_ShapeTest() { } CV_ShapeTest::~CV_ShapeTest() { } vector <Point2f> CV_ShapeTest::convertContourType(const Mat& currentQuery, int n) { vector<vector<Point> > _contoursQuery; vector <Point2f> contoursQuery; findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE); for (size_t border=0; border<_contoursQuery.size(); border++) { for (size_t p=0; p<_contoursQuery[border].size(); p++) { contoursQuery.push_back(Point2f((float)_contoursQuery[border][p].x, (float)_contoursQuery[border][p].y)); } } // In case actual number of points is less than n for (int add=(int)contoursQuery.size()-1; add<n; add++) { contoursQuery.push_back(contoursQuery[contoursQuery.size()-add+1]); //adding dummy values } // Uniformly sampling random_shuffle(contoursQuery.begin(), contoursQuery.end()); int nStart=n; vector<Point2f> cont; for (int i=0; i<nStart; i++) { cont.push_back(contoursQuery[i]); } return cont; } void CV_ShapeTest::listShapeNames( vector<string> &listHeaders) { listHeaders.push_back("apple"); //ok listHeaders.push_back("children"); // ok listHeaders.push_back("device7"); // ok listHeaders.push_back("Heart"); // ok listHeaders.push_back("teddy"); // ok } float CV_ShapeTest::computeShapeDistance(vector <Point2f>& query1, vector <Point2f>& query2, vector <Point2f>& query3, vector <Point2f>& testq) { //waitKey(0); Ptr <ShapeContextDistanceExtractor> mysc = createShapeContextDistanceExtractor(angularBins, radialBins, minRad, maxRad); //Ptr <HistogramCostExtractor> cost = createNormHistogramCostExtractor(cv::DIST_L1); Ptr <HistogramCostExtractor> cost = createChiHistogramCostExtractor(30,0.15f); //Ptr <HistogramCostExtractor> cost = createEMDHistogramCostExtractor(); //Ptr <HistogramCostExtractor> cost = createEMDL1HistogramCostExtractor(); mysc->setIterations(1); mysc->setCostExtractor( cost ); //mysc->setTransformAlgorithm(createAffineTransformer(true)); mysc->setTransformAlgorithm( createThinPlateSplineShapeTransformer() ); //mysc->setImageAppearanceWeight(1.6); //mysc->setImageAppearanceWeight(0.0); //mysc->setImages(im1,imtest); return ( std::min( mysc->computeDistance(query1, testq), std::min(mysc->computeDistance(query2, testq), mysc->computeDistance(query3, testq) ))); } void CV_ShapeTest::mpegTest() { string baseTestFolder="shape/mpeg_test/"; string path = cvtest::TS::ptr()->get_data_path() + baseTestFolder; vector<string> namesHeaders; listShapeNames(namesHeaders); // distance matrix // Mat distanceMat=Mat::zeros(NSN*(int)namesHeaders.size(), NSN*(int)namesHeaders.size(), CV_32F); // query contours (normal v flipped, h flipped) and testing contour // vector<Point2f> contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting; // reading query and computing its properties // int counter=0; const int loops=NSN*(int)namesHeaders.size()*NSN*(int)namesHeaders.size(); for (size_t n=0; n<namesHeaders.size(); n++) { for (int i=1; i<=NSN; i++) { // read current image // stringstream thepathandname; thepathandname<<path+namesHeaders[n]<<"-"<<i<<".png"; Mat currentQuery, flippedHQuery, flippedVQuery; currentQuery=imread(thepathandname.str(), IMREAD_GRAYSCALE); Mat currentQueryBuf=currentQuery.clone(); flip(currentQuery, flippedHQuery, 0); flip(currentQuery, flippedVQuery, 1); // compute border of the query and its flipped versions // vector<Point2f> origContour; contoursQuery1=convertContourType(currentQuery, NP); origContour=contoursQuery1; contoursQuery2=convertContourType(flippedHQuery, NP); contoursQuery3=convertContourType(flippedVQuery, NP); // compare with all the rest of the images: testing // for (size_t nt=0; nt<namesHeaders.size(); nt++) { for (int it=1; it<=NSN; it++) { // skip self-comparisson // counter++; if (nt==n && it==i) { distanceMat.at<float>(NSN*(int)n+i-1, NSN*(int)nt+it-1)=0; continue; } // read testing image // stringstream thetestpathandname; thetestpathandname<<path+namesHeaders[nt]<<"-"<<it<<".png"; Mat currentTest; currentTest=imread(thetestpathandname.str().c_str(), 0); // compute border of the testing // contoursTesting=convertContourType(currentTest, NP); // compute shape distance // std::cout<<std::endl<<"Progress: "<<counter<<"/"<<loops<<": "<<100*double(counter)/loops<<"% *******"<<std::endl; std::cout<<"Computing shape distance between "<<namesHeaders[n]<<i<< " and "<<namesHeaders[nt]<<it<<": "; distanceMat.at<float>(NSN*(int)n+i-1, NSN*(int)nt+it-1)= computeShapeDistance(contoursQuery1, contoursQuery2, contoursQuery3, contoursTesting); std::cout<<distanceMat.at<float>(NSN*(int)n+i-1, NSN*(int)nt+it-1)<<std::endl; } } } } // save distance matrix // FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::WRITE); fs << "distanceMat" << distanceMat; } const int FIRST_MANY=2*NSN; void CV_ShapeTest::displayMPEGResults() { string baseTestFolder="shape/mpeg_test/"; Mat distanceMat; FileStorage fs(cvtest::TS::ptr()->get_data_path() + baseTestFolder + "distanceMatrixMPEGTest.yml", FileStorage::READ); vector<string> namesHeaders; listShapeNames(namesHeaders); // Read generated MAT // fs["distanceMat"]>>distanceMat; int corrects=0; int divi=0; for (int row=0; row<distanceMat.rows; row++) { if (row%NSN==0) //another group { divi+=NSN; } for (int col=divi-NSN; col<divi; col++) { int nsmall=0; for (int i=0; i<distanceMat.cols; i++) { if (distanceMat.at<float>(row,col)>distanceMat.at<float>(row,i)) { nsmall++; } } if (nsmall<=FIRST_MANY) { corrects++; } } } float porc = 100*float(corrects)/(NSN*distanceMat.rows); std::cout<<"%="<<porc<<std::endl; if (porc >= CURRENT_MAX_ACCUR) ts->set_failed_test_info(cvtest::TS::OK); else ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); //done } void CV_ShapeTest::run( int /*start_from*/ ) { mpegTest(); displayMPEGResults(); ts->set_failed_test_info(cvtest::TS::OK); } TEST(Shape_SCD, regression) { CV_ShapeTest test; test.safe_run(); }