/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_OPTIM_HPP__ #define __OPENCV_OPTIM_HPP__ #include "opencv2/core.hpp" namespace cv{namespace optim { class CV_EXPORTS Solver : public Algorithm { public: class CV_EXPORTS Function { public: virtual ~Function() {} virtual double calc(const double* x) const = 0; }; virtual Ptr getFunction() const = 0; virtual void setFunction(const Ptr& f) = 0; virtual TermCriteria getTermCriteria() const = 0; virtual void setTermCriteria(const TermCriteria& termcrit) = 0; // x contain the initial point before the call and the minima position (if algorithm converged) after. x is assumed to be (something that // after getMat() will return) row-vector or column-vector. *It's size and should // be consisted with previous dimensionality data given, if any (otherwise, it determines dimensionality)* virtual double minimize(InputOutputArray x) = 0; }; //! downhill simplex class class CV_EXPORTS DownhillSolver : public Solver { public: //! returns row-vector, even if the column-vector was given virtual void getInitStep(OutputArray step) const=0; //!This should be called at least once before the first call to minimize() and step is assumed to be (something that //! after getMat() will return) row-vector or column-vector. *It's dimensionality determines the dimensionality of a problem.* virtual void setInitStep(InputArray step)=0; }; // both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does. CV_EXPORTS_W Ptr createDownhillSolver(const Ptr& f=Ptr(), InputArray initStep=Mat_(1,1,0.0), TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001)); //! conjugate gradient method class CV_EXPORTS ConjGradSolver : public Solver { public: class CV_EXPORTS Function : public Solver::Function { public: //! gradient is like the first derivative for multivar function virtual void getGradient(const double* x,double* buf)const=0; //! Jacobian is like the second derivative virtual void getJacobian(const double* x)const=0; }; }; CV_EXPORTS_W Ptr createConjGradSolver(const Ptr& f=Ptr(), TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001)); //!the return codes for solveLP() function enum { SOLVELP_UNBOUNDED = -2, //problem is unbounded (target function can achieve arbitrary high values) SOLVELP_UNFEASIBLE = -1, //problem is unfeasible (there are no points that satisfy all the constraints imposed) SOLVELP_SINGLE = 0, //there is only one maximum for target function SOLVELP_MULTI = 1 //there are multiple maxima for target function - the arbitrary one is returned }; CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z); CV_EXPORTS_W void denoise_TVL1(const std::vector& observations,Mat& result, double lambda=1.0, int niters=30); }}// cv #endif