#include "test_precomp.hpp" #include #define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE 1 #define CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF 2 #define CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF 3 #define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK 4 #define CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF 5 #define MESSAGE_MATRIX_SIZE "Homography matrix must have 3*3 sizes." #define MESSAGE_MATRIX_DIFF "Accuracy of homography transformation matrix less than required." #define MESSAGE_REPROJ_DIFF_1 "Reprojection error for current pair of points more than required." #define MESSAGE_REPROJ_DIFF_2 "Reprojection error is not optimal." #define MESSAGE_RANSAC_MASK_1 "Sizes of inliers/outliers mask are incorrect." #define MESSAGE_RANSAC_MASK_2 "Mask mustn't have any outliers." #define MESSAGE_RANSAC_MASK_3 "All values of mask must be 1 (true) or 0 (false)." #define MESSAGE_RANSAC_MASK_4 "Mask of inliers/outliers is incorrect." #define MESSAGE_RANSAC_MASK_5 "Inlier in original mask shouldn't be outlier in found mask." #define MESSAGE_RANSAC_DIFF "Reprojection error for current pair of points more than required." #define MAX_COUNT_OF_POINTS 303 #define COUNT_NORM_TYPES 3 #define METHODS_COUNT 3 size_t NORM_TYPE[COUNT_NORM_TYPES] = {cv::NORM_L1, cv::NORM_L2, cv::NORM_INF}; size_t METHOD[METHODS_COUNT] = {0, CV_RANSAC, CV_LMEDS}; using namespace cv; using namespace std; class CV_HomographyTest: public cvtest::ArrayTest { public: CV_HomographyTest(); ~CV_HomographyTest(); int read_params( CvFileStorage* fs ); void fill_array( int test_case_idx, int i, int j, Mat& arr ); int prepare_test_case( int test_case_idx ); void get_test_array_types_and_sizes( int test_case_idx, vector >& sizes, vector >& types ); void run (int); bool check_matrix (const Mat& H); bool check_transform (const Mat& src, const Mat& dst, const Mat& H); void prepare_to_validation( int test_case_idx ); protected: int method; int image_size; int square_size; double reproj_threshold; double sigma; bool test_cpp; double get_success_error_level( int test_case_idx, int i, int j ); void test_projectPoints(Mat& src_2d, Mat& dst_2d, const Mat& H, RNG* rng, double sigma); // checking for quality of perpective transformation private: float max_diff, max_2diff; bool check_matrix_size(const cv::Mat& H); bool check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff); // bool check_reproj_error(const cv::Mat& src_3d, const cv::Mat& dst_3d, const int norm_type = NORM_L2); int check_ransac_mask_1(const Mat& src, const Mat& mask); int check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask); void print_information_1(int j, int N, int method, const Mat& H); void print_information_2(int j, int N, int method, const Mat& H, const Mat& H_res, int k, double diff); void print_information_3(int j, int N, const Mat& mask); void print_information_4(int method, int j, int N, int k, int l, double diff); void print_information_5(int method, int j, int N, int l, double diff); void print_information_6(int j, int N, int k, double diff, bool value); void print_information_7(int j, int N, int k, double diff, bool original_value, bool found_value); void print_information_8(int j, int N, int k, int l, double diff); void check_transform_quality(cv::InputArray src_points, cv::InputArray dst_poits, const cv::Mat& H, const int norm_type = NORM_L2); void check_transform_quality(const cv::InputArray src_points, const vector dst_points, const cv::Mat& H, const int norm_type = NORM_L2); void check_transform_quality(const vector src_points, const cv::InputArray dst_points, const cv::Mat& H, const int norm_type = NORM_L2); void check_transform_quality(const vector src_points, const vector dst_points, const cv::Mat& H, const int norm_type = NORM_L2); }; CV_HomographyTest::CV_HomographyTest() : max_diff(1e-2), max_2diff(2e-2) { test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); test_array[INPUT].push_back(NULL); test_array[TEMP].push_back(NULL); test_array[TEMP].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); test_array[REF_OUTPUT].push_back(NULL); element_wise_relative_error = false; method = 0; image_size = 1e+2; reproj_threshold = 3.0; sigma = 0.01; test_cpp = false; } CV_HomographyTest::~CV_HomographyTest() {} void CV_HomographyTest::get_test_array_types_and_sizes( int /*test_case_idx*/, vector >& sizes, vector >& types ) { RNG& rng = ts->get_rng(); int pt_depth = CV_32F; double pt_count_exp = cvtest::randReal(rng)*6 + 1; int pt_count = cvRound(exp(pt_count_exp)); /* dims = cvtest::randInt(rng) % 2 + 2; method = 1 << (cvtest::randInt(rng) % 4); if( method == CV_FM_7POINT ) pt_count = 7; else { pt_count = MAX( pt_count, 8 + (method == CV_FM_8POINT) ); if( pt_count >= 8 && cvtest::randInt(rng) % 2 ) method |= CV_FM_8POINT; } */ types[INPUT][0] = CV_MAKETYPE(pt_depth, 2); types[INPUT][1] = types[INPUT][0]; types[OUTPUT][0] = CV_MAKETYPE(pt_depth, 1); /* if( cvtest::randInt(rng) % 2 ) sizes[INPUT][0] = cvSize(pt_count, dims); else { sizes[INPUT][0] = cvSize(dims, pt_count); if( cvtest::randInt(rng) % 2 ) { types[INPUT][0] = CV_MAKETYPE(pt_depth, dims); if( cvtest::randInt(rng) % 2 ) sizes[INPUT][0] = cvSize(pt_count, 1); else sizes[INPUT][0] = cvSize(1, pt_count); } } sizes[INPUT][1] = sizes[INPUT][0]; types[INPUT][1] = types[INPUT][0]; sizes[INPUT][2] = cvSize(pt_count, 1 ); types[INPUT][2] = CV_64FC3; sizes[INPUT][3] = cvSize(4,3); types[INPUT][3] = CV_64FC1; sizes[INPUT][4] = sizes[INPUT][5] = cvSize(3,3); types[INPUT][4] = types[INPUT][5] = CV_MAKETYPE(CV_64F, 1); sizes[TEMP][0] = cvSize(3,3); types[TEMP][0] = CV_64FC1; sizes[TEMP][1] = cvSize(pt_count,1); types[TEMP][1] = CV_8UC1; sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(3,1); types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1; sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(pt_count,1); types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_8UC1; test_cpp = (cvtest::randInt(rng) & 256) == 0; */ } int CV_HomographyTest::read_params(CvFileStorage *fs) { int code = cvtest::ArrayTest::read_params(fs); return code; } double CV_HomographyTest::get_success_error_level(int test_case_idx, int i, int j) { return max_diff; } void CV_HomographyTest::fill_array( int test_case_idx, int i, int j, Mat& arr ) { double t[9]={0}; RNG& rng = ts->get_rng(); if ( i != INPUT ) { cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr ); return; } switch( j ) { case 0: case 1: return; // fill them later in prepare_test_case case 2: { double* p = arr.ptr(); for( i = 0; i < arr.cols*3; i += 3 ) { /* p[i] = cvtest::randReal(rng)*square_size; p[i+1] = cvtest::randReal(rng)*square_size; p[i+2] = cvtest::randReal(rng)*square_size + square_size; */ } } break; case 3: { double r[3]; Mat rot_vec( 3, 1, CV_64F, r ); Mat rot_mat( 3, 3, CV_64F, t, 4*sizeof(t[0]) ); r[0] = cvtest::randReal(rng)*CV_PI*2; r[1] = cvtest::randReal(rng)*CV_PI*2; r[2] = cvtest::randReal(rng)*CV_PI*2; cvtest::Rodrigues( rot_vec, rot_mat ); /* t[3] = cvtest::randReal(rng)*square_size; t[7] = cvtest::randReal(rng)*square_size; t[11] = cvtest::randReal(rng)*square_size; */ Mat( 3, 4, CV_64F, t ).convertTo(arr, arr.type()); } break; case 4: case 5: { /* t[0] = t[4] = cvtest::randReal(rng)*(max_f - min_f) + min_f; t[2] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[0]; t[5] = (img_size*0.5 + cvtest::randReal(rng)*4. - 2.)*t[4]; t[8] = 1.0f; Mat( 3, 3, CV_64F, t ).convertTo( arr, arr.type() ); */ break; } } } int CV_HomographyTest::prepare_test_case(int test_case_idx) { int code = cvtest::ArrayTest::prepare_test_case(test_case_idx); if (code > 0) { Mat& src = test_mat[INPUT][0]; RNG& rng = ts->get_rng(); float Hdata[] = { sqrt(2.0f)/2, -sqrt(2.0f)/2, 0.0f, sqrt(2.0f)/2, sqrt(2.0f)/2, 0.0f, 0.0f, 0.0f, 1.0f }; Mat H( 3, 3, CV_32F, Hdata ); cv::Mat dst(1, src.cols, CV_32FC2); int k; for( k = 0; k < 2; k++ ) { const Mat& H = test_mat[OUTPUT][0]; Mat& dst = test_mat[INPUT][k == 0 ? 1 : 2]; for (int i = 0; i < src.cols; ++i) { float *s = src.ptr()+2*i; float *d = dst.ptr()+2*i; d[0] = Hdata[0]*s[0] + Hdata[1]*s[1] + Hdata[2]; d[1] = Hdata[3]*s[0] + Hdata[4]*s[1] + Hdata[5]; } test_projectPoints( src, dst, H, &rng, sigma ); } } return code; } static void test_convertHomogeneous( const Mat& _src, Mat& _dst ) { Mat src = _src, dst = _dst; int i, count, sdims, ddims; int sstep1, sstep2, dstep1, dstep2; if( src.depth() != CV_64F ) _src.convertTo(src, CV_64F); if( dst.depth() != CV_64F ) dst.create(dst.size(), CV_MAKETYPE(CV_64F, _dst.channels())); if( src.rows > src.cols ) { count = src.rows; sdims = src.channels()*src.cols; sstep1 = (int)(src.step/sizeof(double)); sstep2 = 1; } else { count = src.cols; sdims = src.channels()*src.rows; if( src.rows == 1 ) { sstep1 = sdims; sstep2 = 1; } else { sstep1 = 1; sstep2 = (int)(src.step/sizeof(double)); } } if( dst.rows > dst.cols ) { if (count != dst.rows) ; // CV_Error should be here CV_Assert( count == dst.rows ); ddims = dst.channels()*dst.cols; dstep1 = (int)(dst.step/sizeof(double)); dstep2 = 1; } else { assert( count == dst.cols ); ddims = dst.channels()*dst.rows; if( dst.rows == 1 ) { dstep1 = ddims; dstep2 = 1; } else { dstep1 = 1; dstep2 = (int)(dst.step/sizeof(double)); } } double* s = src.ptr(); double* d = dst.ptr(); if( sdims <= ddims ) { int wstep = dstep2*(ddims - 1); for( i = 0; i < count; i++, s += sstep1, d += dstep1 ) { double x = s[0]; double y = s[sstep2]; d[wstep] = 1; d[0] = x; d[dstep2] = y; if( sdims >= 3 ) { d[dstep2*2] = s[sstep2*2]; if( sdims == 4 ) d[dstep2*3] = s[sstep2*3]; } } } else { int wstep = sstep2*(sdims - 1); for( i = 0; i < count; i++, s += sstep1, d += dstep1 ) { double w = s[wstep]; double x = s[0]; double y = s[sstep2]; w = w ? 1./w : 1; d[0] = x*w; d[dstep2] = y*w; if( ddims == 3 ) d[dstep2*2] = s[sstep2*2]*w; } } if( dst.data != _dst.data ) dst.convertTo(_dst, _dst.depth()); } void CV_HomographyTest::test_projectPoints( Mat& src_2d, Mat& dst, const Mat& H, RNG* rng, double sigma ) { if (!src_2d.isContinuous()) { CV_Error(-1, ""); return; } cv::Mat src_3d(1, src_2d.cols, CV_32FC3); for (int i = 0; i < src_2d.cols; ++i) { float *c_3d = src_3d.ptr()+3*i; float *c_2d = src_2d.ptr()+2*i; c_3d[0] = c_2d[0]; c_3d[1] = c_2d[1]; c_3d[2] = 1.0f; } cv::Mat dst_3d; gemm(H, src_3d, 1, Mat(), 0, dst_3d); int i, count = src_2d.cols; Mat noise; if ( rng ) { if( sigma == 0 ) rng = 0; else { noise.create( 1, count, CV_32FC2 ); rng->fill(noise, RNG::NORMAL, Scalar::all(0), Scalar::all(sigma) ); } } cv::Mat dst_2d(1, count, CV_32FC2); for (size_t i = 0; i < count; ++i) { float *c_3d = dst_3d.ptr()+3*i; float *c_2d = dst_2d.ptr()+2*i; c_2d[0] = c_3d[0]/c_3d[2]; c_2d[1] = c_3d[1]/c_3d[2]; } Mat temp( 1, count, CV_32FC2 ); for( i = 0; i < count; i++ ) { const double* M = src_2d.ptr() + 2*i; double* m = temp.ptr() + 2*i; double X = M[0], Y = M[1], Z = M[2]; double u = H.at(0, 0)*X + H.at(0, 1)*Y + H.at(0, 2); double v = H.at(1, 0)*X + H.at(1, 1)*Y + H.at(1, 2); double s = H.at(2, 0)*X + H.at(2, 1)*Y + H.at(2, 2); if( !noise.empty() ) { u += noise.at(i).x*s; v += noise.at(i).y*s; } m[0] = u; m[1] = v; m[2] = s; } test_convertHomogeneous( dst_2d, dst ); } void CV_HomographyTest::prepare_to_validation(int test_case_idx) { const Mat& H = test_mat[INPUT][3]; const Mat& A1 = test_mat[INPUT][4]; const Mat& A2 = test_mat[INPUT][5]; double h0[9], h[9]; Mat H0(3, 3, CV_32FC1, h0); Mat invA1, invA2, T; cv::invert(A1, invA1, CV_SVD); cv::invert(A2, invA2, CV_SVD); double tx = H.at(0, 2); double ty = H.at(1, 2); double tz = H.at(2, 2); // double _t_x[] = { 0, -tz, ty, tz, 0, -tx, -ty, tx, 0 }; // F = (A2^-T)*[t]_x*R*(A1^-1) /* cv::gemm( invA2, Mat( 3, 3, CV_64F, _t_x ), 1, Mat(), 0, T, CV_GEMM_A_T ); cv::gemm( R, invA1, 1, Mat(), 0, invA2 ); cv::gemm( T, invA2, 1, Mat(), 0, F0 ); */ H0 *= 1./h0[8]; uchar* status = test_mat[TEMP][1].data; double err_level = get_success_error_level( test_case_idx, OUTPUT, 1 ); uchar* mtfm1 = test_mat[REF_OUTPUT][1].data; uchar* mtfm2 = test_mat[OUTPUT][1].data; double* f_prop1 = (double*)test_mat[REF_OUTPUT][0].data; double* f_prop2 = (double*)test_mat[OUTPUT][0].data; int i, pt_count = test_mat[INPUT][2].cols; Mat p1( 1, pt_count, CV_64FC2 ); Mat p2( 1, pt_count, CV_64FC2 ); test_convertHomogeneous( test_mat[INPUT][0], p1 ); test_convertHomogeneous( test_mat[INPUT][1], p2 ); cvtest::convert(test_mat[TEMP][0], H0, H.type()); if( method <= CV_FM_8POINT ) memset( status, 1, pt_count ); for( i = 0; i < pt_count; i++ ) { double x1 = p1.at(i).x; double y1 = p1.at(i).y; double x2 = p2.at(i).x; double y2 = p2.at(i).y; double n1 = 1./sqrt(x1*x1 + y1*y1 + 1); double n2 = 1./sqrt(x2*x2 + y2*y2 + 1); double t0 = fabs(h0[0]*x2*x1 + h0[1]*x2*y1 + h0[2]*x2 + h0[3]*y2*x1 + h0[4]*y2*y1 + h0[5]*y2 + h0[6]*x1 + h0[7]*y1 + h0[8])*n1*n2; double t = fabs(h[0]*x2*x1 + h[1]*x2*y1 + h[2]*x2 + h[3]*y2*x1 + h[4]*y2*y1 + h[5]*y2 + h[6]*x1 + h[7]*y1 + h[8])*n1*n2; mtfm1[i] = 1; mtfm2[i] = !status[i] || t0 > err_level || t < err_level; } f_prop1[0] = 1; f_prop1[1] = 1; f_prop1[2] = 0; // f_prop2[0] = f_result != 0; f_prop2[1] = h[8]; f_prop2[2] = cv::determinant( H ); } bool CV_HomographyTest::check_matrix_size(const cv::Mat& H) { return (H.rows == 3) && (H.cols == 3); } bool CV_HomographyTest::check_matrix_diff(const cv::Mat& original, const cv::Mat& found, const int norm_type, double &diff) { diff = cv::norm(original, found, norm_type); return diff <= max_diff; } int CV_HomographyTest::check_ransac_mask_1(const Mat& src, const Mat& mask) { if (!(mask.cols == 1) && (mask.rows == src.cols)) return 1; if (countNonZero(mask) < mask.rows) return 2; for (size_t i = 0; i < mask.rows; ++i) if (mask.at(i, 0) > 1) return 3; return 0; } int CV_HomographyTest::check_ransac_mask_2(const Mat& original_mask, const Mat& found_mask) { if (!(found_mask.cols == 1) && (found_mask.rows == original_mask.rows)) return 1; for (size_t i = 0; i < found_mask.rows; ++i) if (found_mask.at(i, 0) > 1) return 2; return 0; } void CV_HomographyTest::print_information_1(int j, int N, int method, const Mat& H) { cout << endl; cout << "Checking for homography matrix sizes..." << endl; cout << endl; cout << "Type of srcPoints: "; if (0 <= j < 2) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << endl; cout << "Count of points: " << N << endl; cout << endl; cout << "Method: "; if (method == 0) cout << 0; else if (method == 8) cout << "RANSAC"; else cout << "LMEDS"; cout << endl; cout << "Homography matrix:" << endl; cout << endl; cout << H << endl; cout << endl; cout << "Number of rows: " << H.rows << " Number of cols: " << H.cols << endl; cout << endl; } void CV_HomographyTest::print_information_2(int j, int N, int method, const Mat& H, const Mat& H_res, int k, double diff) { cout << endl; cout << "Checking for accuracy of homography matrix computing..." << endl; cout << endl; cout << "Type of srcPoints: "; if (0 <= j < 2) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << endl; cout << "Count of points: " << N << endl; cout << endl; cout << "Method: "; if (method == 0) cout << 0; else if (method == 8) cout << "RANSAC"; else cout << "LMEDS"; cout << endl; cout << "Original matrix:" << endl; cout << endl; cout << H << endl; cout << endl; cout << "Found matrix:" << endl; cout << endl; cout << H_res << endl; cout << endl; cout << "Norm type using in criteria: "; if (NORM_TYPE[k] == 1) cout << "INF"; else if (NORM_TYPE[k] == 2) cout << "L1"; else cout << "L2"; cout << endl; cout << "Difference between matrix: " << diff << endl; cout << "Maximum allowed difference: " << max_diff << endl; cout << endl; } void CV_HomographyTest::print_information_3(int j, int N, const Mat& mask) { cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl; cout << "Type of srcPoints: "; if (0 <= j < 2) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << endl; cout << "Count of points: " << N << endl; cout << endl; cout << "Method: RANSAC" << endl; cout << "Found mask:" << endl; cout << endl; cout << mask << endl; cout << endl; cout << "Number of rows: " << mask.rows << " Number of cols: " << mask.cols << endl; cout << endl; } void CV_HomographyTest::print_information_4(int method, int j, int N, int k, int l, double diff) { cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl; cout << "Method: "; if (method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl; cout << "Type of srcPoints: "; if (0 <= j < 2) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << endl; cout << "Sigma of normal noise: " << sigma << endl; cout << "Count of points: " << N << endl; cout << "Number of point: " << k << endl; cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl; cout << "Difference with noise of point: " << diff << endl; cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl; } void CV_HomographyTest::print_information_5(int method, int j, int N, int l, double diff) { cout << endl; cout << "Checking for accuracy of reprojection error computing..." << endl; cout << endl; cout << "Method: "; if (method == 0) cout << 0 << endl; else cout << "CV_LMEDS" << endl; cout << "Type of srcPoints: "; if (0 <= j < 2) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << endl; cout << "Sigma of normal noise: " << sigma << endl; cout << "Count of points: " << N << endl; cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl; cout << "Difference with noise of points: " << diff << endl; cout << "Maxumum allowed difference: " << max_diff << endl; cout << endl; } void CV_HomographyTest::print_information_6(int j, int N, int k, double diff, bool value) { cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl; cout << "Method: RANSAC" << endl; cout << "Type of srcPoints: "; if (0 <= j < 2) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << endl; cout << "Count of points: " << N << " " << endl; cout << "Number of point: " << k << " " << endl; cout << "Reprojection error for this point: " << diff << " " << endl; cout << "Reprojection error threshold: " << reproj_threshold << " " << endl; cout << "Value of found mask: "<< value << endl; cout << endl; } void CV_HomographyTest::print_information_7(int j, int N, int k, double diff, bool original_value, bool found_value) { cout << endl; cout << "Checking for inliers/outliers mask..." << endl; cout << endl; cout << "Method: RANSAC" << endl; cout << "Type of srcPoints: "; if (0 <= j < 2) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << endl; cout << "Count of points: " << N << " " << endl; cout << "Number of point: " << k << " " << endl; cout << "Reprojection error for this point: " << diff << " " << endl; cout << "Reprojection error threshold: " << reproj_threshold << " " << endl; cout << "Value of original mask: "<< original_value << " Value of found mask: " << found_value << endl; cout << endl; } void CV_HomographyTest::print_information_8(int j, int N, int k, int l, double diff) { cout << endl; cout << "Checking for reprojection error of inlier..." << endl; cout << endl; cout << "Method: RANSAC" << endl; cout << "Sigma of normal noise: " << sigma << endl; cout << "Type of srcPoints: "; if (0 <= j < 2) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << " Type of dstPoints: "; if (j % 2 == 0) cout << "Mat of CV_32FC2"; else cout << "vector "; cout << endl; cout << "Count of points: " << N << " " << endl; cout << "Number of point: " << k << " " << endl; cout << "Norm type using in criteria: "; if (NORM_TYPE[l] == 1) cout << "INF"; else if (NORM_TYPE[l] == 2) cout << "L1"; else cout << "L2"; cout << endl; cout << "Difference with noise of point: " << diff << endl; cout << "Maxumum allowed difference: " << max_2diff << endl; cout << endl; } void CV_HomographyTest::check_transform_quality(cv::InputArray src_points, cv::InputArray dst_points, const cv::Mat& H, const int norm_type) { Mat src, dst_original; cv::transpose(src_points.getMat(), src); cv::transpose(dst_points.getMat(), dst_original); cv::Mat src_3d(src.rows+1, src.cols, CV_32FC1); src_3d(Rect(0, 0, src.rows, src.cols)) = src; src_3d(Rect(src.rows, 0, 1, src.cols)) = Mat(1, src.cols, CV_32FC1, Scalar(1.0f)); cv::Mat dst_found, dst_found_3d; cv::multiply(H, src_3d, dst_found_3d); dst_found = dst_found_3d/dst_found_3d.row(dst_found_3d.rows-1); double reprojection_error = cv::norm(dst_original, dst_found, norm_type); CV_Assert ( reprojection_error > max_diff ); } void CV_HomographyTest::run(int) { for (size_t N = 4; N <= MAX_COUNT_OF_POINTS; ++N) { RNG& rng = ts->get_rng(); float *src_data = new float [2*N]; for (int i = 0; i < N; ++i) { src_data[2*i] = (float)cvtest::randReal(rng)*image_size; src_data[2*i+1] = (float)cvtest::randReal(rng)*image_size; } cv::Mat src_mat_2f(1, N, CV_32FC2, src_data), src_mat_2d(2, N, CV_32F, src_data), src_mat_3d(3, N, CV_32F); cv::Mat dst_mat_2f, dst_mat_2d, dst_mat_3d; vector src_vec, dst_vec; for (size_t i = 0; i < N; ++i) { float *tmp = src_mat_2d.ptr()+2*i; src_mat_3d.at(0, i) = tmp[0]; src_mat_3d.at(1, i) = tmp[1]; src_mat_3d.at(2, i) = 1.0f; src_vec.push_back(Point2f(tmp[0], tmp[1])); } double fi = cvtest::randReal(rng)*2*CV_PI; double t_x = cvtest::randReal(rng)*sqrt(image_size*1.0), t_y = cvtest::randReal(rng)*sqrt(image_size*1.0); double Hdata[9] = { cos(fi), -sin(fi), t_x, sin(fi), cos(fi), t_y, 0.0f, 0.0f, 1.0f }; cv::Mat H_64(3, 3, CV_64F, Hdata), H_32; H_64.convertTo(H_32, CV_32F); dst_mat_3d = H_32*src_mat_3d; dst_mat_2d.create(2, N, CV_32F); dst_mat_2f.create(1, N, CV_32FC2); for (size_t i = 0; i < N; ++i) { float *tmp_2f = dst_mat_2f.ptr()+2*i; tmp_2f[0] = dst_mat_2d.at(0, i) = dst_mat_3d.at(0, i) /= dst_mat_3d.at(2, i); tmp_2f[1] = dst_mat_2d.at(1, i) = dst_mat_3d.at(1, i) /= dst_mat_3d.at(2, i); dst_mat_3d.at(2, i) = 1.0f; dst_vec.push_back(Point2f(tmp_2f[0], tmp_2f[1])); } for (size_t i = 0; i < METHODS_COUNT; ++i) { method = METHOD[i]; switch (method) { case 0: case CV_LMEDS: { Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, method), cv::findHomography(src_mat_2f, dst_vec, method), cv::findHomography(src_vec, dst_mat_2f, method), cv::findHomography(src_vec, dst_vec, method) }; for (size_t j = 0; j < 4; ++j) { if (!check_matrix_size(H_res_64[j])) { print_information_1(j, N, method, H_res_64[j]); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE); return; } double diff; for (size_t k = 0; k < COUNT_NORM_TYPES; ++k) if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff)) { print_information_2(j, N, method, H_64, H_res_64[j], k, diff); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF); return; } } continue; } case CV_RANSAC: { cv::Mat mask [4]; double diff; Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, CV_RANSAC, reproj_threshold, mask[0]), cv::findHomography(src_mat_2f, dst_vec, CV_RANSAC, reproj_threshold, mask[1]), cv::findHomography(src_vec, dst_mat_2f, CV_RANSAC, reproj_threshold, mask[2]), cv::findHomography(src_vec, dst_vec, CV_RANSAC, reproj_threshold, mask[3]) }; for (size_t j = 0; j < 4; ++j) { if (!check_matrix_size(H_res_64[j])) { print_information_1(j, N, method, H_res_64[j]); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE); return; } for (size_t k = 0; k < COUNT_NORM_TYPES; ++k) if (!check_matrix_diff(H_64, H_res_64[j], NORM_TYPE[k], diff)) { print_information_2(j, N, method, H_64, H_res_64[j], k, diff); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_DIFF, MESSAGE_MATRIX_DIFF); return; } int code = check_ransac_mask_1(src_mat_2f, mask[j]); if (code) { print_information_3(j, N, mask[j]); switch (code) { case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; } case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_2); break; } case 3: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; } default: break; } return; } } continue; } default: continue; } } Mat noise_2f(1, N, CV_32FC2); rng.fill(noise_2f, RNG::NORMAL, Scalar::all(0), Scalar::all(sigma)); cv::Mat mask(N, 1, CV_8UC1); for (int i = 0; i < N; ++i) { float *a = noise_2f.ptr()+2*i, *_2f = dst_mat_2f.ptr()+2*i; _2f[0] /* = dst_mat_2d.at(0, i) = dst_mat_3d.at(0, i) */ += a[0]; _2f[1] /* = dst_mat_2d.at(1, i) = dst_mat_3d.at(1, i) */ += a[1]; mask.at(i, 0) = !(sqrt(a[0]*a[0]+a[1]*a[1]) > reproj_threshold); } for (size_t i = 0; i < METHODS_COUNT; ++i) { method = METHOD[i]; switch (method) { case 0: case CV_LMEDS: { Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f), cv::findHomography(src_mat_2f, dst_vec), cv::findHomography(src_vec, dst_mat_2f), cv::findHomography(src_vec, dst_vec) }; for (size_t j = 0; j < 4; ++j) { if (!check_matrix_size(H_res_64[j])) { print_information_1(j, N, method, H_res_64[j]); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE); return; } Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F); cv::Mat dst_res_3d(3, N, CV_32F), noise_2d(2, N, CV_32F); for (size_t k = 0; k < N; ++k) { Mat tmp_mat_3d = H_res_32*src_mat_3d.col(k); dst_res_3d.at(0, k) = tmp_mat_3d.at(0, 0) /= tmp_mat_3d.at(2, 0); dst_res_3d.at(1, k) = tmp_mat_3d.at(1, 0) /= tmp_mat_3d.at(2, 0); dst_res_3d.at(2, k) = tmp_mat_3d.at(2, 0) = 1.0f; float *a = noise_2f.ptr()+2*k; noise_2d.at(0, k) = a[0]; noise_2d.at(1, k) = a[1]; for (size_t l = 0; l < COUNT_NORM_TYPES; ++l) if (cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l]) > max_2diff) { print_information_4(method, j, N, k, l, cv::norm(tmp_mat_3d, dst_mat_3d.col(k), NORM_TYPE[l]) - cv::norm(noise_2d.col(k), NORM_TYPE[l])); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_1); return; } } Mat tmp_mat_3d = H_res_32*src_mat_3d; for (size_t l = 0; l < COUNT_NORM_TYPES; ++l) if (cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l]) > max_diff) { print_information_5(method, j, N, l, cv::norm(dst_res_3d, dst_mat_3d, NORM_TYPE[l]) - cv::norm(noise_2d, NORM_TYPE[l])); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_REPROJ_DIFF, MESSAGE_REPROJ_DIFF_2); return; } } continue; } case CV_RANSAC: { cv::Mat mask_res [4]; Mat H_res_64 [4] = { cv::findHomography(src_mat_2f, dst_mat_2f, CV_RANSAC, reproj_threshold, mask_res[0]), cv::findHomography(src_mat_2f, dst_vec, CV_RANSAC, reproj_threshold, mask_res[1]), cv::findHomography(src_vec, dst_mat_2f, CV_RANSAC, reproj_threshold, mask_res[2]), cv::findHomography(src_vec, dst_vec, CV_RANSAC, reproj_threshold, mask_res[3]) }; for (size_t j = 0; j < 4; ++j) { if (!check_matrix_size(H_res_64[j])) { print_information_1(j, N, method, H_res_64[j]); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_MATRIX_SIZE, MESSAGE_MATRIX_SIZE); return; } int code = check_ransac_mask_2(mask, mask_res[j]); if (code) { print_information_3(j, N, mask_res[j]); switch (code) { case 1: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_1); break; } case 2: { CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_3); break; } default: break; } return; } cv::Mat H_res_32; H_res_64[j].convertTo(H_res_32, CV_32F); cv::Mat dst_res_3d = H_res_32*src_mat_3d; for (size_t k = 0; k < N; ++k) { dst_res_3d.at(0, k) /= dst_res_3d.at(2, k); dst_res_3d.at(1, k) /= dst_res_3d.at(2, k); dst_res_3d.at(2, k) = 1.0f; float *p = dst_mat_2f.ptr()+2*k; dst_mat_3d.at(0, k) = p[0]; dst_mat_3d.at(1, k) = p[1]; double diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_L2); if (mask_res[j].at(k, 0) != (diff <= reproj_threshold)) { print_information_6(j, N, k, diff, mask_res[j].at(k, 0)); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_4); return; } if (mask.at(k, 0) && !mask_res[j].at(k, 0)) { print_information_7(j, N, k, diff, mask.at(k, 0), mask_res[j].at(k, 0)); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_MASK, MESSAGE_RANSAC_MASK_5); return; } if (mask_res[j].at(k, 0)) { float *a = noise_2f.ptr()+2*k; dst_mat_3d.at(0, k) -= a[0]; dst_mat_3d.at(1, k) -= a[1]; cv::Mat noise_2d(2, 1, CV_32F); noise_2d.at(0, 0) = a[0]; noise_2d.at(1, 0) = a[1]; for (size_t l = 0; l < COUNT_NORM_TYPES; ++l) { diff = cv::norm(dst_res_3d.col(k), dst_mat_3d.col(k), NORM_TYPE[l]); if (diff - cv::norm(noise_2d, NORM_TYPE[l]) > max_2diff) { print_information_8(j, N, k, l, diff - cv::norm(noise_2d, NORM_TYPE[l])); CV_Error(CALIB3D_HOMOGRAPHY_ERROR_RANSAC_DIFF, MESSAGE_RANSAC_DIFF); return; } } } } } continue; } default: continue; } } } } TEST(Calib3d_Homography, complex_test) { CV_HomographyTest test; test.safe_run(); }