#include #include #include #include using namespace cv; using namespace std; inline Point2f applyHomography( const Mat_& H, const Point2f& pt ) { double z = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2); if( z ) { double w = 1./z; return Point2f( (H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w, (H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w ); } return Point2f( numeric_limits::max(), numeric_limits::max() ); } Mat warpPerspectiveRand( const Mat& src, Mat& dst, RNG* rng ) { Mat H(3, 3, CV_32FC1); H.at(0,0) = rng->uniform( 0.8f, 1.2f); H.at(0,1) = rng->uniform(-0.1f, 0.1f); H.at(0,2) = rng->uniform(-0.1f, 0.1f)*src.cols; H.at(1,0) = rng->uniform(-0.1f, 0.1f); H.at(1,1) = rng->uniform( 0.8f, 1.2f); H.at(1,2) = rng->uniform(-0.1f, 0.3f)*src.rows; H.at(2,0) = rng->uniform( -1e-4f, 1e-4f); H.at(2,1) = rng->uniform( -1e-4f, 1e-4f); H.at(2,2) = rng->uniform( 0.8f, 1.1f); warpPerspective( src, dst, H, src.size() ); return H; } FeatureDetector* createDetector( const string& detectorType ) { FeatureDetector* fd = 0; if( !detectorType.compare( "FAST" ) ) { fd = new FastFeatureDetector( 10/*threshold*/, true/*nonmax_suppression*/ ); } else if( !detectorType.compare( "STAR" ) ) { fd = new StarFeatureDetector( 16/*max_size*/, 5/*response_threshold*/, 10/*line_threshold_projected*/, 8/*line_threshold_binarized*/, 5/*suppress_nonmax_size*/ ); } else if( !detectorType.compare( "SIFT" ) ) { fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(), SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD()); } else if( !detectorType.compare( "SURF" ) ) { fd = new SurfFeatureDetector( 100./*hessian_threshold*/, 3 /*octaves*/, 4/*octave_layers*/ ); } else if( !detectorType.compare( "MSER" ) ) { fd = new MserFeatureDetector( 5/*delta*/, 60/*min_area*/, 14400/*_max_area*/, 0.25f/*max_variation*/, 0.2/*min_diversity*/, 200/*max_evolution*/, 1.01/*area_threshold*/, 0.003/*min_margin*/, 5/*edge_blur_size*/ ); } else if( !detectorType.compare( "GFTT" ) ) { fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/, 3/*int _blockSize*/, true/*useHarrisDetector*/, 0.04/*k*/ ); } else assert(0); return fd; } GenericDescriptorMatch* createDescriptorMatch( const string& descriptorType ) { GenericDescriptorMatch* de = 0; if( !descriptorType.compare( "SIFT" ) ) { SiftDescriptorExtractor extractor/*( double magnification=SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(), bool isNormalize=true, bool recalculateAngles=true, int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, int angleMode=SIFT::CommonParams::FIRST_ANGLE )*/; BruteForceMatcher > matcher; de = new VectorDescriptorMatch > >(extractor, matcher); } else if( !descriptorType.compare( "SURF" ) ) { SurfDescriptorExtractor extractor/*( int nOctaves=4, int nOctaveLayers=2, bool extended=false )*/; BruteForceMatcher > matcher; de = new VectorDescriptorMatch > >(extractor, matcher); } else assert(0); return de; } void drawCorrespondences( const Mat& img1, const Mat& img2, const vector& keypoints1, const vector& keypoints2, const vector& matches, Mat& drawImg, const Mat& H12 = Mat() ) { Scalar RED = CV_RGB(255, 0, 0); // red keypoint - point without corresponding point Scalar GREEN = CV_RGB(0, 255, 0); // green keypoint - point having correct corresponding point Scalar BLUE = CV_RGB(0, 0, 255); // blue keypoint - point having incorrect corresponding point Size size(img1.cols + img2.cols, MAX(img1.rows, img2.rows)); drawImg.create(size, CV_MAKETYPE(img1.depth(), 3)); Mat drawImg1 = drawImg(Rect(0, 0, img1.cols, img1.rows)); cvtColor(img1, drawImg1, CV_GRAY2RGB); Mat drawImg2 = drawImg(Rect(img1.cols, 0, img2.cols, img2.rows)); cvtColor(img2, drawImg2, CV_GRAY2RGB); // draw keypoints for(vector::const_iterator it = keypoints1.begin(); it < keypoints1.end(); ++it ) { circle(drawImg, it->pt, 3, RED); } for(vector::const_iterator it = keypoints2.begin(); it < keypoints2.end(); ++it ) { Point p = it->pt; circle(drawImg, Point2f(p.x+img1.cols, p.y), 3, RED); } // draw matches vector::const_iterator mit = matches.begin(); assert( matches.size() == keypoints1.size() ); for( int i1 = 0; mit != matches.end(); ++mit, i1++ ) { Point2f pt1 = keypoints1[i1].pt, pt2 = keypoints2[*mit].pt, dpt2 = Point2f( std::min(pt2.x+img1.cols, float(drawImg.cols-1)), pt2.y); if( !H12.empty() ) { if( norm(pt2 - applyHomography(H12, pt1)) > 3 ) { circle(drawImg, pt1, 3, BLUE); circle(drawImg, dpt2, 3, BLUE); continue; } } circle(drawImg, pt1, 3, GREEN); circle(drawImg, dpt2, 3, GREEN); line(drawImg, pt1, dpt2, GREEN); } } const string winName = "correspondences"; void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective, vector& keypoints1, Ptr& detector, Ptr& descriptor, double ransacReprojThreshold = -1, RNG* rng = 0 ) { assert( !img1.empty() ); Mat H12; if( isWarpPerspective ) { assert( rng ); H12 = warpPerspectiveRand(img1, img2, rng); } else assert( !img2.empty() && img2.cols==img1.cols && img2.rows== img1.rows ); cout << endl << "< Extracting keypoints from second image..." << endl; vector keypoints2; detector->detect( img2, keypoints2 ); cout << keypoints2.size() << " >" << endl; cout << "< Computing and matching descriptors..." << endl; vector matches; //if( keypoints1.size()>0 && keypoints2.size()>0 ) { descriptor->clear(); descriptor->add( img2, keypoints2 ); descriptor->match( img1, keypoints1, matches ); } cout << ">" << endl; if( !isWarpPerspective && ransacReprojThreshold >= 0 ) { cout << "< Computing homography (RANSAC)..." << endl; vector points1(matches.size()), points2(matches.size()); for( int i = 0; i < matches.size(); i++ ) { points1[i] = keypoints1[i].pt; points2[i] = keypoints2[matches[i]].pt; } H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold ); cout << ">" << endl; } Mat drawImg; drawCorrespondences( img1, img2, keypoints1, keypoints2, matches, drawImg, H12 ); imshow( winName, drawImg ); } int main(int argc, char** argv) { if( argc != 4 && argc != 6 ) { cout << "Format:" << endl; cout << "case1: second image is obtained from the first (given) image using random generated homography matrix" << endl; cout << argv[0] << " [detectorType] [descriptorType] [image1]" << endl; cout << "case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated" << endl; cout << argv[0] << " [detectorType] [descriptorType] [image1] [image2] [ransacReprojThreshold]" << endl; cout << endl << "Mathes are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)" << endl; return 0; } bool isWarpPerspective = argc == 4; double ransacReprojThreshold = -1; if( !isWarpPerspective ) ransacReprojThreshold = atof(argv[5]); cout << "< Creating detector, descriptor..." << endl; Ptr detector = createDetector(argv[1]); Ptr descriptor = createDescriptorMatch(argv[2]); cout << ">" << endl; if( detector.empty() || descriptor.empty() ) { cout << "Can not create detector or descriptor or matcher of given types" << endl; return 0; } cout << "< Reading the images..." << endl; Mat img1 = imread( argv[3], CV_LOAD_IMAGE_GRAYSCALE), img2; if( !isWarpPerspective ) img2 = imread( argv[4], CV_LOAD_IMAGE_GRAYSCALE); cout << ">" << endl; if( img1.empty() || (!isWarpPerspective && img2.empty()) ) { cout << "Can not read images" << endl; return 0; } cout << endl << "< Extracting keypoints from first image..." << endl; vector keypoints1; detector->detect( img1, keypoints1 ); cout << keypoints1.size() << " >" << endl; namedWindow(winName, 1); RNG rng; doIteration( img1, img2, isWarpPerspective, keypoints1, detector, descriptor, ransacReprojThreshold, &rng ); for(;;) { char c = (char)cvWaitKey(0); if( c == '\x1b' ) // esc { cout << "Exiting ..." << endl; return 0; } else if( isWarpPerspective ) { doIteration( img1, img2, isWarpPerspective, keypoints1, detector, descriptor, ransacReprojThreshold, &rng ); } } waitKey(0); }