/* * BackgroundSubtractorGBH_test.cpp * * Created on: Jun 14, 2012 * Author: andrewgodbehere */ #include "test_precomp.hpp" using namespace cv; class CV_BackgroundSubtractorTest : public cvtest::BaseTest { public: CV_BackgroundSubtractorTest(); protected: void run(int); }; CV_BackgroundSubtractorTest::CV_BackgroundSubtractorTest() { } /** * This test checks the following: * (i) BackgroundSubtractorGMG can operate with matrices of various types and sizes * (ii) Training mode returns empty fgmask * (iii) End of training mode, and anomalous frame yields every pixel detected as FG */ void CV_BackgroundSubtractorTest::run(int) { int code = cvtest::TS::OK; RNG& rng = ts->get_rng(); int type = ((unsigned int)rng)%7; //!< pick a random type, 0 - 6, defined in types_c.h int channels = 1 + ((unsigned int)rng)%4; //!< random number of channels from 1 to 4. int channelsAndType = CV_MAKETYPE(type,channels); int width = 2 + ((unsigned int)rng)%98; //!< Mat will be 2 to 100 in width and height int height = 2 + ((unsigned int)rng)%98; Ptr fgbg = Algorithm::create("BackgroundSubtractor.GMG"); Mat fgmask; if (fgbg == NULL) CV_Error(CV_StsError,"Failed to create Algorithm\n"); /** * Set a few parameters */ fgbg->set("smoothingRadius",7); fgbg->set("decisionThreshold",0.7); fgbg->set("initializationFrames",120); /** * Generate bounds for the values in the matrix for each type */ uchar maxuc,minuc = 0; char maxc,minc = 0; uint maxui,minui = 0; int maxi,mini = 0; long int maxli,minli = 0; float maxf,minf = 0.0; double maxd,mind = 0.0; /** * Max value for simulated images picked randomly in upper half of type range * Min value for simulated images picked randomly in lower half of type range */ if (type == CV_8U) { unsigned char half = UCHAR_MAX/2; maxuc = (unsigned char)rng.uniform(half+32,UCHAR_MAX); minuc = (unsigned char)rng.uniform(0,half-32); } else if (type == CV_8S) { char half = CHAR_MAX/2 + CHAR_MIN/2; maxc = (char)rng.uniform(half+32,CHAR_MAX); minc = (char)rng.uniform(CHAR_MIN,half-32); } else if (type == CV_16U) { uint half = UINT_MAX/2; maxui = (unsigned int)rng.uniform((int)half+32,UINT_MAX); minui = (unsigned int)rng.uniform(0,(int)half-32); } else if (type == CV_16S) { int half = INT_MAX/2 + INT_MIN/2; maxi = rng.uniform(half+32,INT_MAX); mini = rng.uniform(INT_MIN,half-32); } else if (type == CV_32S) { long int half = LONG_MAX/2 + LONG_MIN/2; maxli = rng.uniform((int)half+32,(int)LONG_MAX); minli = rng.uniform((int)LONG_MIN,(int)half-32); } else if (type == CV_32F) { float half = FLT_MAX/2.0 + FLT_MIN/2.0; maxf = rng.uniform(half+(float)32.0*FLT_EPSILON,FLT_MAX); minf = rng.uniform(FLT_MIN,half-(float)32.0*FLT_EPSILON); } else if (type == CV_64F) { double half = DBL_MAX/2.0 + DBL_MIN/2.0; maxd = rng.uniform(half+(double)32.0*DBL_EPSILON,DBL_MAX); mind = rng.uniform(DBL_MIN,half-(double)32.0*DBL_EPSILON); } Mat simImage = Mat::zeros(height,width,channelsAndType); const uint numLearningFrames = 120; for (uint i = 0; i < numLearningFrames; ++i) { /** * Genrate simulated "image" for any type. Values always confined to upper half of range. */ if (type == CV_8U) { rng.fill(simImage,RNG::UNIFORM,(unsigned char)(minuc/2+maxuc/2),maxuc); if (i == 0) fgbg->initializeType(simImage,minuc,maxuc); } else if (type == CV_8S) { rng.fill(simImage,RNG::UNIFORM,(char)(minc/2+maxc/2),maxc); if (i==0) fgbg->initializeType(simImage,minc,maxc); } else if (type == CV_16U) { rng.fill(simImage,RNG::UNIFORM,(unsigned int)(minui/2+maxui/2),maxui); if (i==0) fgbg->initializeType(simImage,minui,maxui); } else if (type == CV_16S) { rng.fill(simImage,RNG::UNIFORM,(int)(mini/2+maxi/2),maxi); if (i==0) fgbg->initializeType(simImage,mini,maxi); } else if (type == CV_32F) { rng.fill(simImage,RNG::UNIFORM,(float)(minf/2.0+maxf/2.0),maxf); if (i==0) fgbg->initializeType(simImage,minf,maxf); } else if (type == CV_32S) { rng.fill(simImage,RNG::UNIFORM,(long int)(minli/2+maxli/2),maxli); if (i==0) fgbg->initializeType(simImage,minli,maxli); } else if (type == CV_64F) { rng.fill(simImage,RNG::UNIFORM,(double)(mind/2.0+maxd/2.0),maxd); if (i==0) fgbg->initializeType(simImage,mind,maxd); } /** * Feed simulated images into background subtractor */ (*fgbg)(simImage,fgmask); Mat fullbg = Mat::zeros(Size(simImage.cols,simImage.rows),CV_8U); fgbg->updateBackgroundModel(fullbg); //! fgmask should be entirely background during training code = cvtest::cmpEps2( ts, fgmask, fullbg, 0, false, "The training foreground mask" ); if (code < 0) ts->set_failed_test_info( code ); } //! generate last image, distinct from training images if (type == CV_8U) rng.fill(simImage,RNG::UNIFORM,minuc,minuc); else if (type == CV_8S) rng.fill(simImage,RNG::UNIFORM,minc,minc); else if (type == CV_16U) rng.fill(simImage,RNG::UNIFORM,minui,minui); else if (type == CV_16S) rng.fill(simImage,RNG::UNIFORM,mini,mini); else if (type == CV_32F) rng.fill(simImage,RNG::UNIFORM,minf,minf); else if (type == CV_32S) rng.fill(simImage,RNG::UNIFORM,minli,minli); else if (type == CV_64F) rng.fill(simImage,RNG::UNIFORM,mind,mind); (*fgbg)(simImage,fgmask); //! now fgmask should be entirely foreground Mat fullfg = 255*Mat::ones(Size(simImage.cols,simImage.rows),CV_8U); code = cvtest::cmpEps2( ts, fgmask, fullfg, 255, false, "The final foreground mask" ); if (code < 0) { ts->set_failed_test_info( code ); } } TEST(VIDEO_BGSUBGMG, accuracy) { CV_BackgroundSubtractorTest test; test.safe_run(); }