/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /* * cvsamples.cpp * * support functions for training and test samples creation. */ #include "cvhaartraining.h" #include "_cvhaartraining.h" /* if ipl.h file is included then iplWarpPerspectiveQ function is used for image transformation during samples creation; otherwise internal cvWarpPerspective function is used */ //#include <ipl.h> #include "cv.h" #include "highgui.h" /* Calculates coefficients of perspective transformation * which maps <quad> into rectangle ((0,0), (w,0), (w,h), (h,0)): * * c00*xi + c01*yi + c02 * ui = --------------------- * c20*xi + c21*yi + c22 * * c10*xi + c11*yi + c12 * vi = --------------------- * c20*xi + c21*yi + c22 * * Coefficients are calculated by solving linear system: * / x0 y0 1 0 0 0 -x0*u0 -y0*u0 \ /c00\ /u0\ * | x1 y1 1 0 0 0 -x1*u1 -y1*u1 | |c01| |u1| * | x2 y2 1 0 0 0 -x2*u2 -y2*u2 | |c02| |u2| * | x3 y3 1 0 0 0 -x3*u3 -y3*u3 |.|c10|=|u3|, * | 0 0 0 x0 y0 1 -x0*v0 -y0*v0 | |c11| |v0| * | 0 0 0 x1 y1 1 -x1*v1 -y1*v1 | |c12| |v1| * | 0 0 0 x2 y2 1 -x2*v2 -y2*v2 | |c20| |v2| * \ 0 0 0 x3 y3 1 -x3*v3 -y3*v3 / \c21/ \v3/ * * where: * (xi, yi) = (quad[i][0], quad[i][1]) * cij - coeffs[i][j], coeffs[2][2] = 1 * (ui, vi) - rectangle vertices */ void cvGetPerspectiveTransform( CvSize src_size, double quad[4][2], double coeffs[3][3] ) { //CV_FUNCNAME( "cvWarpPerspective" ); __BEGIN__; double a[8][8]; double b[8]; CvMat A = cvMat( 8, 8, CV_64FC1, a ); CvMat B = cvMat( 8, 1, CV_64FC1, b ); CvMat X = cvMat( 8, 1, CV_64FC1, coeffs ); int i; for( i = 0; i < 4; ++i ) { a[i][0] = quad[i][0]; a[i][1] = quad[i][1]; a[i][2] = 1; a[i][3] = a[i][4] = a[i][5] = a[i][6] = a[i][7] = 0; b[i] = 0; } for( i = 4; i < 8; ++i ) { a[i][3] = quad[i-4][0]; a[i][4] = quad[i-4][1]; a[i][5] = 1; a[i][0] = a[i][1] = a[i][2] = a[i][6] = a[i][7] = 0; b[i] = 0; } int u = src_size.width - 1; int v = src_size.height - 1; a[1][6] = -quad[1][0] * u; a[1][7] = -quad[1][1] * u; a[2][6] = -quad[2][0] * u; a[2][7] = -quad[2][1] * u; b[1] = b[2] = u; a[6][6] = -quad[2][0] * v; a[6][7] = -quad[2][1] * v; a[7][6] = -quad[3][0] * v; a[7][7] = -quad[3][1] * v; b[6] = b[7] = v; cvSolve( &A, &B, &X ); coeffs[2][2] = 1; __END__; } /* Warps source into destination by a perspective transform */ void cvWarpPerspective( CvArr* src, CvArr* dst, double quad[4][2] ) { CV_FUNCNAME( "cvWarpPerspective" ); __BEGIN__; #ifdef __IPL_H__ IplImage src_stub, dst_stub; IplImage* src_img; IplImage* dst_img; CV_CALL( src_img = cvGetImage( src, &src_stub ) ); CV_CALL( dst_img = cvGetImage( dst, &dst_stub ) ); iplWarpPerspectiveQ( src_img, dst_img, quad, IPL_WARP_R_TO_Q, IPL_INTER_CUBIC | IPL_SMOOTH_EDGE ); #else int fill_value = 0; double c[3][3]; /* transformation coefficients */ double q[4][2]; /* rearranged quad */ int left = 0; int right = 0; int next_right = 0; int next_left = 0; double y_min = 0; double y_max = 0; double k_left, b_left, k_right, b_right; uchar* src_data; int src_step; CvSize src_size; uchar* dst_data; int dst_step; CvSize dst_size; double d = 0; int direction = 0; int i; if( !src || (!CV_IS_IMAGE( src ) && !CV_IS_MAT( src )) || cvGetElemType( src ) != CV_8UC1 || cvGetDims( src ) != 2 ) { CV_ERROR( CV_StsBadArg, "Source must be two-dimensional array of CV_8UC1 type." ); } if( !dst || (!CV_IS_IMAGE( dst ) && !CV_IS_MAT( dst )) || cvGetElemType( dst ) != CV_8UC1 || cvGetDims( dst ) != 2 ) { CV_ERROR( CV_StsBadArg, "Destination must be two-dimensional array of CV_8UC1 type." ); } CV_CALL( cvGetRawData( src, &src_data, &src_step, &src_size ) ); CV_CALL( cvGetRawData( dst, &dst_data, &dst_step, &dst_size ) ); CV_CALL( cvGetPerspectiveTransform( src_size, quad, c ) ); /* if direction > 0 then vertices in quad follow in a CW direction, otherwise they follow in a CCW direction */ direction = 0; for( i = 0; i < 4; ++i ) { int ni = i + 1; if( ni == 4 ) ni = 0; int pi = i - 1; if( pi == -1 ) pi = 3; d = (quad[i][0] - quad[pi][0])*(quad[ni][1] - quad[i][1]) - (quad[i][1] - quad[pi][1])*(quad[ni][0] - quad[i][0]); int cur_direction = CV_SIGN(d); if( direction == 0 ) { direction = cur_direction; } else if( direction * cur_direction < 0 ) { direction = 0; break; } } if( direction == 0 ) { CV_ERROR( CV_StsBadArg, "Quadrangle is nonconvex or degenerated." ); } /* <left> is the index of the topmost quad vertice if there are two such vertices <left> is the leftmost one */ left = 0; for( i = 1; i < 4; ++i ) { if( (quad[i][1] < quad[left][1]) || ((quad[i][1] == quad[left][1]) && (quad[i][0] < quad[left][0])) ) { left = i; } } /* rearrange <quad> vertices in such way that they follow in a CW direction and the first vertice is the topmost one and put them into <q> */ if( direction > 0 ) { for( i = left; i < 4; ++i ) { q[i-left][0] = quad[i][0]; q[i-left][1] = quad[i][1]; } for( i = 0; i < left; ++i ) { q[4-left+i][0] = quad[i][0]; q[4-left+i][1] = quad[i][1]; } } else { for( i = left; i >= 0; --i ) { q[left-i][0] = quad[i][0]; q[left-i][1] = quad[i][1]; } for( i = 3; i > left; --i ) { q[4+left-i][0] = quad[i][0]; q[4+left-i][1] = quad[i][1]; } } left = right = 0; /* if there are two topmost points, <right> is the index of the rightmost one otherwise <right> */ if( q[left][1] == q[left+1][1] ) { right = 1; } /* <next_left> follows <left> in a CCW direction */ next_left = 3; /* <next_right> follows <right> in a CW direction */ next_right = right + 1; /* subtraction of 1 prevents skipping of the first row */ y_min = q[left][1] - 1; /* left edge equation: y = k_left * x + b_left */ k_left = (q[left][0] - q[next_left][0]) / (q[left][1] - q[next_left][1]); b_left = (q[left][1] * q[next_left][0] - q[left][0] * q[next_left][1]) / (q[left][1] - q[next_left][1]); /* right edge equation: y = k_right * x + b_right */ k_right = (q[right][0] - q[next_right][0]) / (q[right][1] - q[next_right][1]); b_right = (q[right][1] * q[next_right][0] - q[right][0] * q[next_right][1]) / (q[right][1] - q[next_right][1]); for(;;) { int x, y; y_max = MIN( q[next_left][1], q[next_right][1] ); int iy_min = MAX( cvRound(y_min), 0 ) + 1; int iy_max = MIN( cvRound(y_max), dst_size.height - 1 ); double x_min = k_left * iy_min + b_left; double x_max = k_right * iy_min + b_right; /* walk through the destination quadrangle row by row */ for( y = iy_min; y <= iy_max; ++y ) { int ix_min = MAX( cvRound( x_min ), 0 ); int ix_max = MIN( cvRound( x_max ), dst_size.width - 1 ); for( x = ix_min; x <= ix_max; ++x ) { /* calculate coordinates of the corresponding source array point */ double div = (c[2][0] * x + c[2][1] * y + c[2][2]); double src_x = (c[0][0] * x + c[0][1] * y + c[0][2]) / div; double src_y = (c[1][0] * x + c[1][1] * y + c[1][2]) / div; int isrc_x = cvFloor( src_x ); int isrc_y = cvFloor( src_y ); double delta_x = src_x - isrc_x; double delta_y = src_y - isrc_y; uchar* s = src_data + isrc_y * src_step + isrc_x; int i00, i10, i01, i11; i00 = i10 = i01 = i11 = (int) fill_value; double i = fill_value; /* linear interpolation using 2x2 neighborhood */ if( isrc_x >= 0 && isrc_x <= src_size.width && isrc_y >= 0 && isrc_y <= src_size.height ) { i00 = s[0]; } if( isrc_x >= -1 && isrc_x < src_size.width && isrc_y >= 0 && isrc_y <= src_size.height ) { i10 = s[1]; } if( isrc_x >= 0 && isrc_x <= src_size.width && isrc_y >= -1 && isrc_y < src_size.height ) { i01 = s[src_step]; } if( isrc_x >= -1 && isrc_x < src_size.width && isrc_y >= -1 && isrc_y < src_size.height ) { i11 = s[src_step+1]; } double i0 = i00 + (i10 - i00)*delta_x; double i1 = i01 + (i11 - i01)*delta_x; i = i0 + (i1 - i0)*delta_y; ((uchar*)(dst_data + y * dst_step))[x] = (uchar) i; } x_min += k_left; x_max += k_right; } if( (next_left == next_right) || (next_left+1 == next_right && q[next_left][1] == q[next_right][1]) ) { break; } if( y_max == q[next_left][1] ) { left = next_left; next_left = left - 1; k_left = (q[left][0] - q[next_left][0]) / (q[left][1] - q[next_left][1]); b_left = (q[left][1] * q[next_left][0] - q[left][0] * q[next_left][1]) / (q[left][1] - q[next_left][1]); } if( y_max == q[next_right][1] ) { right = next_right; next_right = right + 1; k_right = (q[right][0] - q[next_right][0]) / (q[right][1] - q[next_right][1]); b_right = (q[right][1] * q[next_right][0] - q[right][0] * q[next_right][1]) / (q[right][1] - q[next_right][1]); } y_min = y_max; } #endif /* #ifndef __IPL_H__ */ __END__; } static void icvRandomQuad( int width, int height, double quad[4][2], double maxxangle, double maxyangle, double maxzangle ) { double distfactor = 3.0; double distfactor2 = 1.0; double halfw, halfh; int i; double rotVectData[3]; double vectData[3]; double rotMatData[9]; CvMat rotVect; CvMat rotMat; CvMat vect; double d; rotVect = cvMat( 3, 1, CV_64FC1, &rotVectData[0] ); rotMat = cvMat( 3, 3, CV_64FC1, &rotMatData[0] ); vect = cvMat( 3, 1, CV_64FC1, &vectData[0] ); rotVectData[0] = maxxangle * (2.0 * rand() / RAND_MAX - 1.0); rotVectData[1] = ( maxyangle - fabs( rotVectData[0] ) ) * (2.0 * rand() / RAND_MAX - 1.0); rotVectData[2] = maxzangle * (2.0 * rand() / RAND_MAX - 1.0); d = (distfactor + distfactor2 * (2.0 * rand() / RAND_MAX - 1.0)) * width; /* rotVectData[0] = maxxangle; rotVectData[1] = maxyangle; rotVectData[2] = maxzangle; d = distfactor * width; */ cvRodrigues2( &rotVect, &rotMat ); halfw = 0.5 * width; halfh = 0.5 * height; quad[0][0] = -halfw; quad[0][1] = -halfh; quad[1][0] = halfw; quad[1][1] = -halfh; quad[2][0] = halfw; quad[2][1] = halfh; quad[3][0] = -halfw; quad[3][1] = halfh; for( i = 0; i < 4; i++ ) { rotVectData[0] = quad[i][0]; rotVectData[1] = quad[i][1]; rotVectData[2] = 0.0; cvMatMulAdd( &rotMat, &rotVect, 0, &vect ); quad[i][0] = vectData[0] * d / (d + vectData[2]) + halfw; quad[i][1] = vectData[1] * d / (d + vectData[2]) + halfh; /* quad[i][0] += halfw; quad[i][1] += halfh; */ } } int icvStartSampleDistortion( const char* imgfilename, int bgcolor, int bgthreshold, CvSampleDistortionData* data ) { memset( data, 0, sizeof( *data ) ); data->src = cvLoadImage( imgfilename, 0 ); if( data->src != NULL && data->src->nChannels == 1 && data->src->depth == IPL_DEPTH_8U ) { int r, c; uchar* pmask; uchar* psrc; uchar* perode; uchar* pdilate; uchar dd, de; data->dx = data->src->width / 2; data->dy = data->src->height / 2; data->bgcolor = bgcolor; data->mask = cvCloneImage( data->src ); data->erode = cvCloneImage( data->src ); data->dilate = cvCloneImage( data->src ); /* make mask image */ for( r = 0; r < data->mask->height; r++ ) { for( c = 0; c < data->mask->width; c++ ) { pmask = ( (uchar*) (data->mask->imageData + r * data->mask->widthStep) + c ); if( bgcolor - bgthreshold <= (int) (*pmask) && (int) (*pmask) <= bgcolor + bgthreshold ) { *pmask = (uchar) 0; } else { *pmask = (uchar) 255; } } } /* extend borders of source image */ cvErode( data->src, data->erode, 0, 1 ); cvDilate( data->src, data->dilate, 0, 1 ); for( r = 0; r < data->mask->height; r++ ) { for( c = 0; c < data->mask->width; c++ ) { pmask = ( (uchar*) (data->mask->imageData + r * data->mask->widthStep) + c ); if( (*pmask) == 0 ) { psrc = ( (uchar*) (data->src->imageData + r * data->src->widthStep) + c ); perode = ( (uchar*) (data->erode->imageData + r * data->erode->widthStep) + c ); pdilate = ( (uchar*)(data->dilate->imageData + r * data->dilate->widthStep) + c ); de = (uchar)(bgcolor - (*perode)); dd = (uchar)((*pdilate) - bgcolor); if( de >= dd && de > bgthreshold ) { (*psrc) = (*perode); } if( dd > de && dd > bgthreshold ) { (*psrc) = (*pdilate); } } } } data->img = cvCreateImage( cvSize( data->src->width + 2 * data->dx, data->src->height + 2 * data->dy ), IPL_DEPTH_8U, 1 ); data->maskimg = cvCloneImage( data->img ); return 1; } return 0; } void icvPlaceDistortedSample( CvArr* background, int inverse, int maxintensitydev, double maxxangle, double maxyangle, double maxzangle, int inscribe, double maxshiftf, double maxscalef, CvSampleDistortionData* data ) { double quad[4][2]; int r, c; uchar* pimg; uchar* pbg; uchar* palpha; uchar chartmp; int forecolordev; float scale; IplImage* img; IplImage* maskimg; CvMat stub; CvMat* bgimg; CvRect cr; CvRect roi; double xshift, yshift, randscale; icvRandomQuad( data->src->width, data->src->height, quad, maxxangle, maxyangle, maxzangle ); quad[0][0] += (double) data->dx; quad[0][1] += (double) data->dy; quad[1][0] += (double) data->dx; quad[1][1] += (double) data->dy; quad[2][0] += (double) data->dx; quad[2][1] += (double) data->dy; quad[3][0] += (double) data->dx; quad[3][1] += (double) data->dy; cvSet( data->img, cvScalar( data->bgcolor ) ); cvSet( data->maskimg, cvScalar( 0.0 ) ); cvWarpPerspective( data->src, data->img, quad ); cvWarpPerspective( data->mask, data->maskimg, quad ); cvSmooth( data->maskimg, data->maskimg, CV_GAUSSIAN, 3, 3 ); bgimg = cvGetMat( background, &stub ); cr.x = data->dx; cr.y = data->dy; cr.width = data->src->width; cr.height = data->src->height; if( inscribe ) { /* quad's circumscribing rectangle */ cr.x = (int) MIN( quad[0][0], quad[3][0] ); cr.y = (int) MIN( quad[0][1], quad[1][1] ); cr.width = (int) (MAX( quad[1][0], quad[2][0] ) + 0.5F ) - cr.x; cr.height = (int) (MAX( quad[2][1], quad[3][1] ) + 0.5F ) - cr.y; } xshift = maxshiftf * rand() / RAND_MAX; yshift = maxshiftf * rand() / RAND_MAX; cr.x -= (int) ( xshift * cr.width ); cr.y -= (int) ( yshift * cr.height ); cr.width = (int) ((1.0 + maxshiftf) * cr.width ); cr.height = (int) ((1.0 + maxshiftf) * cr.height); randscale = maxscalef * rand() / RAND_MAX; cr.x -= (int) ( 0.5 * randscale * cr.width ); cr.y -= (int) ( 0.5 * randscale * cr.height ); cr.width = (int) ((1.0 + randscale) * cr.width ); cr.height = (int) ((1.0 + randscale) * cr.height); scale = MAX( ((float) cr.width) / bgimg->cols, ((float) cr.height) / bgimg->rows ); roi.x = (int) (-0.5F * (scale * bgimg->cols - cr.width) + cr.x); roi.y = (int) (-0.5F * (scale * bgimg->rows - cr.height) + cr.y); roi.width = (int) (scale * bgimg->cols); roi.height = (int) (scale * bgimg->rows); img = cvCreateImage( cvSize( bgimg->cols, bgimg->rows ), IPL_DEPTH_8U, 1 ); maskimg = cvCreateImage( cvSize( bgimg->cols, bgimg->rows ), IPL_DEPTH_8U, 1 ); cvSetImageROI( data->img, roi ); cvResize( data->img, img ); cvResetImageROI( data->img ); cvSetImageROI( data->maskimg, roi ); cvResize( data->maskimg, maskimg ); cvResetImageROI( data->maskimg ); forecolordev = (int) (maxintensitydev * (2.0 * rand() / RAND_MAX - 1.0)); for( r = 0; r < img->height; r++ ) { for( c = 0; c < img->width; c++ ) { pimg = (uchar*) img->imageData + r * img->widthStep + c; pbg = (uchar*) bgimg->data.ptr + r * bgimg->step + c; palpha = (uchar*) maskimg->imageData + r * maskimg->widthStep + c; chartmp = (uchar) MAX( 0, MIN( 255, forecolordev + (*pimg) ) ); if( inverse ) { chartmp ^= 0xFF; } *pbg = (uchar) (( chartmp*(*palpha )+(255 - (*palpha) )*(*pbg) ) / 255); } } cvReleaseImage( &img ); cvReleaseImage( &maskimg ); } void icvEndSampleDistortion( CvSampleDistortionData* data ) { if( data->src ) { cvReleaseImage( &data->src ); } if( data->mask ) { cvReleaseImage( &data->mask ); } if( data->erode ) { cvReleaseImage( &data->erode ); } if( data->dilate ) { cvReleaseImage( &data->dilate ); } if( data->img ) { cvReleaseImage( &data->img ); } if( data->maskimg ) { cvReleaseImage( &data->maskimg ); } } void icvWriteVecHeader( FILE* file, int count, int width, int height ) { int vecsize; short tmp; /* number of samples */ fwrite( &count, sizeof( count ), 1, file ); /* vector size */ vecsize = width * height; fwrite( &vecsize, sizeof( vecsize ), 1, file ); /* min/max values */ tmp = 0; fwrite( &tmp, sizeof( tmp ), 1, file ); fwrite( &tmp, sizeof( tmp ), 1, file ); } void icvWriteVecSample( FILE* file, CvArr* sample ) { CvMat* mat, stub; int r, c; short tmp; uchar chartmp; mat = cvGetMat( sample, &stub ); chartmp = 0; fwrite( &chartmp, sizeof( chartmp ), 1, file ); for( r = 0; r < mat->rows; r++ ) { for( c = 0; c < mat->cols; c++ ) { tmp = (short) (CV_MAT_ELEM( *mat, uchar, r, c )); fwrite( &tmp, sizeof( tmp ), 1, file ); } } } int cvCreateTrainingSamplesFromInfo( const char* infoname, const char* vecfilename, int num, int showsamples, int winwidth, int winheight ) { char fullname[PATH_MAX]; char* filename; FILE* info; FILE* vec; IplImage* src=0; IplImage* sample; int line; int error; int i; int x, y, width, height; int total; assert( infoname != NULL ); assert( vecfilename != NULL ); total = 0; if( !icvMkDir( vecfilename ) ) { #if CV_VERBOSE fprintf( stderr, "Unable to create directory hierarchy: %s\n", vecfilename ); #endif /* CV_VERBOSE */ return total; } info = fopen( infoname, "r" ); if( info == NULL ) { #if CV_VERBOSE fprintf( stderr, "Unable to open file: %s\n", infoname ); #endif /* CV_VERBOSE */ return total; } vec = fopen( vecfilename, "wb" ); if( vec == NULL ) { #if CV_VERBOSE fprintf( stderr, "Unable to open file: %s\n", vecfilename ); #endif /* CV_VERBOSE */ fclose( info ); return total; } sample = cvCreateImage( cvSize( winwidth, winheight ), IPL_DEPTH_8U, 1 ); icvWriteVecHeader( vec, num, sample->width, sample->height ); if( showsamples ) { cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE ); } strcpy( fullname, infoname ); filename = strrchr( fullname, '\\' ); if( filename == NULL ) { filename = strrchr( fullname, '/' ); } if( filename == NULL ) { filename = fullname; } else { filename++; } for( line = 1, error = 0, total = 0; total < num ;line++ ) { int count; error = ( fscanf( info, "%s %d", filename, &count ) != 2 ); if( !error ) { src = cvLoadImage( fullname, 0 ); error = ( src == NULL ); if( error ) { #if CV_VERBOSE fprintf( stderr, "Unable to open image: %s\n", fullname ); #endif /* CV_VERBOSE */ } } for( i = 0; (i < count) && (total < num); i++, total++ ) { error = ( fscanf( info, "%d %d %d %d", &x, &y, &width, &height ) != 4 ); if( error ) break; cvSetImageROI( src, cvRect( x, y, width, height ) ); cvResize( src, sample, width >= sample->width && height >= sample->height ? CV_INTER_AREA : CV_INTER_LINEAR ); if( showsamples ) { cvShowImage( "Sample", sample ); if( cvWaitKey( 0 ) == 27 ) { showsamples = 0; } } icvWriteVecSample( vec, sample ); } if( src ) { cvReleaseImage( &src ); } if( error ) { #if CV_VERBOSE fprintf( stderr, "%s(%d) : parse error", infoname, line ); #endif /* CV_VERBOSE */ break; } } if( sample ) { cvReleaseImage( &sample ); } fclose( vec ); fclose( info ); return total; } void cvShowVecSamples( const char* filename, int winwidth, int winheight, double scale ) { CvVecFile file; short tmp; int i; CvMat* sample; tmp = 0; file.input = fopen( filename, "rb" ); if( file.input != NULL ) { size_t elements_read1 = fread( &file.count, sizeof( file.count ), 1, file.input ); size_t elements_read2 = fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input ); size_t elements_read3 = fread( &tmp, sizeof( tmp ), 1, file.input ); size_t elements_read4 = fread( &tmp, sizeof( tmp ), 1, file.input ); CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1); if( file.vecsize != winwidth * winheight ) { int guessed_w = 0; int guessed_h = 0; fprintf( stderr, "Warning: specified sample width=%d and height=%d " "does not correspond to .vec file vector size=%d.\n", winwidth, winheight, file.vecsize ); if( file.vecsize > 0 ) { guessed_w = cvFloor( sqrt( (float) file.vecsize ) ); if( guessed_w > 0 ) { guessed_h = file.vecsize / guessed_w; } } if( guessed_w <= 0 || guessed_h <= 0 || guessed_w * guessed_h != file.vecsize) { fprintf( stderr, "Error: failed to guess sample width and height\n" ); fclose( file.input ); return; } else { winwidth = guessed_w; winheight = guessed_h; fprintf( stderr, "Guessed width=%d, guessed height=%d\n", winwidth, winheight ); } } if( !feof( file.input ) && scale > 0 ) { CvMat* scaled_sample = 0; file.last = 0; file.vector = (short*) cvAlloc( sizeof( *file.vector ) * file.vecsize ); sample = scaled_sample = cvCreateMat( winheight, winwidth, CV_8UC1 ); if( scale != 1.0 ) { scaled_sample = cvCreateMat( MAX( 1, cvCeil( scale * winheight ) ), MAX( 1, cvCeil( scale * winwidth ) ), CV_8UC1 ); } cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE ); for( i = 0; i < file.count; i++ ) { icvGetHaarTraininDataFromVecCallback( sample, &file ); if( scale != 1.0 ) cvResize( sample, scaled_sample, CV_INTER_LINEAR); cvShowImage( "Sample", scaled_sample ); if( cvWaitKey( 0 ) == 27 ) break; } if( scaled_sample && scaled_sample != sample ) cvReleaseMat( &scaled_sample ); cvReleaseMat( &sample ); cvFree( &file.vector ); } fclose( file.input ); } } /* End of file. */