''' Feature-based image matching sample. USAGE find_obj.py [ ] ''' import numpy as np import cv2 FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) def draw_match(img1, img2, p1, p2, status = None, H = None): h1, w1 = img1.shape[:2] h2, w2 = img2.shape[:2] vis = np.zeros((max(h1, h2), w1+w2), np.uint8) vis[:h1, :w1] = img1 vis[:h2, w1:w1+w2] = img2 vis = cv2.cvtColor(vis, cv2.COLOR_GRAY2BGR) if H is not None: corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]]) corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) ) cv2.polylines(vis, [corners], True, (255, 255, 255)) if status is None: status = np.ones(len(p1), np.bool_) green = (0, 255, 0) red = (0, 0, 255) for (x1, y1), (x2, y2), inlier in zip(np.int32(p1), np.int32(p2), status): col = [red, green][inlier] if inlier: cv2.line(vis, (x1, y1), (x2+w1, y2), col) cv2.circle(vis, (x1, y1), 2, col, -1) cv2.circle(vis, (x2+w1, y2), 2, col, -1) else: r = 2 thickness = 3 cv2.line(vis, (x1-r, y1-r), (x1+r, y1+r), col, thickness) cv2.line(vis, (x1-r, y1+r), (x1+r, y1-r), col, thickness) cv2.line(vis, (x2+w1-r, y2-r), (x2+w1+r, y2+r), col, thickness) cv2.line(vis, (x2+w1-r, y2+r), (x2+w1+r, y2-r), col, thickness) return vis if __name__ == '__main__': print __doc__ import sys try: fn1, fn2 = sys.argv[1:3] except: fn1 = '../c/box.png' fn2 = '../c/box_in_scene.png' img1 = cv2.imread(fn1, 0) img2 = cv2.imread(fn2, 0) detector = cv2.SIFT() kp1, desc1 = detector.detectAndCompute(img1, None) kp2, desc2 = detector.detectAndCompute(img2, None) print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)) bf_matcher = cv2.BFMatcher(cv2.NORM_L2) flann_matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) def match_and_draw(matcher, r_threshold = 0.75): raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) p1, p2 = [], [] for m in raw_matches: if len(m) == 2 and m[0].distance < m[1].distance * r_threshold: m = m[0] p1.append( kp1[m.queryIdx].pt ) p2.append( kp2[m.trainIdx].pt ) p1, p2 = np.float32((p1, p2)) if len(p1) >= 4: H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 2.0) print '%d / %d inliers/matched' % (np.sum(status), len(status)) else: H, status = None, None print '%d matches found, not enough for homography estimation' % len(p1) vis = draw_match(img1, img2, p1, p2, status, H) return vis print 'bruteforce match:', vis_brute = match_and_draw( bf_matcher ) print 'flann match:', vis_flann = match_and_draw( flann_matcher ) cv2.imshow('find_obj', vis_brute) cv2.imshow('find_obj flann', vis_flann) 0xFF & cv2.waitKey() cv2.destroyAllWindows()