/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace std; namespace cv { Stitcher Stitcher::createDefault(bool try_use_gpu) { Stitcher stitcher; stitcher.setRegistrationResol(0.6); stitcher.setSeamEstimationResol(0.1); stitcher.setCompositingResol(ORIG_RESOL); stitcher.setPanoConfidenceThresh(1); stitcher.setHorizontalStrightening(true); stitcher.setFeaturesMatcher(new detail::BestOf2NearestMatcher(try_use_gpu)); #ifndef ANDROID if (try_use_gpu && gpu::getCudaEnabledDeviceCount() > 0) { stitcher.setFeaturesFinder(new detail::SurfFeaturesFinderGpu()); stitcher.setWarper(new SphericalWarperGpu()); } else #endif { stitcher.setFeaturesFinder(new detail::SurfFeaturesFinder()); stitcher.setWarper(new SphericalWarper()); } stitcher.setExposureCompenstor(new detail::BlocksGainCompensator()); stitcher.setSeamFinder(new detail::GraphCutSeamFinder()); stitcher.setBlender(new detail::MultiBandBlender(try_use_gpu)); return stitcher; } Stitcher::Status Stitcher::stitch(InputArray imgs_, OutputArray pano_) { // TODO split this func vector imgs; imgs_.getMatVector(imgs); Mat &pano = pano_.getMatRef(); int64 app_start_time = getTickCount(); int num_imgs = static_cast(imgs.size()); if (num_imgs < 2) { LOGLN("Need more images"); return ERR_NEED_MORE_IMGS; } double work_scale = 1, seam_scale = 1, compose_scale = 1; bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false; LOGLN("Finding features..."); int64 t = getTickCount(); vector features(num_imgs); Mat full_img, img; vector seam_est_imgs(num_imgs); vector full_img_sizes(num_imgs); double seam_work_aspect = 1; for (int i = 0; i < num_imgs; ++i) { full_img = imgs[i]; full_img_sizes[i] = full_img.size(); if (registr_resol_ < 0) { img = full_img; work_scale = 1; is_work_scale_set = true; } else { if (!is_work_scale_set) { work_scale = min(1.0, sqrt(registr_resol_ * 1e6 / full_img.size().area())); is_work_scale_set = true; } resize(full_img, img, Size(), work_scale, work_scale); } if (!is_seam_scale_set) { seam_scale = min(1.0, sqrt(seam_est_resol_ * 1e6 / full_img.size().area())); seam_work_aspect = seam_scale / work_scale; is_seam_scale_set = true; } (*features_finder_)(img, features[i]); features[i].img_idx = i; LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size()); resize(full_img, img, Size(), seam_scale, seam_scale); seam_est_imgs[i] = img.clone(); } features_finder_->collectGarbage(); full_img.release(); img.release(); LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); LOG("Pairwise matching"); t = getTickCount(); vector pairwise_matches; (*features_matcher_)(features, pairwise_matches); features_matcher_->collectGarbage(); LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); // Leave only images we are sure are from the same panorama vector indices = detail::leaveBiggestComponent(features, pairwise_matches, conf_thresh_); vector seam_est_imgs_subset; vector imgs_subset; vector full_img_sizes_subset; for (size_t i = 0; i < indices.size(); ++i) { imgs_subset.push_back(imgs[indices[i]]); seam_est_imgs_subset.push_back(seam_est_imgs[indices[i]]); full_img_sizes_subset.push_back(full_img_sizes[indices[i]]); } seam_est_imgs = seam_est_imgs_subset; imgs = imgs_subset; full_img_sizes = full_img_sizes_subset; num_imgs = static_cast(imgs.size()); if (num_imgs < 2) { LOGLN("Need more images"); return ERR_NEED_MORE_IMGS; } vector cameras; detail::HomographyBasedEstimator estimator; estimator(features, pairwise_matches, cameras); for (size_t i = 0; i < cameras.size(); ++i) { Mat R; cameras[i].R.convertTo(R, CV_32F); cameras[i].R = R; LOGLN("Initial intrinsic parameters #" << indices[i]+1 << ":\n " << cameras[i].K()); } detail::BundleAdjusterReproj adjuster; adjuster.setConfThresh(conf_thresh_); adjuster(features, pairwise_matches, cameras); // Find median focal length vector focals; for (size_t i = 0; i < cameras.size(); ++i) { LOGLN("Camera #" << indices[i]+1 << ":\n" << cameras[i].K()); focals.push_back(cameras[i].focal); } nth_element(focals.begin(), focals.begin() + focals.size()/2, focals.end()); float warped_image_scale = static_cast(focals[focals.size() / 2]); if (horiz_stright_) { vector rmats; for (size_t i = 0; i < cameras.size(); ++i) rmats.push_back(cameras[i].R); detail::waveCorrect(rmats); for (size_t i = 0; i < cameras.size(); ++i) cameras[i].R = rmats[i]; } LOGLN("Warping images (auxiliary)... "); t = getTickCount(); vector corners(num_imgs); vector masks_warped(num_imgs); vector images_warped(num_imgs); vector sizes(num_imgs); vector masks(num_imgs); // Preapre images masks for (int i = 0; i < num_imgs; ++i) { masks[i].create(seam_est_imgs[i].size(), CV_8U); masks[i].setTo(Scalar::all(255)); } // Warp images and their masks Ptr warper = warper_->create(warped_image_scale * seam_work_aspect); for (int i = 0; i < num_imgs; ++i) { Mat_ K; cameras[i].K().convertTo(K, CV_32F); K(0,0) *= seam_work_aspect; K(0,2) *= seam_work_aspect; K(1,1) *= seam_work_aspect; K(1,2) *= seam_work_aspect; corners[i] = warper->warp(seam_est_imgs[i], K, cameras[i].R, images_warped[i], INTER_LINEAR, BORDER_REFLECT); sizes[i] = images_warped[i].size(); warper->warp(masks[i], K, cameras[i].R, masks_warped[i], INTER_NEAREST, BORDER_CONSTANT); } vector images_warped_f(num_imgs); for (int i = 0; i < num_imgs; ++i) images_warped[i].convertTo(images_warped_f[i], CV_32F); LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); exposure_comp_->feed(corners, images_warped, masks_warped); seam_finder_->find(images_warped_f, corners, masks_warped); // Release unused memory seam_est_imgs.clear(); images_warped.clear(); images_warped_f.clear(); masks.clear(); LOGLN("Compositing..."); t = getTickCount(); Mat img_warped, img_warped_s; Mat dilated_mask, seam_mask, mask, mask_warped; double compose_seam_aspect = 1; double compose_work_aspect = 1; bool is_blender_prepared = false; for (int img_idx = 0; img_idx < num_imgs; ++img_idx) { LOGLN("Compositing image #" << indices[img_idx]+1); // Read image and resize it if necessary full_img = imgs[img_idx]; if (!is_compose_scale_set) { if (compose_resol_ > 0) compose_scale = min(1.0, sqrt(compose_resol_ * 1e6 / full_img.size().area())); is_compose_scale_set = true; // Compute relative scales compose_seam_aspect = compose_scale / seam_scale; compose_work_aspect = compose_scale / work_scale; // Update warped image scale warped_image_scale *= static_cast(compose_work_aspect); warper = warper_->create(warped_image_scale); // Update corners and sizes for (int i = 0; i < num_imgs; ++i) { // Update intrinsics cameras[i].focal *= compose_work_aspect; cameras[i].ppx *= compose_work_aspect; cameras[i].ppy *= compose_work_aspect; // Update corner and size Size sz = full_img_sizes[i]; if (std::abs(compose_scale - 1) > 1e-1) { sz.width = cvRound(full_img_sizes[i].width * compose_scale); sz.height = cvRound(full_img_sizes[i].height * compose_scale); } Mat K; cameras[i].K().convertTo(K, CV_32F); Rect roi = warper->warpRoi(sz, K, cameras[i].R); corners[i] = roi.tl(); sizes[i] = roi.size(); } } if (std::abs(compose_scale - 1) > 1e-1) resize(full_img, img, Size(), compose_scale, compose_scale); else img = full_img; full_img.release(); Size img_size = img.size(); Mat K; cameras[img_idx].K().convertTo(K, CV_32F); // Warp the current image warper->warp(img, K, cameras[img_idx].R, img_warped, INTER_LINEAR, BORDER_REFLECT); // Warp the current image mask mask.create(img_size, CV_8U); mask.setTo(Scalar::all(255)); warper->warp(mask, K, cameras[img_idx].R, mask_warped, INTER_NEAREST, BORDER_CONSTANT); // Compensate exposure exposure_comp_->apply(img_idx, corners[img_idx], img_warped, mask_warped); img_warped.convertTo(img_warped_s, CV_16S); img_warped.release(); img.release(); mask.release(); dilate(masks_warped[img_idx], dilated_mask, Mat()); resize(dilated_mask, seam_mask, mask_warped.size()); mask_warped = seam_mask & mask_warped; if (!is_blender_prepared) { blender_->prepare(corners, sizes); is_blender_prepared = true; } // Blend the current image blender_->feed(img_warped_s, mask_warped, corners[img_idx]); } Mat result, result_mask; blender_->blend(result, result_mask); LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); // Preliminary result is in CV_16SC3 format, but all values are in [0,255] range, // so convert it to avoid user confusing result.convertTo(pano, CV_8U); LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec"); return OK; } } // namespace cv