/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" static inline int cmpBlocks(const uchar* A, const uchar* B, int Bstep, CvSize blockSize ) { int x, s = 0; for( ; blockSize.height--; A += blockSize.width, B += Bstep ) { for( x = 0; x <= blockSize.width - 4; x += 4 ) s += std::abs(A[x] - B[x]) + std::abs(A[x+1] - B[x+1]) + std::abs(A[x+2] - B[x+2]) + std::abs(A[x+3] - B[x+3]); for( ; x < blockSize.width; x++ ) s += std::abs(A[x] - B[x]); } return s; } CV_IMPL void cvCalcOpticalFlowBM( const void* srcarrA, const void* srcarrB, CvSize blockSize, CvSize shiftSize, CvSize maxRange, int usePrevious, void* velarrx, void* velarry ) { CvMat stubA, *srcA = cvGetMat( srcarrA, &stubA ); CvMat stubB, *srcB = cvGetMat( srcarrB, &stubB ); CvMat stubx, *velx = cvGetMat( velarrx, &stubx ); CvMat stuby, *vely = cvGetMat( velarry, &stuby ); if( !CV_ARE_TYPES_EQ( srcA, srcB )) CV_Error( CV_StsUnmatchedFormats, "Source images have different formats" ); if( !CV_ARE_TYPES_EQ( velx, vely )) CV_Error( CV_StsUnmatchedFormats, "Destination images have different formats" ); CvSize velSize = { (srcA->width - blockSize.width)/shiftSize.width, (srcA->height - blockSize.height)/shiftSize.height }; if( !CV_ARE_SIZES_EQ( srcA, srcB ) || !CV_ARE_SIZES_EQ( velx, vely ) || velx->width != velSize.width || vely->height != velSize.height ) CV_Error( CV_StsUnmatchedSizes, "" ); if( CV_MAT_TYPE( srcA->type ) != CV_8UC1 || CV_MAT_TYPE( velx->type ) != CV_32FC1 ) CV_Error( CV_StsUnsupportedFormat, "Source images must have 8uC1 type and " "destination images must have 32fC1 type" ); if( srcA->step != srcB->step || velx->step != vely->step ) CV_Error( CV_BadStep, "two source or two destination images have different steps" ); const int SMALL_DIFF=2; const int BIG_DIFF=128; // scanning scheme coordinates cv::vector _ss((2 * maxRange.width + 1) * (2 * maxRange.height + 1)); CvPoint* ss = &_ss[0]; int ss_count = 0; int blWidth = blockSize.width, blHeight = blockSize.height; int blSize = blWidth*blHeight; int acceptLevel = blSize * SMALL_DIFF; int escapeLevel = blSize * BIG_DIFF; int i, j; cv::vector _blockA(cvAlign(blSize + 16, 16)); uchar* blockA = (uchar*)cvAlignPtr(&_blockA[0], 16); // Calculate scanning scheme int min_count = MIN( maxRange.width, maxRange.height ); // use spiral search pattern // // 9 10 11 12 // 8 1 2 13 // 7 * 3 14 // 6 5 4 15 //... 20 19 18 17 // for( i = 0; i < min_count; i++ ) { // four cycles along sides int x = -i-1, y = x; // upper side for( j = -i; j <= i + 1; j++, ss_count++ ) { ss[ss_count].x = ++x; ss[ss_count].y = y; } // right side for( j = -i; j <= i + 1; j++, ss_count++ ) { ss[ss_count].x = x; ss[ss_count].y = ++y; } // bottom side for( j = -i; j <= i + 1; j++, ss_count++ ) { ss[ss_count].x = --x; ss[ss_count].y = y; } // left side for( j = -i; j <= i + 1; j++, ss_count++ ) { ss[ss_count].x = x; ss[ss_count].y = --y; } } // the rest part if( maxRange.width < maxRange.height ) { int xleft = -min_count; // cycle by neighbor rings for( i = min_count; i < maxRange.height; i++ ) { // two cycles by x int y = -(i + 1); int x = xleft; // upper side for( j = -maxRange.width; j <= maxRange.width; j++, ss_count++, x++ ) { ss[ss_count].x = x; ss[ss_count].y = y; } x = xleft; y = -y; // bottom side for( j = -maxRange.width; j <= maxRange.width; j++, ss_count++, x++ ) { ss[ss_count].x = x; ss[ss_count].y = y; } } } else if( maxRange.width > maxRange.height ) { int yupper = -min_count; // cycle by neighbor rings for( i = min_count; i < maxRange.width; i++ ) { // two cycles by y int x = -(i + 1); int y = yupper; // left side for( j = -maxRange.height; j <= maxRange.height; j++, ss_count++, y++ ) { ss[ss_count].x = x; ss[ss_count].y = y; } y = yupper; x = -x; // right side for( j = -maxRange.height; j <= maxRange.height; j++, ss_count++, y++ ) { ss[ss_count].x = x; ss[ss_count].y = y; } } } int maxX = srcB->cols - blockSize.width, maxY = srcB->rows - blockSize.height; const uchar* Adata = srcA->data.ptr; const uchar* Bdata = srcB->data.ptr; int Astep = srcA->step, Bstep = srcB->step; // compute the flow for( i = 0; i < velx->rows; i++ ) { float* vx = (float*)(velx->data.ptr + velx->step*i); float* vy = (float*)(vely->data.ptr + vely->step*i); for( j = 0; j < velx->cols; j++ ) { int X1 = j*shiftSize.width, Y1 = i*shiftSize.height, X2, Y2; int offX = 0, offY = 0; if( usePrevious ) { offX = cvRound(vx[j]); offY = cvRound(vy[j]); } int k; for( k = 0; k < blHeight; k++ ) memcpy( blockA + k*blWidth, Adata + Astep*(Y1 + k) + X1, blWidth ); X2 = X1 + offX; Y2 = Y1 + offY; int dist = INT_MAX; if( 0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY ) dist = cmpBlocks( blockA, Bdata + Bstep*Y2 + X2, Bstep, blockSize ); int countMin = 1; int sumx = offX, sumy = offY; if( dist > acceptLevel ) { // do brute-force search for( k = 0; k < ss_count; k++ ) { int dx = offX + ss[k].x; int dy = offY + ss[k].y; X2 = X1 + dx; Y2 = Y1 + dy; if( !(0 <= X2 && X2 <= maxX && 0 <= Y2 && Y2 <= maxY) ) continue; int tmpDist = cmpBlocks( blockA, Bdata + Bstep*Y2 + X2, Bstep, blockSize ); if( tmpDist < acceptLevel ) { sumx = dx; sumy = dy; countMin = 1; break; } if( tmpDist < dist ) { dist = tmpDist; sumx = dx; sumy = dy; countMin = 1; } else if( tmpDist == dist ) { sumx += dx; sumy += dy; countMin++; } } if( dist > escapeLevel ) { sumx = offX; sumy = offY; countMin = 1; } } vx[j] = (float)sumx/countMin; vy[j] = (float)sumy/countMin; } } } /* End of file. */