.. _Bayes Classifier: Normal Bayes Classifier ======================= This is a simple classification model assuming that feature vectors from each class are normally distributed (though, not necessarily independently distributed). So, the whole data distribution function is assumed to be a Gaussian mixture, one component per class. Using the training data the algorithm estimates mean vectors and covariance matrices for every class, and then it uses them for prediction. [Fukunaga90] K. Fukunaga. *Introduction to Statistical Pattern Recognition*. second ed., New York: Academic Press, 1990. .. index:: CvNormalBayesClassifier CvNormalBayesClassifier ----------------------- .. c:type:: CvNormalBayesClassifier Bayes classifier for normally distributed data :: class CvNormalBayesClassifier : public CvStatModel { public: CvNormalBayesClassifier(); virtual ~CvNormalBayesClassifier(); CvNormalBayesClassifier( const Mat& _train_data, const Mat& _responses, const Mat& _var_idx=Mat(), const Mat& _sample_idx=Mat() ); virtual bool train( const Mat& _train_data, const Mat& _responses, const Mat& _var_idx=Mat(), const Mat& _sample_idx=Mat(), bool update=false ); virtual float predict( const Mat& _samples, Mat* results=0 ) const; virtual void clear(); virtual void save( const char* filename, const char* name=0 ); virtual void load( const char* filename, const char* name=0 ); virtual void write( CvFileStorage* storage, const char* name ); virtual void read( CvFileStorage* storage, CvFileNode* node ); protected: ... }; .. index:: CvNormalBayesClassifier::train .. _CvNormalBayesClassifier::train: CvNormalBayesClassifier::train ------------------------------ .. ocv:function:: bool CvNormalBayesClassifier::train( const Mat& _train_data, const Mat& _responses, const Mat& _var_idx =Mat(), const Mat& _sample_idx=Mat(), bool update=false ) Trains the model. The method trains the Normal Bayes classifier. It follows the conventions of the generic ``train`` "method" with the following limitations: * Only ``CV_ROW_SAMPLE`` data layout is supported. * Input variables are all ordered. * Output variable is categorical , which means that elements of ``_responses`` must be integer numbers, though the vector may have the ``CV_32FC1`` type. * Missing measurements are not supported. In addition, there is an ``update`` flag that identifies whether the model should be trained from scratch ( ``update=false`` ) or should be updated using the new training data ( ``update=true`` ). .. index:: CvNormalBayesClassifier::predict .. _CvNormalBayesClassifier::predict: CvNormalBayesClassifier::predict -------------------------------- .. ocv:function:: float CvNormalBayesClassifier::predict( const Mat& samples, Mat* results=0 ) const Predicts the response for sample(s). The method ``predict`` estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix ``samples`` . In case of multiple input vectors, there should be one output vector ``results`` . The predicted class for a single input vector is returned by the method.