/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #include "opencv2/ts/ocl_test.hpp" class AllignedFrameSource : public cv::superres::FrameSource { public: AllignedFrameSource(const cv::Ptr& base, int scale); void nextFrame(cv::OutputArray frame); void reset(); private: cv::Ptr base_; cv::Mat origFrame_; int scale_; }; AllignedFrameSource::AllignedFrameSource(const cv::Ptr& base, int scale) : base_(base), scale_(scale) { CV_Assert( base_ ); } void AllignedFrameSource::nextFrame(cv::OutputArray frame) { base_->nextFrame(origFrame_); if (origFrame_.rows % scale_ == 0 && origFrame_.cols % scale_ == 0) cv::superres::arrCopy(origFrame_, frame); else { cv::Rect ROI(0, 0, (origFrame_.cols / scale_) * scale_, (origFrame_.rows / scale_) * scale_); cv::superres::arrCopy(origFrame_(ROI), frame); } } void AllignedFrameSource::reset() { base_->reset(); } class DegradeFrameSource : public cv::superres::FrameSource { public: DegradeFrameSource(const cv::Ptr& base, int scale); void nextFrame(cv::OutputArray frame); void reset(); private: cv::Ptr base_; cv::Mat origFrame_; cv::Mat blurred_; cv::Mat deg_; double iscale_; }; DegradeFrameSource::DegradeFrameSource(const cv::Ptr& base, int scale) : base_(base), iscale_(1.0 / scale) { CV_Assert( base_ ); } static void addGaussNoise(cv::OutputArray _image, double sigma) { int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type); cv::Mat noise(_image.size(), CV_32FC(cn)); cvtest::TS::ptr()->get_rng().fill(noise, cv::RNG::NORMAL, 0.0, sigma); cv::addWeighted(_image, 1.0, noise, 1.0, 0.0, _image, depth); } static void addSpikeNoise(cv::OutputArray _image, int frequency) { cv::Mat_ mask(_image.size(), 0); for (int y = 0; y < mask.rows; ++y) for (int x = 0; x < mask.cols; ++x) if (cvtest::TS::ptr()->get_rng().uniform(0, frequency) < 1) mask(y, x) = 255; _image.setTo(cv::Scalar::all(255), mask); } void DegradeFrameSource::nextFrame(cv::OutputArray frame) { base_->nextFrame(origFrame_); cv::GaussianBlur(origFrame_, blurred_, cv::Size(5, 5), 0); cv::resize(blurred_, deg_, cv::Size(), iscale_, iscale_, cv::INTER_NEAREST); addGaussNoise(deg_, 10.0); addSpikeNoise(deg_, 500); cv::superres::arrCopy(deg_, frame); } void DegradeFrameSource::reset() { base_->reset(); } double MSSIM(cv::InputArray _i1, cv::InputArray _i2) { const double C1 = 6.5025; const double C2 = 58.5225; const int depth = CV_32F; cv::Mat I1, I2; _i1.getMat().convertTo(I1, depth); _i2.getMat().convertTo(I2, depth); cv::Mat I2_2 = I2.mul(I2); // I2^2 cv::Mat I1_2 = I1.mul(I1); // I1^2 cv::Mat I1_I2 = I1.mul(I2); // I1 * I2 cv::Mat mu1, mu2; cv::GaussianBlur(I1, mu1, cv::Size(11, 11), 1.5); cv::GaussianBlur(I2, mu2, cv::Size(11, 11), 1.5); cv::Mat mu1_2 = mu1.mul(mu1); cv::Mat mu2_2 = mu2.mul(mu2); cv::Mat mu1_mu2 = mu1.mul(mu2); cv::Mat sigma1_2, sigma2_2, sigma12; cv::GaussianBlur(I1_2, sigma1_2, cv::Size(11, 11), 1.5); sigma1_2 -= mu1_2; cv::GaussianBlur(I2_2, sigma2_2, cv::Size(11, 11), 1.5); sigma2_2 -= mu2_2; cv::GaussianBlur(I1_I2, sigma12, cv::Size(11, 11), 1.5); sigma12 -= mu1_mu2; cv::Mat t1, t2; cv::Mat numerator; cv::Mat denominator; // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2)) t1 = 2 * mu1_mu2 + C1; t2 = 2 * sigma12 + C2; numerator = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2)) t1 = mu1_2 + mu2_2 + C1; t2 = sigma1_2 + sigma2_2 + C2; denominator = t1.mul(t2); // ssim_map = numerator./denominator; cv::Mat ssim_map; cv::divide(numerator, denominator, ssim_map); // mssim = average of ssim map cv::Scalar mssim = cv::mean(ssim_map); if (_i1.channels() == 1) return mssim[0]; return (mssim[0] + mssim[1] + mssim[3]) / 3; } class SuperResolution : public testing::Test { public: template void RunTest(cv::Ptr superRes); }; template void SuperResolution::RunTest(cv::Ptr superRes) { const std::string inputVideoName = cvtest::TS::ptr()->get_data_path() + "car.avi"; const int scale = 2; const int iterations = 100; const int temporalAreaRadius = 2; ASSERT_FALSE( superRes.empty() ); const int btvKernelSize = superRes->getKernelSize(); superRes->setScale(scale); superRes->setIterations(iterations); superRes->setTemporalAreaRadius(temporalAreaRadius); cv::Ptr goldSource(new AllignedFrameSource(cv::superres::createFrameSource_Video(inputVideoName), scale)); cv::Ptr lowResSource(new DegradeFrameSource( cv::makePtr(cv::superres::createFrameSource_Video(inputVideoName), scale), scale)); // skip first frame cv::Mat frame; lowResSource->nextFrame(frame); goldSource->nextFrame(frame); cv::Rect inner(btvKernelSize, btvKernelSize, frame.cols - 2 * btvKernelSize, frame.rows - 2 * btvKernelSize); superRes->setInput(lowResSource); double srAvgMSSIM = 0.0; const int count = 10; cv::Mat goldFrame; T superResFrame; for (int i = 0; i < count; ++i) { goldSource->nextFrame(goldFrame); ASSERT_FALSE( goldFrame.empty() ); superRes->nextFrame(superResFrame); ASSERT_FALSE( superResFrame.empty() ); const double srMSSIM = MSSIM(goldFrame(inner), superResFrame); srAvgMSSIM += srMSSIM; } srAvgMSSIM /= count; EXPECT_GE( srAvgMSSIM, 0.5 ); } TEST_F(SuperResolution, BTVL1) { RunTest(cv::superres::createSuperResolution_BTVL1()); } #if defined(HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) && defined(HAVE_OPENCV_CUDAFILTERS) TEST_F(SuperResolution, BTVL1_CUDA) { RunTest(cv::superres::createSuperResolution_BTVL1_CUDA()); } #endif #ifdef HAVE_OPENCL namespace cvtest { namespace ocl { OCL_TEST_F(SuperResolution, BTVL1) { RunTest(cv::superres::createSuperResolution_BTVL1()); } } } // namespace cvtest::ocl #endif