The OpenCV Reference Manual
Release 2.4.2

July 03, 2012

CONTENTS

1 Introduction

1.1 APIConcepts o o i e e e e e e e e e e e 1
2 core. The Core Functionality 7
2.1 Basic Structures o e e e e e e e e e e e e e e e e e e 7
2.2 Basic C Structures and Operations vttt e e e e e e e e e 52
2.3 Dynamic SHrUCTUIES« v v v v i e e e e e e e e e e e e e e e e e 83
2.4 Operations ON ATTAYS . . v v v v v v v e 110
2.5 Drawing FUnNCtions o . i e e e e e e e e e e e e e 168
2.6 XML/YAML PersiStence v v v e 179
2.7 XML/YAML Persistence (C APL) e 192
2.8 CIUStering v vt e e e e e e e e 208
2.9 Utility and System Functions and Macros o i i i e 210
3 imgproc. Image Processing 219
3.1 ImageFiltering e e e 219
3.2 Geometric Image Transformations o e e 247
3.3 Miscellaneous Image Transformations 0 i e e 259
3.4 HiStOZrams o vt e e e e e e e e e e e e e e e e e e 273
3.5 Structural Analysis and Shape Descriptors Lo 283
3.6 Motion Analysis and Object Tracking e 296
3.7 Feature Detection e e e e e 300
3.8 Object Detection v v i i e e e e e e e e e e e e e e e e e e 311
4 highgui. High-level GUI and Media I/O 313
4.1 Userlnterface e e e 313
4.2 Reading and Writing Images and Video e 318
43 QtNew Functions e e e e e e 328
5 video. Video Analysis 335
5.1 Motion Analysis and Object Tracking e 335
6 calib3d. Camera Calibration and 3D Reconstruction 347
6.1 Camera Calibration and 3D Reconstruction, 347
7 features2d. 2D Features Framework 379
7.1 Feature Detection and Description i i it e e e e e e e e e 379
7.2 Common Interfaces of Feature Detectors ittt 382
7.3 Common Interfaces of Descriptor Extractors 392
7.4 Common Interfaces of Descriptor Matchers 394

7.5 Common Interfaces of Generic Descriptor Matchers, 400

7.6 Drawing Function of Keypoints and Matches 405
7.7 Object Categorization oL e e e e e e e e e e e 407
8 objdetect. Object Detection 411
8.1 Cascade Classification i i i e e e e e e e e e e e e e e e e e 411
8.2 Latent SVM . . . L . L e e e e e e 417
9 ml. Machine Learning 423
9.1 Statistical Models e e 423
9.2 Normal Bayes Classifier e 426
9.3 K-Nearest Neighbors e 428
9.4 Support Vector Machines e 431
0.5 Decision Trees v v v it i e e e e e e 437
0.6 BOOSHNZ ot e e e e e e e e e e e e e 444
9.7 Gradient Boosted Trees o o i i e e e e e e e e 448
9.8 Random Trees o i i i e e e e e 453
9.9 Extremely randomized trees L e e e e e e 457
9.10 Expectation Maximization o v v v v i i e e e e e e e e e e e e e e e e 458
9.11 Neural Networks o o e e 462
0.12 MLData.o e e e e e e 467
10 flann. Clustering and Search in Multi-Dimensional Spaces 475
10.1 Fast Approximate Nearest Neighbor Search 475
10.2 CIuStering o v vt e e e e e e e e e e e e e e e e e 479
11 gpu. GPU-accelerated Computer Vision 481
11.1 GPU Module Introduction o e e e e e 481
11.2 Initalization and Information L L e e 482
11.3 Data StrucCtures v v i e 486
11.4 Operations on MatriCes o o vt v ittt e e e e e e e e e e e 492
11.5 Per-element Operations v v v v v v v et e e e e e e e e e e e e e e e e e e 496
11.6 Tmage Processing o i i i e e e e e e e e e e e e e 504
11.7 Matrix Reductions i e e e e e e e e e 521
11.8 ObjectDetection i i e e 525
11.9 Feature Detection and Description o o e 530
11.10 Image Filtering o L e e e 543
11.11 Camera Calibration and 3D Reconstruction 558
1112 Video AnalySis o v o v e e e e e e e e e e e e e e e e e e e 567
12 photo. Computational Photography 575
12.1 Inpainting o o o e e e e e e e e e e e 575
13 stitching. Images stitching 577
13.1 Stitching Pipeline o e e e e e e e e e e 577
13.2 References o i i e e e e 578
13.3 High Level Functionality e 578
134 Camera e e e e e e e e e e e e e e e e 581
13.5 Features Finding and Images Matching 582
13.6 Rotation Estimation i e e e e e e e e e e e e e e 587
13.7 Autocalibration e e e e e e e e 591
13.8 Images Warping o i i i e e e e e e e e e e e e e e e e 592
13.9 Seam Estimation o e e e e e e e e e e e 597
13.10 Exposure Compensation e e e 600
13.11 Image Blenders L e e e 602

14 nonfree. Non-free functionality
14.1 Feature Detection and Description

15 contrib. Contributed/Experimental Stuff
15.1 Stereo Correspondence
15.2 FaceRecognizer - Face Recognition with OpenCV

16 legacy. Deprecated stuff
16.1 Motion Analysis
16.2 Expectation Maximization
163 Histograms
16.4 Planar Subdivisions (CAPI)
16.5 Feature Detection and Description
16.6 Common Interfaces of Descriptor Extractors . . .
16.7 Common Interfaces of Generic Descriptor Matchers

Bibliography

605
605

609
609
611

685
685
687
690
692
699
706
707

709

CHAPTER
ONE

INTRODUCTION

OpenCV (Open Source Computer Vision Library: http://opencv.willowgarage.com/wiki/) is an open-source BSD-
licensed library that includes several hundreds of computer vision algorithms. The document describes the so-called
OpenCV 2.x API, which is essentially a C++ API, as opposite to the C-based OpenCV 1.x API. The latter is described
in opencv1x.pdf.

OpenCV has a modular structure, which means that the package includes several shared or static libraries. The
following modules are available:

* core - a compact module defining basic data structures, including the dense multi-dimensional array Mat and
basic functions used by all other modules.

 imgproc - an image processing module that includes linear and non-linear image filtering, geometrical image
transformations (resize, affine and perspective warping, generic table-based remapping), color space conversion,
histograms, and so on.

* video - a video analysis module that includes motion estimation, background subtraction, and object tracking
algorithms.

* calib3d - basic multiple-view geometry algorithms, single and stereo camera calibration, object pose estimation,
stereo correspondence algorithms, and elements of 3D reconstruction.

features2d - salient feature detectors, descriptors, and descriptor matchers.

objdetect - detection of objects and instances of the predefined classes (for example, faces, eyes, mugs, people,
cars, and so on).

¢ highgui - an easy-to-use interface to video capturing, image and video codecs, as well as simple UI capabilities.
* gpu - GPU-accelerated algorithms from different OpenCV modules.
e ... some other helper modules, such as FLANN and Google test wrappers, Python bindings, and others.

The further chapters of the document describe functionality of each module. But first, make sure to get familiar with
the common API concepts used thoroughly in the library.

1.1 API Concepts

cv Namespace

All the OpenCV classes and functions are placed into the cv namespace. Therefore, to access this functionality from
your code, use the cv: : specifier or using namespace cv; directive:

http://opencv.willowgarage.com/wiki/

The OpenCV Reference Manual, Release 2.4.2

#include "opencv2/core/core.hpp"

cv::Mat H = cv::findHomography(pointsl, points2, CV_RANSAC, 5);

or

#include "opencv2/core/core.hpp"
using namespace cv;

Mat H = findHomography(pointsl, points2, CV_RANSAC, 5);

Some of the current or future OpenCV external names may conflict with STL or other libraries. In this case, use
explicit namespace specifiers to resolve the name conflicts:

Mat a(100, 100, CV_32F);

randu(a, Scalar::all(l), Scalar::all(std::rand()));
cv::log(a, a);

a /= std::log(2.);

Automatic Memory Management

OpenCV handles all the memory automatically.

First of all, std::vector, Mat, and other data structures used by the functions and methods have destructors that
deallocate the underlying memory buffers when needed. This means that the destructors do not always deallocate the
buffers as in case of Mat. They take into account possible data sharing. A destructor decrements the reference counter
associated with the matrix data buffer. The buffer is deallocated if and only if the reference counter reaches zero, that
is, when no other structures refer to the same buffer. Similarly, when a Mat instance is copied, no actual data is really
copied. Instead, the reference counter is incremented to memorize that there is another owner of the same data. There
is also the Mat: : clone method that creates a full copy of the matrix data. See the example below:

// create a big 8Mb matrix
Mat A(1000, 1000, CV_64F);

// create another header for the same matrix;

// this is an instant operation, regardless of the matrix size.

Mat B = A;

// create another header for the 3-rd row of A; no data is copied either
Mat C = B.row(3);

// now create a separate copy of the matrix

Mat D = B.clone();

// copy the 5-th row of B to C, that is, copy the 5-th row of A

// to the 3-rd row of A.

B.row(5).copyTo(C);

// now let A and D share the data; after that the modified version
// of A is still referenced by B and C.

A =1D;

// now make B an empty matrix (which references no memory buffers),
// but the modified version of A will still be referenced by C,

// despite that C is just a single row of the original A
B.release();

// finally, make a full copy of C. As a result, the big modified
// matrix will be deallocated, since it is not referenced by anyone
C = C.clone();

2 Chapter 1. Introduction

The OpenCV Reference Manual, Release 2.4.2

You see that the use of Mat and other basic structures is simple. But what about high-level classes or even user
data types created without taking automatic memory management into account? For them, OpenCV offers the Ptr<>
template class that is similar to std: : shared_ptr from C++ TR1. So, instead of using plain pointers:

T+ ptr = new T(...);

you can use:
Ptr<T> ptr = new T(...);

That is, Ptr<T> ptr encapsulates a pointer to a T instance and a reference counter associated with the pointer. See
the Ptr description for details.

Automatic Allocation of the Output Data

OpenCV deallocates the memory automatically, as well as automatically allocates the memory for output function
parameters most of the time. So, if a function has one or more input arrays (cv: : Mat instances) and some output arrays,
the output arrays are automatically allocated or reallocated. The size and type of the output arrays are determined from
the size and type of input arrays. If needed, the functions take extra parameters that help to figure out the output array
properties.

Example:

#include "cv.h"
#include "highgui.h"

using namespace cv;

int main(int, charsxx)

{
VideoCapture cap(0);
if(!cap.isOpened()) return -1;
Mat frame, edges;
namedWindow("edges",1);
for(;;)
{
cap >> frame;
cvtColor(frame, edges, CV_BGR2GRAY);
GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);
Canny(edges, edges, 0, 30, 3);
imshow("edges", edges);
if(waitKey(30) >= 0) break;
}
return 0;
}

The array frame is automatically allocated by the >> operator since the video frame resolution and the bit-depth is
known to the video capturing module. The array edges is automatically allocated by the cvtColor function. It has
the same size and the bit-depth as the input array. The number of channels is 1 because the color conversion code
CV_BGR2GRAY is passed, which means a color to grayscale conversion. Note that frame and edges are allocated only
once during the first execution of the loop body since all the next video frames have the same resolution. If you
somehow change the video resolution, the arrays are automatically reallocated.

The key component of this technology is the Mat : : create method. It takes the desired array size and type. If the array
already has the specified size and type, the method does nothing. Otherwise, it releases the previously allocated data,
if any (this part involves decrementing the reference counter and comparing it with zero), and then allocates a new

1.1. API Concepts 3

The OpenCV Reference Manual, Release 2.4.2

buffer of the required size. Most functions call the Mat: : create method for each output array, and so the automatic
output data allocation is implemented.

Some notable exceptions from this scheme are cv::mixChannels, cv::RNG::fill, and a few other functions and
methods. They are not able to allocate the output array, so you have to do this in advance.

Saturation Arithmetics

As a computer vision library, OpenCV deals a lot with image pixels that are often encoded in a compact, 8- or 16-bit
per channel, form and thus have a limited value range. Furthermore, certain operations on images, like color space
conversions, brightness/contrast adjustments, sharpening, complex interpolation (bi-cubic, Lanczos) can produce val-
ues out of the available range. If you just store the lowest 8 (16) bits of the result, this results in visual artifacts and
may affect a further image analysis. To solve this problem, the so-called saturation arithmetics is used. For example,
to store r, the result of an operation, to an 8-bit image, you find the nearest value within the 0..255 range:

I(x,y) = min(max(round(r), 0), 255)

Similar rules are applied to 8-bit signed, 16-bit signed and unsigned types. This semantics is used everywhere in the
library. In C++ code, it is done using the saturate_cast<> functions that resemble standard C++ cast operations.
See below the implementation of the formula provided above:

I.at<uchar>(y, Xx) = saturate_cast<uchar>(r);

where cv: :uchar is an OpenCV 8-bit unsigned integer type. In the optimized SIMD code, such SSE2 instructions as
paddusb, packuswb, and so on are used. They help achieve exactly the same behavior as in C++ code.

Note: Saturation is not applied when the result is 32-bit integer.

Fixed Pixel Types. Limited Use of Templates

Templates is a great feature of C++ that enables implementation of very powerful, efficient and yet safe data struc-
tures and algorithms. However, the extensive use of templates may dramatically increase compilation time and code
size. Besides, it is difficult to separate an interface and implementation when templates are used exclusively. This
could be fine for basic algorithms but not good for computer vision libraries where a single algorithm may span thou-
sands lines of code. Because of this and also to simplify development of bindings for other languages, like Python,
Java, Matlab that do not have templates at all or have limited template capabilities, the current OpenCV implemen-
tation is based on polymorphism and runtime dispatching over templates. In those places where runtime dispatching
would be too slow (like pixel access operators), impossible (generic Ptr<> implementation), or just very inconve-
nient (saturate_cast<>()) the current implementation introduces small template classes, methods, and functions.
Anywhere else in the current OpenCV version the use of templates is limited.

Consequently, there is a limited fixed set of primitive data types the library can operate on. That is, array elements
should have one of the following types:

* 8-bit unsigned integer (uchar)

* 8-bit signed integer (schar)

* 16-bit unsigned integer (ushort)

* 16-bit signed integer (short)

* 32-bit signed integer (int)

* 32-bit floating-point number (float)

* 64-bit floating-point number (double)

4 Chapter 1. Introduction

The OpenCV Reference Manual, Release 2.4.2

* atuple of several elements where all elements have the same type (one of the above). An array whose elements
are such tuples, are called multi-channel arrays, as opposite to the single-channel arrays, whose elements are
scalar values. The maximum possible number of channels is defined by the CV_CN_MAX constant, which is
currently set to 512.

For these basic types, the following enumeration is applied:

enum { CV_8U=0, Cv_8S=1, CV_1l6U=2, CV_16S=3, CV_32S=4, CV_32F=5, CV_64F=6 };

Multi-channel (n-channel) types can be specified using the following options:
e CV_8UC1 ... CV_64FC4 constants (for a number of channels from 1 to 4)

e CV_8UC(n) ... CV_64FC(n) or CV_MAKETYPE(CV_8U, n) ... CV_MAKETYPE(CV_64F, n) macros when the
number of channels is more than 4 or unknown at the compilation time.

Note: CV_32FC1 == CV_32F, CV_32FC2 == CV_32FC(2) == CV_MAKETYPE(CV_32F, 2), and
CV_MAKETYPE(depth, n) == ((x&7)<<3) + (n-1). This means that the constant type is formed from the
depth, taking the lowest 3 bits, and the number of channels minus 1, taking the next Log2 (CV_CN_MAX) bits.

Examples:

Mat mtx(3, 3, CV_32F); // make a 3x3 floating-point matrix
Mat cmtx (10, 1, CV_64FC2); // make a 10x1 2-channel floating-point
// matrix (10-element complex vector)
Mat img(Size(1920, 1080), CV_8UC3); // make a 3-channel (color) image
// of 1920 columns and 1080 rows.
Mat grayscale(image.size(), CV_MAKETYPE(image.depth(), 1)); // make a 1-channel image of
// the same size and same
// channel type as img

Arrays with more complex elements cannot be constructed or processed using OpenCV. Furthermore, each function
or method can handle only a subset of all possible array types. Usually, the more complex the algorithm is, the smaller
the supported subset of formats is. See below typical examples of such limitations:

 The face detection algorithm only works with 8-bit grayscale or color images.

* Linear algebra functions and most of the machine learning algorithms work with floating-point arrays only.
* Basic functions, such as cv: :add, support all types.

* Color space conversion functions support 8-bit unsigned, 16-bit unsigned, and 32-bit floating-point types.

The subset of supported types for each function has been defined from practical needs and could be extended in future
based on user requests.

InputArray and OutputArray

Many OpenCV functions process dense 2-dimensional or multi-dimensional numerical arrays. Usually, such functions
take cpp:class:Mat as parameters, but in some cases it’s more convenient to use std: : vector<> (for a point set, for
example) or Matx<> (for 3x3 homography matrix and such). To avoid many duplicates in the API, special “proxy”
classes have been introduced. The base “proxy” class is InputArray. It is used for passing read-only arrays on a
function input. The derived from InputArray class OutputArray is used to specify an output array for a function.
Normally, you should not care of those intermediate types (and you should not declare variables of those types explic-
itly) - it will all just work automatically. You can assume that instead of InputArray/OutputArray you can always
use Mat, std: :vector<>, Matx<>, Vec<> or Scalar. When a function has an optional input or output array, and you
do not have or do not want one, pass cv: :noArray().

1.1. API Concepts 5

The OpenCV Reference Manual, Release 2.4.2

Error Handling

OpenCV uses exceptions to signal critical errors. When the input data has a correct format and belongs to the specified
value range, but the algorithm cannot succeed for some reason (for example, the optimization algorithm did not
converge), it returns a special error code (typically, just a boolean variable).

The exceptions can be instances of the cv: :Exception class or its derivatives. In its turn, cv: : Exception is a deriva-
tive of std: :exception. So it can be gracefully handled in the code using other standard C++ library components.

The exception is typically thrown either using the CV_Error(errcode, description) macro, or its printf-like
CV_Error_(errcode, printf-spec, (printf-args)) variant, or using the CV_Assert(condition) macro that
checks the condition and throws an exception when it is not satisfied. For performance-critical code, there is
CV_DbgAssert(condition) that is only retained in the Debug configuration. Due to the automatic memory man-
agement, all the intermediate buffers are automatically deallocated in case of a sudden error. You only need to add a
try statement to catch exceptions, if needed:

try
{
. // call OpenCV

}
catch(cv::Exception& e)
{

const char* err_msg = e.what();

std::cout << "exception caught: " << err_msg << std::endl;
}

Multi-threading and Re-enterability

The current OpenCV implementation is fully re-enterable. That is, the same function, the same constant method of a
class instance, or the same non-constant method of different class instances can be called from different threads. Also,
the same cv::Mat can be used in different threads because the reference-counting operations use the architecture-
specific atomic instructions.

6 Chapter 1. Introduction

CHAPTER
TWO

CORE. THE CORE FUNCTIONALITY

2.1 Basic Structures

DataType

class DataType

Template “trait” class for OpenCV primitive data types. A primitive OpenCV data type is one of unsigned char,
bool, signed char, unsigned short, signed short, int, float, double, or a tuple of values of one of these
types, where all the values in the tuple have the same type. Any primitive type from the list can be defined by
an identifier in the form CV_<bit-depth>{U|S|F}C(<number_of_channels>), for example: uchar ~ CV_8UC1,
3-element floating-point tuple ~ CV_32FC3, and so on. A universal OpenCV structure that is able to store a single
instance of such a primitive data type is Vec. Multiple instances of such a type can be stored in a std: :vector, Mat,
Mat_, SparseMat, SparseMat_, or any other container that is able to store Vec instances.

The DataType class is basically used to provide a description of such primitive data types without adding any fields
or methods to the corresponding classes (and it is actually impossible to add anything to primitive C/C++ data types).
This technique is known in C++ as class traits. It is not DataType itself that is used but its specialized versions, such
as:

template<> class DataType<uchar>
{

typedef uchar value_type;

typedef int work_type;

typedef uchar channel_type;

enum { channel_type = CV_8U, channels = 1, fmt="u’, type = CV_8U };
b

template<typename _Tp> DataType<std::complex<_Tp> >
{
typedef std::complex<_Tp> value_type;
typedef std::complex<_Tp> work_type;
typedef _Tp channel_type;
// DataDepth is another helper trait class
enum { depth = DataDepth<_Tp>::value, channels=2,
fmt=(channels-1)*256+DataDepth<_Tp>::fmt,
type=CV_MAKETYPE (depth, channels) };
+

The main purpose of this class is to convert compilation-time type information to an OpenCV-compatible data type
identifier, for example:

The OpenCV Reference Manual, Release 2.4.2

// allocates a 30x40 floating-point matrix
Mat A(30, 40, DataType<float>::type);

Mat B = Mat_<std::complex<double> >(3, 3);
// the statement below will print 6, 2 /*, that is depth == CV_64F, channels == 2 x/
cout << B.depth() << ", " << B.channels() << endl;

So, such traits are used to tell OpenCV which data type you are working with, even if such a type is not native to
OpenCV. For example, the matrix B initialization above is compiled because OpenCV defines the proper specialized
template class DataType<complex<_Tp> > . This mechanism is also useful (and used in OpenCV this way) for
generic algorithms implementations.

Point_

class Point_

Template class for 2D points specified by its coordinates x and y . An instance of the class is interchangeable with
C structures, CvPoint and CvPoint2D32f . There is also a cast operator to convert point coordinates to the specified
type. The conversion from floating-point coordinates to integer coordinates is done by rounding. Commonly, the
conversion uses this operation for each of the coordinates. Besides the class members listed in the declaration above,
the following operations on points are implemented:

ptl pt2 + pt3;
ptl = pt2 - pt3;
ptl = pt2 * a;
ptl = a * pt2;

ptl += pt2;

ptl -= pt2;

ptl *= a;

double value = norm(pt); // L2 norm
ptl == pt2;

ptl != pt2;

For your convenience, the following type aliases are defined:

typedef Point_<int> Point2i;
typedef Point2i Point;

typedef Point_<float> Point2f;
typedef Point_<double> Point2d;

Example:

Point2f a(0.3f, 0.f), b(0.f, 0.4f);
Point pt = (a + b)x10.f;
cout << pt.x << ", " << pt.y << endl;

Point3_

class Point3_

Template class for 3D points specified by its coordinates x, y and z . An instance of the class is interchangeable with
the C structure CvPoint2D32f . Similarly to Point_ , the coordinates of 3D points can be converted to another type.
The vector arithmetic and comparison operations are also supported.

The following Point3_<> aliases are available:

8 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

typedef Point3_<int> Point3i;
typedef Point3_<float> Point3f;
typedef Point3_<double> Point3d;

Size

class Size_

Template class for specifying the size of an image or rectangle. The class includes two members called width and
height. The structure can be converted to and from the old OpenCV structures CvSize and CvSize2D32f . The same
set of arithmetic and comparison operations as for Point_ is available.

OpenCV defines the following Size_<> aliases:

typedef Size_<int> Size2i;
typedef Size2i Size;
typedef Size_<float> Size2f;

Rect

class Rect_
Template class for 2D rectangles, described by the following parameters:

* Coordinates of the top-left corner. This is a default interpretation of Rect_::x and Rect_::y in OpenCV.
Though, in your algorithms you may count x and y from the bottom-left corner.

* Rectangle width and height.

OpenCV typically assumes that the top and left boundary of the rectangle are inclusive, while the right and bottom
boundaries are not. For example, the method Rect_: : contains returns true if

x < pt.x < x +width,y < pt.y <y + height

Virtually every loop over an image ROI in OpenCV (where ROI is specified by Rect_<int>) is implemented as:

for(int y = roi.y; y < roi.y + rect.height; y++)
for(int x = roi.x; X < roi.x + rect.width; x++)
{
/] ...
}

In addition to the class members, the following operations on rectangles are implemented:
* rect = rect &£ point (shifting a rectangle by a certain offset)
* rect = rect £ size (expanding or shrinking a rectangle by a certain amount)
* rect += point, rect -= point, rect += size, rect -= size (augmenting operations)
* rect = rectl & rect2 (rectangle intersection)
e rect = rectl | rect2 (minimum area rectangle containing rect2 and rect3)
* rect &= rectl, rect |= rectl (and the corresponding augmenting operations)
* rect == rectl, rect != rectl (rectangle comparison)

This is an example how the partial ordering on rectangles can be established (rectl C rect2):

2.1. Basic Structures 9

The OpenCV Reference Manual, Release 2.4.2

template<typename _Tp> inline bool
operator <= (const Rect_< Tp>& rl, const Rect_<_Tp>& r2)

{

return (rl & r2) == rl;

}

For your convenience, the Rect_<> alias is available:

typedef Rect_<int> Rect;

RotatedRect

class RotatedRect

The class represents rotated (i.e. not up-right) rectangles on a plane. Each rectangle is specified by the center point
(mass center), length of each side (represented by cv::Size2f structure) and the rotation angle in degrees.

C++: RotatedRect: :RotatedRect()
C++: RotatedRect::RotatedRect (const Point2f& center, const Size2f& size, float angle)
C++: RotatedRect::RotatedRect (const CvBox2D& box)
Parameters
center — The rectangle mass center.
size — Width and height of the rectangle.

angle — The rotation angle in a clockwise direction. When the angle is 0, 90, 180,
270 etc., the rectangle becomes an up-right rectangle.

box — The rotated rectangle parameters as the obsolete CvBox2D structure.
C++: void RotatedRect: : points (Point2f pts[]) const
C++: Rect RotatedRect: :boundingRect() const
C++: RotatedRect::operator CvBox2D() const
Parameters
pts — The points array for storing rectangle vertices.
The sample below demonstrates how to use RotatedRect:

Mat image(200, 200, CV_8UC3, Scalar(0));
RotatedRect rRect = RotatedRect(Point2f(100,100), Size2f(100,50), 30);

Point2f vertices[4];
rRect.points(vertices);
for (int i = 0; 1 < 4; 1i++)
line(image, vertices[i], vertices[(i+1)%4], Scalar(0,255,0));

Rect brect = rRect.boundingRect();
rectangle(image, brect, Scalar(255,0,0));

imshow("rectangles", image);
waitKey(0);

10 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

rectangles

See Also:

CamShift(), fitEllipse(), minAreaRect (), CvBox2D

TermCriteria

class TermCriteria

Template class defining termination criteria for iterative algorithms.

Matx

class Matx
Template class for small matrices whose type and size are known at compilation time:

template<typename _Tp, int m, int n> class Matx {...};

typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx1l2d;

typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx1l6d;

typedef Matx<float, 2, 1> Matx21lf;
typedef Matx<double, 2, 1> Matx21ld;

typedef Matx<float, 6, 1> Matx61lf;
typedef Matx<double, 6, 1> Matx6ld;

typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;

typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;

2.1. Basic Structures 11

The OpenCV Reference Manual, Release 2.4.2

If you need a more flexible type, use Mat . The elements of the matrix M are accessible using the M(1i,j) notation.
Most of the common matrix operations (see also Matrix Expressions) are available. To do an operation on Matx that
is not implemented, you can easily convert the matrix to Mat and backwards.

Matx33f m(

’

1, 2
4, 5
7, 8
m

3 © oo w

~ ~
—

cout << sum(Ma *m.t())) << endl;

Vec

class Vec
Template class for short numerical vectors, a partial case of Matx:

template<typename _Tp, int n> class Vec : public Matx<_Tp, n, 1> {...};

typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4db;

typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vecids;

typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vecdi;

typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;

typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;

It is possible to convert Vec<T, 2> to/from Point_, Vec<T, 3> to/from Point3_ , and Vec<T,4> to CvScalar or
Scalar_. Use operator[] to access the elements of Vec.
All the expected vector operations are also implemented:

e vl = v2 + v3

vl =v2 - v3

* vl = v2 x scale

* vl = scale * v2

e vl = -v2

e vl += v2 and other augmenting operations

e vl == v2, vl = v2

e norm(vl) (euclidean norm)

The Vec class is commonly used to describe pixel types of multi-channel arrays. See Mat for details.

12 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Scalar_

class Scalar_
Template class for a 4-element vector derived from Vec.

template<typename _Tp> class Scalar_ : public Vec<_Tp, 4> { ... };

typedef Scalar_<double> Scalar;

Being derived from Vec<_Tp, 4>, Scalar_ and Scalar can be used just as typical 4-element vectors. In addition,
they can be converted to/from CvScalar . The type Scalar is widely used in OpenCV to pass pixel values.

Range

class Range
Template class specifying a continuous subsequence (slice) of a sequence.

class Range

{
public:

int start, end;
1

The class is used to specify a row or a column span in a matrix (Mat) and for many other purposes. Range(a,b) is
basically the same as a:b in Matlab or a. .b in Python. As in Python, start is an inclusive left boundary of the range
and end is an exclusive right boundary of the range. Such a half-opened interval is usually denoted as [start,end) .

The static method Range: :all() returns a special variable that means “the whole sequence” or “the whole range”,
justlike ” : ” in Matlab or ” ... ” in Python. All the methods and functions in OpenCYV that take Range support this
special Range: :all() value. But, of course, in case of your own custom processing, you will probably have to check
and handle it explicitly:

void my_function(..., const Range& r,)

{
if(r == Range::all()) {
// process all the data
}

else {
// process [r.start, r.end)

}

Ptr

class Ptr
Template class for smart reference-counting pointers

template<typename _Tp> class Ptr

{

public:
// default constructor
Ptr();

// constructor that wraps the object pointer

2.1. Basic Structures 13

The OpenCV Reference Manual, Release 2.4.2

Ptr(_Tp* _obj);

// destructor: calls release()

~Ptr();

// copy constructor; increments ptr’s reference counter
Ptr(const Ptr& ptr);

// assignment operator; decrements own reference counter
// (with release()) and increments ptr’s reference counter
Ptr& operator = (const Ptr& ptr);

// increments reference counter

void addref();

// decrements reference counter; when it becomes 0,

// delete_obj() is called

void release();

// user-specified custom object deletion operation.

// by default, "delete obj;" is called

void delete_obj();

// returns true if obj == 0;

bool empty() const;

// provide access to the object fields and methods
_Tp* operator -> ()
const _Tp* operator -> () const;

// return the underlying object pointer;

// thanks to the methods, the Ptr<_Tp> can be
// used instead of _Tpx

operator _Tpx ();

operator const _Tpx*() const;

protected:

+

// the encapsulated object pointer
_Tp* obj;

// the associated reference counter
int* refcount;

The Ptr<_Tp> class is a template class that wraps pointers of the corresponding type. It is similar to shared_ptr that
is part of the Boost library (http://www.boost.org/doc/libs/1_40_0/libs/smart_ptr/shared_ptr.htm) and also part of the
C++0x standard.

This class provides the following options:

 Default constructor, copy constructor, and assignment operator for an arbitrary C++ class or a C structure. For
some objects, like files, windows, mutexes, sockets, and others, a copy constructor or an assignment operator
are difficult to define. For some other objects, like complex classifiers in OpenCV, copy constructors are absent
and not easy to implement. Finally, some of complex OpenCV and your own data structures may be written in
C. However, copy constructors and default constructors can simplify programming a lot. Besides, they are often
required (for example, by STL containers). By wrapping a pointer to such a complex object TObj to Ptr<TObj>
, you automatically get all of the necessary constructors and the assignment operator.

O(1) complexity of the above-mentioned operations. While some structures, like std: :vector, provide a copy
constructor and an assignment operator, the operations may take a considerable amount of time if the data
structures are large. But if the structures are put into Ptr<>, the overhead is small and independent of the data
size.

Automatic destruction, even for C structures. See the example below with FILE* .

* Heterogeneous collections of objects. The standard STL and most other C++ and OpenCV containers can store
only objects of the same type and the same size. The classical solution to store objects of different types in the
same container is to store pointers to the base class base_class_tx* instead but then you loose the automatic

14

Chapter 2. core. The Core Functionality

http://www.boost.org/doc/libs/1_40_0/libs/smart_ptr/shared_ptr.htm
http://en.wikipedia.org/wiki/C++0x

The OpenCV Reference Manual, Release 2.4.2

memory management. Again, by using Ptr<base_class_t>() instead of the raw pointers, you can solve the
problem.

The Ptr class treats the wrapped object as a black box. The reference counter is allocated and managed separately.
The only thing the pointer class needs to know about the object is how to deallocate it. This knowledge is encapsulated
in the Ptr::delete_obj () method that is called when the reference counter becomes 0. If the object is a C++ class
instance, no additional coding is needed, because the default implementation of this method calls delete obj; .
However, if the object is deallocated in a different way, the specialized method should be created. For example, if you
want to wrap FILE , the delete_obj may be implemented as follows:

template<> inline void Ptr<FILE>::delete_obj()
{
fclose(obj); // no need to clear the pointer afterwards,
// it is done externally.

// now use it:
Ptr<FILE> f(fopen("myfile.txt", "r"));
if(f.empty())
throw ...;
fprintf(f,);

// the file will be closed automatically by the Ptr<FILE> destructor.

Note: The reference increment/decrement operations are implemented as atomic operations, and therefore it is nor-
mally safe to use the classes in multi-threaded applications. The same is true for Mat and other C++ OpenCV classes
that operate on the reference counters.

Mat

class Mat
OpenCV C++ n-dimensional dense array class

class CV_EXPORTS Mat
{
public:
// ... a lot of methods ...

/*! includes several bit-fields:
- the magic signature
- continuity flag
- depth
- number of channels
*/
int flags;
//! the array dimensionality, >= 2
int dims;
//! the number of rows and columns or (-1, -1) when the array has more than 2 dimensions
int rows, cols;
//! pointer to the data
uchar* data;

//! pointer to the reference counter;

2.1. Basic Structures 15

The OpenCV Reference Manual, Release 2.4.2

// when array points to user-allocated data, the pointer is NULL
int* refcount;

// other members
1

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used
to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point
clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a SparseMat). The
data layout of the array M is defined by the array M.step[] , so that the address of element (igy...,im.dims—1) »
where 0 < 1}, < M.sizel[k], is computed as:

addr(M = M.data + M.stepl0] * o + M.step[1] x i1 + ... + M.step[M.dims — 1] * ipm.dims_1

10y--siM.dims—1)
In case of a 2-dimensional array, the above formula is reduced to:
addr(My ;) = M.data + M.step[0] * i + M.step[1] j

Note that M.step[i] >= M.step[i+1] (in fact, M.step[i] >= M.step[i+1]*M.size[i+1]). This means
that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so on.
M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .

So, the data layout in Mat is fully compatible with CvMat, IplImage, and CvMatND types from OpenCV 1.x. It is also
compatible with the majority of dense array types from the standard toolkits and SDKs, such as Numpy (ndarray),
Win32 (independent device bitmaps), and others, that is, with any array that uses steps (or strides) to compute the
position of a pixel. Due to this compatibility, it is possible to make a Mat header for user-allocated data and process it
in-place using OpenCV functions.

There are many different ways to create a Mat object. The most popular options are listed below:

e Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValuel)
constructor. A new array of the specified size and type is allocated. type has the same meaning as in the
cvCreateMat method. For example, CV_8UC1 means a 8-bit single-channel array, CV_32FC2 means a 2-channel
(complex) floating-point array, and so on.

// make a 7x7 complex matrix filled with 1+3j.

Mat M(7,7,CV_32FC2,Scalar(1,3));

// and now turn M to a 100x60 15-channel 8-bit matrix.
// The old content will be deallocated
M.create(100,60,CV_8UC(15));

As noted in the introduction to this chapter, create() allocates only a new array when the shape or type of the
current array are different from the specified ones.

¢ Create a multi-dimensional array:

// create a 100x100x100 8-bit array
int sz[] = {100, 100, 100};
Mat bigCube(3, sz, CV_8U, Scalar::all(0));

It passes the number of dimensions =1 to the Mat constructor but the created array will be 2-dimensional with
the number of columns set to 1. So, Mat: :dims is always >= 2 (can also be 0 when the array is empty).

» Use a copy constructor or assignment operator where there can be an array or expression on the right side (see
below). As noted in the introduction, the array assignment is an O(1) operation because it only copies the header
and increases the reference counter. The Mat::clone() method can be used to get a full (deep) copy of the
array when you need it.

16 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

* Construct a header for a part of another array. It can be a single row, single column, several rows, several
columns, rectangular region in the array (called a minor in algebra) or a diagonal. Such operations are also O(1)
because the new header references the same data. You can actually modify a part of the array using this feature,
for example:

// add the 5-th row, multiplied by 3 to the 3rd row
M.row(3) = M.row(3) + M.row(5)*3;

// now copy the 7-th column to the 1-st column
// M.col(1) = M.col(7); // this will not work
Mat M1 = M.col(1);

M.col(7).copyTo(M1);

// create a new 320x240 image

Mat img(Size(320,240),CV_8UC3);

// select a ROI

Mat roi(img, Rect(10,10,100,100));

// fill the ROI with (0,255,0) (which is green in RGB space);
// the original 320x240 image will be modified

roi = Scalar(0,255,0);

Due to the additional datastart and dataend members, it is possible to compute a relative sub-array position
in the main container array using locateROI():

Mat A = Mat::eye(10, 10, CV_32S);

// extracts A columns, 1 (inclusive) to 3 (exclusive).

Mat B = A(Range::all(), Range(1l, 3));

// extracts B rows, 5 (inclusive) to 9 (exclusive).

// that is, C ~ A(Range(5, 9), Range(1, 3))

Mat C = B(Range(5, 9), Range::all());

Size size; Point ofs;

C.locateR0I(size, ofs);

// size will be (width=10,height=10) and the ofs will be (x=1, y=5)

As in case of whole matrices, if you need a deep copy, use the clone () method of the extracted sub-matrices.

Make a header for user-allocated data. It can be useful to do the following:

1. Process “foreign” data using OpenCV (for example, when you implement a DirectShow* filter or a pro-
cessing module for gstreamer, and so on). For example:

void process_video_frame(const unsigned charx pixels,

int width, int height, int step)

Mat img(height, width, CV_8UC3, pixels, step);
GaussianBlur(img, img, Size(7,7), 1.5, 1.5);

2. Quickly initialize small matrices and/or get a super-fast element access.

double m[3][3] = {{ar bl C}, {dl e, f}r {gl hr l}};
Mat M = Mat(3, 3, CV_64F, m).inv();

Partial yet very common cases of this user-allocated data case are conversions from CvMat and IplImage to
Mat. For this purpose, there are special constructors taking pointers to CvMat or IplImage and the optional flag
indicating whether to copy the data or not.

Backward conversion from Mat to CvMat or IplImage is provided via cast operators Mat: :operator
CvMat() const and Mat::operator IplImage(). The operators do NOT copy the data.

2.1.

Basic Structures 17

The OpenCV Reference Manual, Release 2.4.2

IplImage* img = cvLoadImage("greatwave.jpg", 1);

Mat mtx(img); // convert IplImage* -> Mat

CvMat oldmat = mtx; // convert Mat -> CvMat

CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
oldmat.data.ptr == (ucharx)img->imageData && oldmat.step == img->widthStep);

* Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:

// create a double-precision identity martix and add it to M.
M += Mat::eye(M.rows, M.cols, CV_64F);

» Use a comma-separated initializer:

// create a 3x3 double-precision identity matrix
Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);

With this approach, you first call a constructor of the Mat_ class with the proper parameters, and then you just
put << operator followed by comma-separated values that can be constants, variables, expressions, and so on.
Also, note the extra parentheses required to avoid compilation errors.

Once the array is created, it is automatically managed via a reference-counting mechanism. If the array header is
built on top of user-allocated data, you should handle the data by yourself. The array data is deallocated when no
one points to it. If you want to release the data pointed by a array header before the array destructor is called, use
Mat::release() .

The next important thing to learn about the array class is element access. This manual already described how to
compute an address of each array element. Normally, you are not required to use the formula directly in the code. If
you know the array element type (which can be retrieved using the method Mat: : type()), you can access the element
M;; of a 2-dimensional array as:

M.at<double>(1i,j) += 1.f;

assuming that M is a double-precision floating-point array. There are several variants of the method at for a different
number of dimensions.

If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to the row first, and then
just use the plain C operator [] :

// compute sum of positive matrix elements

// (assuming that M isa double-precision matrix)
double sum=0;

for(int i = 0; i < M.rows; i++)

{
const doublex Mi = M.ptr<double>(i);
for(int j = 0; j < M.cols; j++)
sum += std::max(Mi[j], 0.);
}

Some operations, like the one above, do not actually depend on the array shape. They just process elements of an
array one by one (or elements from multiple arrays that have the same coordinates, for example, array addition). Such
operations are called element-wise. It makes sense to check whether all the input/output arrays are continuous, namely,
have no gaps at the end of each row. If yes, process them as a long single row:

// compute the sum of positive matrix elements, optimized variant
double sum=0;
int cols = M.cols, rows = M.rows;
if(M.isContinuous())
{
cols *= rows;
rows = 1;

18 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

}
for(int i = 0; i < rows; i++)
{
const doublex Mi = M.ptr<double>(1i);
for(int j = 0; j < cols; j++)
sum += std::max(Mi[j], 0.);
}

In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is smaller, which is
especially noticeable in case of small matrices.

Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows:

// compute sum of positive matrix elements, iterator-based variant
double sum=0;
MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it)
sum += std::max(xit, 0.);

The matrix iterators are random-access iterators, so they can be passed to any STL algorithm, including std: :sort()

Matrix Expressions

This is a list of implemented matrix operations that can be combined in arbitrary complex expressions (here A, B stand
for matrices (Mat), s for a scalar (Scalar), alpha for a real-valued scalar (double)):

* Addition, subtraction, negation: A+B, A-B, A+s, A-s, s+A, s-A, -A

Scaling: Axalpha

Per-element multiplication and division: A.mul(B), A/B, alpha/A

Matrix multiplication: AxB

Transposition: A.t() (means AT)

Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems:

A.inv([method]) (~A"), A.inv([method])*B (~X: AX=B)

Comparison: A cmpop B, A cmpop alpha, alpha cmpop A, where cmpop is one of : >, >=, ==, I=,
<=, <. The result of comparison is an 8-bit single channel mask whose elements are set to 255 (if the particular
element or pair of elements satisfy the condition) or 0.

Bitwise logical operations: A logicop B, A logicop s, s logicop A, ~A, where logicop is one of :
& |, "

Element-wise minimum and maximum: min(A, B), min(A, alpha), max(A, B), max(A, alpha)

Element-wise absolute value: abs (A)

Cross-product, dot-product: A.cross(B) A.dot(B)

Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as norm, mean, sum,
countNonZero, trace, determinant, repeat, and others.

Matrix initializers (Mat::eye(), Mat::zeros(), Mat::ones()), matrix comma-separated initializers, ma-
trix constructors and operators that extract sub-matrices (see Mat description).

Mat_<destination_type>() constructors to cast the result to the proper type.

2.1. Basic Structures 19

The OpenCV Reference Manual, Release 2.4.2

Note: Comma-separated initializers and probably some other operations may require additional explicit Mat () or
Mat_<T>() constructor calls to resolve a possible ambiguity.

Here are examples of matrix expressions:

// compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD)
SVD svd(A);
Mat pinvA = svd.vt.t()+*Mat::diag(l./svd.w)*svd.u.t();

// compute the new vector of parameters in the Levenberg-Marquardt algorithm
x -= (A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)x*(A.t()x*err);

// sharpen image using "unsharp mask" algorithm

Mat blurred; double sigma = 1, threshold = 5, amount = 1;
GaussianBlur(img, blurred, Size(), sigma, sigma);

Mat lowConstrastMask = abs(img - blurred) < threshold;
Mat sharpened = imgx*(l+amount) + blurredx(-amount);
img.copyTo(sharpened, lowContrastMask);

Below is the formal description of the Mat methods.

Mat::Mat

Various Mat constructors

C++: Mat::Mat()

C++: Mat::Mat (int rows, int cols, int type)

C++: Mat::Mat(Size size, int type)

C++: Mat::Mat(int rows, int cols, int type, const Scalar& s)

C++: Mat::Mat(Size size, int type, const Scalar& s)

C++: Mat::Mat(const Mat& m)

C++: Mat::Mat (int rows, int cols, int type, void* data, size_t step=AUTO_STEP)

C++: Mat::Mat(Size size, int type, void* data, size_t step=AUTO_STEP)

C++: Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all())
C++: Mat: :Mat(const Mat& m, const Rect& roi)

C++: Mat::Mat(const CvMat* m, bool copyData=false)

C++: Mat::Mat(const Ipllmage* img, bool copyData=false)

C++: template<typename T, int n> explicit Mat: :Mat (const Vec<T, n>& vec, bool copyData=true)

C++: template<typename T, int m, int n> explicit Mat: :Mat(const Matx<T, m, n>& vec, bool copy-
Data=true)

C++: template<typename T> explicit Mat: :Mat (const vector<T>& vec, bool copyData=false)
C++: Mat::Mat (int ndims, const int* sizes, int type)

C++: Mat::Mat(int ndims, const int* sizes, int type, const Scalar& s)

C++: Mat::Mat (int ndims, const int* sizes, int type, void* data, const size_t* steps=0)

C++: Mat::Mat(const Mat& m, const Range* ranges)

20 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Parameters
ndims — Array dimensionality.
rows — Number of rows in a 2D array.
cols — Number of columns in a 2D array.
roi — Region of interest.

size — 2D array size: Size(cols, rows) . Inthe Size() constructor, the number of rows
and the number of columns go in the reverse order.

sizes — Array of integers specifying an n-dimensional array shape.

type — Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
cv_8uC(n), ..., CV_64FC(n) to create multi-channel (up to CV_MAX_CN channels) ma-
trices.

s — An optional value to initialize each matrix element with. To set all the ma-
trix elements to the particular value after the construction, use the assignment operator
Mat::operator=(const Scalar& value) .

data — Pointer to the user data. Matrix constructors that take data and step parameters
do not allocate matrix data. Instead, they just initialize the matrix header that points to
the specified data, which means that no data is copied. This operation is very efficient and
can be used to process external data using OpenCV functions. The external data is not
automatically deallocated, so you should take care of it.

step — Number of bytes each matrix row occupies. The value should include the padding
bytes at the end of each row, if any. If the parameter is missing (set to AUTO_STEP
), no padding is assumed and the actual step is calculated as colsxelemSize() . See
Mat::elemSize() .

steps — Array of ndims -1 steps in case of a multi-dimensional array (the last step is always
set to the element size). If not specified, the matrix is assumed to be continuous.

m — Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied
by these constructors. Instead, the header pointing to m data or its sub-array is constructed
and associated with it. The reference counter, if any, is incremented. So, when you modify
the matrix formed using such a constructor, you also modify the corresponding elements of
m . If you want to have an independent copy of the sub-array, use Mat: :clone() .

img — Pointer to the old-style IplImage image structure. By default, the data is shared
between the original image and the new matrix. But when copyData is set, the full copy of
the image data is created.

vec — STL vector whose elements form the matrix. The matrix has a single column and the
number of rows equal to the number of vector elements. Type of the matrix matches the type
of vector elements. The constructor can handle arbitrary types, for which there is a properly
declared DataType . This means that the vector elements must be primitive numbers or
uni-type numerical tuples of numbers. Mixed-type structures are not supported. The corre-
sponding constructor is explicit. Since STL vectors are not automatically converted to Mat
instances, you should write Mat (vec) explicitly. Unless you copy the data into the matrix
(copyData=true), no new elements will be added to the vector because it can potentially
yield vector data reallocation, and, thus, the matrix data pointer will be invalid.

copyData — Flag to specify whether the underlying data of the STL vector or the old-style
CvMat or IplImage should be copied to (true) or shared with (false) the newly con-
structed matrix. When the data is copied, the allocated buffer is managed using Mat refer-

2.1. Basic Structures 21

The OpenCV Reference Manual, Release 2.4.2

ence counting mechanism. While the data is shared, the reference counter is NULL, and
you should not deallocate the data until the matrix is not destructed.

rowRange — Range of the m rows to take. As usual, the range start is inclusive and the range
end is exclusive. Use Range: :all() to take all the rows.

colRange — Range of the m columns to take. Use Range: :all() to take all the columns.
ranges — Array of selected ranges of m along each dimensionality.

These are various constructors that form a matrix. As noted in the Automatic Allocation of the Output Data, often
the default constructor is enough, and the proper matrix will be allocated by an OpenCV function. The constructed
matrix can further be assigned to another matrix or matrix expression or can be allocated with Mat: :create() . In
the former case, the old content is de-referenced.

Mat::~Mat

The Mat destructor.
C++: Mat::~Mat()

The matrix destructor calls Mat: :release() .

Mat::operator =

Provides matrix assignment operators.

C++: Mat& Mat: :operator=(const Mat& m)

C++: Mat& Mat: :operator=(const MatExpr& expr)

C++: Mat& Mat: :operator=(const Scalar& s)
Parameters

m — Assigned, right-hand-side matrix. Matrix assignment is an O(1) operation. This means
that no data is copied but the data is shared and the reference counter, if any, is incremented.
Before assigning new data, the old data is de-referenced via Mat: : release() .

expr — Assigned matrix expression object. As opposite to the first form of the assignment
operation, the second form can reuse already allocated matrix if it has the right size and type
to fit the matrix expression result. It is automatically handled by the real function that the
matrix expressions is expanded to. For example, C=A+B is expanded to add (A, B, C),and
add () takes care of automatic C reallocation.

s — Scalar assigned to each matrix element. The matrix size or type is not changed.

These are available assignment operators. Since they all are very different, make sure to read the operator parameters
description.

Mat::row

Creates a matrix header for the specified matrix row.
C++: MatMat::row(inty) const
Parameters

y — A 0-based row index.

22 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

The method makes a new header for the specified matrix row and returns it. This is an O(1) operation, regardless of
the matrix size. The underlying data of the new matrix is shared with the original matrix. Here is the example of one
of the classical basic matrix processing operations, axpy, used by LU and many other algorithms:

inline void matrix_axpy(Mat& A, int i, int j, double alpha)
{

A.row(i) += A.row(j)=*alpha;

}

Note: In the current implementation, the following code does not work as expected:

Mat A;
A.row(i) = A.row(j); // will not work

This happens because A. row(i) forms a temporary header that is further assigned to another header. Remember that
each of these operations is O(1), that is, no data is copied. Thus, the above assignment is not true if you may have
expected the j-th row to be copied to the i-th row. To achieve that, you should either turn this simple assignment into
an expression or use the Mat: : copyTo () method:

Mat A;

// works, but looks a bit obscure.
A.row(i) = A.row(j) + 0;

// this is a bit longer, but the recommended method.
A.row(j).copyTo(A.row(i));

Mat::col

Creates a matrix header for the specified matrix column.
C++: MatMat::col(intx) const
Parameters
x — A 0-based column index.

The method makes a new header for the specified matrix column and returns it. This is an O(1) operation, regardless
of the matrix size. The underlying data of the new matrix is shared with the original matrix. See also the Mat: : row()
description.

Mat::rowRange

Creates a matrix header for the specified row span.
C++: Mat Mat: : rowRange (int startrow, int endrow) const
C++: Mat Mat: : rowRange (const Range& r) const
Parameters
startrow — An inclusive 0-based start index of the row span.
endrow — An exclusive 0-based ending index of the row span.

r — Range structure containing both the start and the end indices.

2.1. Basic Structures 23

The OpenCV Reference Manual, Release 2.4.2

The method makes a new header for the specified row span of the matrix. Similarly to Mat
, this is an O(1) operation.

Mat::colRange

Creates a matrix header for the specified row span.
C++: Mat Mat: : colRange (int startcol, int endcol) const
C++: Mat Mat: : colRange(const Range& r) const
Parameters
startcol — An inclusive 0-based start index of the column span.
endcol — An exclusive 0-based ending index of the column span.

r — Range structure containing both the start and the end indices.

::row() and Mat::col()

The method makes a new header for the specified column span of the matrix. Similarly to Mat::row() and

Mat::col() , thisis an O(1) operation.

Mat::diag
Extracts a diagonal from a matrix, or creates a diagonal matrix.
C++: Mat Mat: :diag(intd=0) const

C++: static Mat Mat: :diag(const Mat& d)

Parameters

d — Single-column matrix that forms a diagonal matrix or index of the diagonal, with the

following values:

— d=0 is the main diagonal.

— d>0 is a diagonal from the lower half. For example, d=1 means the diagonal is set imme-

diately below the main one.

— d<0 is a diagonal from the upper half. For example, d=1 means the diagonal is set imme-

diately above the main one.

The method makes a new header for the specified matrix diagonal. The new matrix is represented as a single-column

matrix. Similarly to Mat: : row() and Mat::col() , this is an O(1) operation.

Mat::clone

Creates a full copy of the array and the underlying data.

C++: MatMat::clone() const

The method creates a full copy of the array. The original step[] is not taken into account. So, the array copy is a

continuous array occupying total()*elemSize() bytes.

24 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Mat::copyTo

Copies the matrix to another one.

C++: void Mat: : copyTo (OutputArray m) const

C++: void Mat: : copyTo (OutputArray m, InputArray mask) const
Parameters

m — Destination matrix. If it does not have a proper size or type before the operation, it is
reallocated.

mask — Operation mask. Its non-zero elements indicate which matrix elements need to be
copied.

The method copies the matrix data to another matrix. Before copying the data, the method invokes
m.create(this->size(), this->type);

so that the destination matrix is reallocated if needed. While m. copyTo(m); works flawlessly, the function does not
handle the case of a partial overlap between the source and the destination matrices.

When the operation mask is specified, and the Mat: :create call shown above reallocated the matrix, the newly
allocated matrix is initialized with all zeros before copying the data.

Mat::converiTo

Converts an array to another data type with optional scaling.
C++: void Mat: : convertTo (OutputArray m, int rtype, double alpha=1, double beta=0) const
Parameters

m — Destination matrix. If it does not have a proper size or type before the operation, it is
reallocated.

rtype — Desired destination matrix type or, rather, the depth since the number of channels
are the same as the source has. If rtype is negative, the destination matrix will have the
same type as the source.

alpha — Optional scale factor.
beta — Optional delta added to the scaled values.

The method converts source pixel values to the target data type. saturate_cast<> is applied at the end to avoid
possible overflows:

m(x,y) = saturate_cast < rType > (x(xthis)(x,y) + B)

Mat::assignTo

Provides a functional form of convertTo.
C++: void Mat: :assignTo(Mat& m, int type=-1) const
Parameters
m — Destination array.
type — Desired destination array depth (or -1 if it should be the same as the source type).

This is an internally used method called by the Matrix Expressions engine.

2.1. Basic Structures 25

The OpenCV Reference Manual, Release 2.4.2

Mat::setTo

Sets all or some of the array elements to the specified value.
C++: Mat& Mat: :setTo (InputArray value, InputArray mask=noArray())
Parameters
value — Assigned scalar converted to the actual array type.

mask — Operation mask of the same size as xthis. This is an advanced variant of the
Mat::operator=(const Scalar& s) operator.

Mat::reshape

Changes the shape and/or the number of channels of a 2D matrix without copying the data.
C++: Mat Mat: : reshape (int cn, int rows=0) const
Parameters

cn — New number of channels. If the parameter is 0, the number of channels remains the
same.

rows — New number of rows. If the parameter is 0, the number of rows remains the same.

The method makes a new matrix header for *this elements. The new matrix may have a different size and/or different
number of channels. Any combination is possible if:

* No extra elements are included into the new matrix and no elements are excluded. Consequently, the product
rowsxcols*channels () must stay the same after the transformation.

* No data is copied. That is, this is an O(1) operation. Consequently, if you change the number of rows, or
the operation changes the indices of elements row in some other way, the matrix must be continuous. See
Mat::isContinuous() .

For example, if there is a set of 3D points stored as an STL vector, and you want to represent the points as a 3xN
matrix, do the following:

std::vector<Point3f> vec;

Mat pointMat = Mat(vec). // convert vector to Mat, 0(1) operation
reshape(1l). // make Nx3 1-channel matrix out of Nx1 3-channel.
// Also, an 0(1) operation
t(); // finally, transpose the Nx3 matrix.
// This involves copying all the elements

Mat::t

Transposes a matrix.
C++: MatExpr Mat::t() const

The method performs matrix transposition by means of matrix expressions. It does not perform the actual transpo-
sition but returns a temporary matrix transposition object that can be further used as a part of more complex matrix
expressions or can be assigned to a matrix:

Mat Al = A + Mat::eye(A.size(), A.type)+lambda;
Mat C = Al.t()*Al; // compute (A + lambdaxI)"~t * (A + lamdaxI)

26 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Mat::inv

Inverses a matrix.
C++: MatExpr Mat: : inv (int method=DECOMP_LU) const
Parameters
method — Matrix inversion method. Possible values are the following:
— DECOMP_LU is the LU decomposition. The matrix must be non-singular.

- DECOMP_CHOLESKY is the Cholesky LLT decomposition for symmetrical positively
defined matrices only. This type is about twice faster than LU on big matrices.

— DECOMP_SVD is the SVD decomposition. If the matrix is singular or even non-square,
the pseudo inversion is computed.

The method performs a matrix inversion by means of matrix expressions. This means that a temporary matrix inversion
object is returned by the method and can be used further as a part of more complex matrix expressions or can be
assigned to a matrix.

Mat::mul

Performs an element-wise multiplication or division of the two matrices.
C++: MatExpr Mat: :mul (InputArray m, double scale=1) const
Parameters
m — Another array of the same type and the same size as *this, or a matrix expression.
scale — Optional scale factor.

The method returns a temporary object encoding per-element array multiplication, with optional scale. Note that this
is not a matrix multiplication that corresponds to a simpler “*” operator.

Example:

Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5)

Mat::cross

Computes a cross-product of two 3-element vectors.
C++: Mat Mat: :cross(InputArray m) const
Parameters
m — Another cross-product operand.

The method computes a cross-product of two 3-element vectors. The vectors must be 3-element floating-point vectors
of the same shape and size. The result is another 3-element vector of the same shape and type as operands.

Mat::dot

Computes a dot-product of two vectors.
C++: double Mat: :dot (InputArray m) const

Parameters

2.1. Basic Structures 27

The OpenCV Reference Manual, Release 2.4.2

m — Another dot-product operand.

The method computes a dot-product of two matrices. If the matrices are not single-column or single-row vectors, the
top-to-bottom left-to-right scan ordering is used to treat them as 1D vectors. The vectors must have the same size and
type. If the matrices have more than one channel, the dot products from all the channels are summed together.

Mat::zeros

Returns a zero array of the specified size and type.

C++: static MatExpr Mat : : zeros (int rows, int cols, int type)

C++: static MatExpr Mat : : zeros (Size size, int type)

C++: static MatExpr Mat : : zeros (int ndims, const int* sz, int type)

Parameters

ndims — Array dimensionality.
rows — Number of rows.
cols — Number of columns.
size — Alternative to the matrix size specification Size(cols, rows) .
sz — Array of integers specifying the array shape.
type — Created matrix type.

The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant array as a function
parameter, part of a matrix expression, or as a matrix initializer.

Mat A;
A = Mat::zeros(3, 3, CV_32F);

In the example above, a new matrix is allocated only if A is not a 3x3 floating-point matrix. Otherwise, the existing
matrix A is filled with zeros.

Mat::ones

Returns an array of all 1’s of the specified size and type.
C++: static MatExpr Mat: : ones (int rows, int cols, int type)
C++: static MatExpr Mat : : ones (Size size, int type)
C++: static MatExpr Mat : : ones (int ndims, const int* sz, int type)
Parameters
ndims — Array dimensionality.
rows — Number of rows.
cols — Number of columns.
size — Alternative to the matrix size specification Size(cols, rows) .
sz — Array of integers specifying the array shape.

type — Created matrix type.

28 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

The method returns a Matlab-style 1’s array initializer, similarly to Mat: : zeros (). Note that using this method you
can initialize an array with an arbitrary value, using the following Matlab idiom:

Mat A = Mat::ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3.

The above operation does not form a 100x100 matrix of 1’s and then multiply it by 3. Instead, it just remembers the
scale factor (3 in this case) and use it when actually invoking the matrix initializer.

Mat::eye

Returns an identity matrix of the specified size and type.
C++: static MatExpr Mat : : eye (int rows, int cols, int type)
C++: static MatExpr Mat : : eye(Size size, int type)
Parameters
rows — Number of rows.
cols — Number of columns.
size — Alternative matrix size specification as Size(cols, rows) .
type — Created matrix type.

The method returns a Matlab-style identity matrix initializer, similarly to Mat: : zeros (). Similarly to Mat: :ones(),
you can use a scale operation to create a scaled identity matrix efficiently:

// make a 4x4 diagonal matrix with 0.1’s on the diagonal.
Mat A = Mat::eye(4, 4, CV_32F)x0.1;

Mat::create

Allocates new array data if needed.

C++: void Mat: : create (int rows, int cols, int type)

C++: void Mat: : create(Size size, int type)

C++: void Mat: : create (int ndims, const int* sizes, int type)

Parameters

ndims — New array dimensionality.
rows — New number of rows.
cols — New number of columns.
size — Alternative new matrix size specification: Size(cols, rows)
sizes — Array of integers specifying a new array shape.
type — New matrix type.

This is one of the key Mat methods. Most new-style OpenCV functions and methods that produce arrays call this
method for each output array. The method uses the following algorithm:

1. If the current array shape and the type match the new ones, return immediately. Otherwise, de-reference the
previous data by calling Mat: : release().

2. Initialize the new header.

2.1. Basic Structures 29

The OpenCV Reference Manual, Release 2.4.2

3. Allocate the new data of total()*elemSize() bytes.
4. Allocate the new, associated with the data, reference counter and set it to 1.

Such a scheme makes the memory management robust and efficient at the same time and helps avoid extra typing for
you. This means that usually there is no need to explicitly allocate output arrays. That is, instead of writing:

Mat color;

Mat gray(color.rows, color.cols, color.depth());
cvtColor(color, gray, CV_BGR2GRAY);

you can simply write:

Mat color;

Mat gray;

cvtColor(color, gray, CV_BGR2GRAY);

because cvtColor, as well as the most of OpenCV functions, calls Mat: : create() for the output array internally.

Mat::addref

Increments the reference counter.
C++: void Mat: :addref ()

The method increments the reference counter associated with the matrix data. If the matrix header points to an external
data set (see Mat: :Mat()), the reference counter is NULL, and the method has no effect in this case. Normally, to
avoid memory leaks, the method should not be called explicitly. It is called implicitly by the matrix assignment
operator. The reference counter increment is an atomic operation on the platforms that support it. Thus, it is safe to
operate on the same matrices asynchronously in different threads.

Mat::release

Decrements the reference counter and deallocates the matrix if needed.
C++: void Mat: :release()

The method decrements the reference counter associated with the matrix data. When the reference counter reaches 0,
the matrix data is deallocated and the data and the reference counter pointers are set to NULL’s. If the matrix header
points to an external data set (see Mat: :Mat ()), the reference counter is NULL, and the method has no effect in this
case.

This method can be called manually to force the matrix data deallocation. But since this method is automatically
called in the destructor, or by any other method that changes the data pointer, it is usually not needed. The reference
counter decrement and check for O is an atomic operation on the platforms that support it. Thus, it is safe to operate
on the same matrices asynchronously in different threads.

Mat::resize

Changes the number of matrix rows.
C++: void Mat: :resize(size_t sz)
C++: void Mat: :resize(size_t sz, const Scalar& s)

Parameters

30 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

sz — New number of rows.
s — Value assigned to the newly added elements.

The methods change the number of matrix rows. If the matrix is reallocated, the first min(Mat: : rows, sz) rows are
preserved. The methods emulate the corresponding methods of the STL vector class.

Mat::reserve

Reserves space for the certain number of rows.
C++: void Mat: : reserve(size_t sz)
Parameters
sz — Number of rows.

The method reserves space for sz rows. If the matrix already has enough space to store sz rows, nothing happens. If
the matrix is reallocated, the first Mat: : rows rows are preserved. The method emulates the corresponding method of
the STL vector class.

Mat::push_back

Adds elements to the bottom of the matrix.
C++: template<typename T> void Mat : : push_back (const T& elem)
C++: void Mat: : push_back(const Mat& m)
Parameters
elem — Added element(s).

The methods add one or more elements to the bottom of the matrix. They emulate the corresponding method of the
STL vector class. When elemis Mat , its type and the number of columns must be the same as in the container matrix.

Mat::pop_back

Removes elements from the bottom of the matrix.
C++: template<typename T> void Mat : : pop_back (size_t nelems=1)
Parameters

nelems — Number of removed rows. If it is greater than the total number of rows, an excep-
tion is thrown.

The method removes one or more rows from the bottom of the matrix.

Mat::locateROI

Locates the matrix header within a parent matrix.
C++: void Mat: :locateROI (Size& wholeSize, Point& ofs) const
Parameters

wholeSize — Output parameter that contains the size of the whole matrix containing *this
as a part.

2.1. Basic Structures 31

The OpenCV Reference Manual, Release 2.4.2

ofs — Output parameter that contains an offset of *this inside the whole matrix.

After you extracted a submatrix from a matrix using Mat::row(), Mat::col(), Mat::rowRange(),
Mat::colRange() , and others, the resultant submatrix points just to the part of the original big matrix. However,
each submatrix contains information (represented by datastart and dataend fields) that helps reconstruct the orig-
inal matrix size and the position of the extracted submatrix within the original matrix. The method locateR0I does
exactly that.

Mat::adjustROI

Adjusts a submatrix size and position within the parent matrix.
C++: Mat& Mat: :adjustROI (int dtop, int dbottom, int dleft, int dright)
Parameters
dtop — Shift of the top submatrix boundary upwards.
dbottom — Shift of the bottom submatrix boundary downwards.
dleft — Shift of the left submatrix boundary to the left.
dright — Shift of the right submatrix boundary to the right.

The method is complimentary to Mat: : LocateROI () . The typical use of these functions is to determine the submatrix
position within the parent matrix and then shift the position somehow. Typically, it can be required for filtering
operations when pixels outside of the ROI should be taken into account. When all the method parameters are positive,
the ROI needs to grow in all directions by the specified amount, for example:

A.adjustROI(2, 2, 2, 2);
In this example, the matrix size is increased by 4 elements in each direction. The matrix is shifted by 2 elements to the
left and 2 elements up, which brings in all the necessary pixels for the filtering with the 5x5 kernel.

adjustROI forces the adjusted ROI to be inside of the parent matrix that is boundaries of the adjusted ROI are
constrained by boundaries of the parent matrix. For example, if the submatrix A is located in the first row of a parent
matrix and you called A.adjustR0I(2, 2, 2, 2) then A will not be increased in the upward direction.

The function is used internally by the OpenCV filtering functions, like filter2D() , morphological operations, and
SO on.

See Also:

copyMakeBorder ()

Mat::operator()

Extracts a rectangular submatrix.
C++: Mat Mat: :operator() (Range rowRange, Range colRange) const
C++: Mat Mat: :operator() (const Rect& roi) const
C++: Mat Mat: :operator() (const Range* ranges) const
Parameters

rowRange — Start and end row of the extracted submatrix. The upper boundary is not
included. To select all the rows, use Range: :all().

colRange — Start and end column of the extracted submatrix. The upper boundary is not
included. To select all the columns, use Range: :all().

32 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

roi — Extracted submatrix specified as a rectangle.
ranges — Array of selected ranges along each array dimension.

The operators make a new header for the specified sub-array of *this . They are the most generalized forms
of Mat::row(), Mat::col(), Mat::rowRange(), and Mat::colRange() . For example, A(Range(0, 10),
Range::all()) is equivalent to A.rowRange (0, 10) . Similarly to all of the above, the operators are O(1) oper-
ations, that is, no matrix data is copied.

Mat::operator CvMat

Creates the CvMat header for the matrix.
C++: Mat::operator CvMat() const

The operator creates the CvMat header for the matrix without copying the underlying data. The reference counter is
not taken into account by this operation. Thus, you should make sure than the original matrix is not deallocated while
the CvMat header is used. The operator is useful for intermixing the new and the old OpenCV APT’s, for example:

Mat img(Size(320, 240), CV_8UC3);

CvMat cvimg = img;
mycvOldFunc(&cvimg, ...);

where mycvOldFunc is a function written to work with OpenCV 1.x data structures.

Mat::operator Iplimage

Creates the IplImage header for the matrix.
C++: Mat::operator Ipllmage() const

The operator creates the IplImage header for the matrix without copying the underlying data. You should make sure
than the original matrix is not deallocated while the IplImage header is used. Similarly to Mat: :operator CvMat,
the operator is useful for intermixing the new and the old OpenCV APT’s.

Mat::total

Returns the total number of array elements.
C++: size_tMat::total() const

The method returns the number of array elements (a number of pixels if the array represents an image).

Mat::isContinuous

Reports whether the matrix is continuous or not.
C++: bool Mat::isContinuous() const

The method returns true if the matrix elements are stored continuously without gaps at the end of each row. Otherwise,
it returns false. Obviously, 1x1 or 1xN matrices are always continuous. Matrices created with Mat::create() are
always continuous. But if you extract a part of the matrix using Mat: :col(),Mat::diag() , and so on, or constructed
a matrix header for externally allocated data, such matrices may no longer have this property.

2.1. Basic Structures 33

The OpenCV Reference Manual, Release 2.4.2

The continuity flag is stored as a bit in the Mat: : flags field and is computed automatically when you construct a
matrix header. Thus, the continuity check is a very fast operation, though theoretically it could be done as follows:

// alternative implementation of Mat::isContinuous()
bool myCheckMatContinuity(const Mat& m)

{
//return (m.flags & Mat::CONTINUOUS_FLAG) != 0;
return m.rows == 1 || m.step == m.cols*m.elemSize();

}

The method is used in quite a few of OpenCV functions. The point is that element-wise operations (such as arithmetic
and logical operations, math functions, alpha blending, color space transformations, and others) do not depend on the
image geometry. Thus, if all the input and output arrays are continuous, the functions can process them as very long
single-row vectors. The example below illustrates how an alpha-blending function can be implemented.

template<typename T>
void alphaBlendRGBA(const Mat& srcl, const Mat& src2, Mat& dst)

{
const float alpha_scale = (float)std::numeric_limits<T>::max(),
inv_scale = 1.f/alpha_scale;
CV_Assert(srcl.type() == src2.type() &&
srcl.type() == CV_MAKETYPE(DataType<T>::depth, 4) &&
srcl.size() == src2.size());
Size size = srcl.size();
dst.create(size, srcl.type());
// here is the idiom: check the arrays for continuity and,
// 1if this is the case,
// treat the arrays as 1D vectors
if(srcl.isContinuous() && src2.isContinuous() && dst.isContinuous())
{
size.width *= size.height;
size.height = 1;
}
size.width *= 4;
for(int i = 0; i < size.height; i++)
{
// when the arrays are continuous,
// the outer loop is executed only once
const Tx ptrl = srcl.ptr<T>(1i);
const Tx ptr2 = src2.ptr<T>(1i);
T+ dptr = dst.ptr<T>(1i);
for(int j = 0; j < size.width; j += 4)
{
float alpha = ptrl[j+3]*inv_scale, beta = ptr2[j+3]+inv_scale;
dptr[j] = saturate_cast<T>(ptrl[jl*alpha + ptr2[j]l*beta);
dptr[j+1] = saturate_cast<T>(ptrl[j+1]+alpha + ptr2[j+1]xbeta);
dptr[j+2] = saturate_cast<T>(ptrl[j+2]=*alpha + ptr2[j+2]*beta);
dptr[j+3] = saturate_cast<T>((1 - (l-alpha)=*(1l-beta))=*alpha_scale);
}
}
}

This approach, while being very simple, can boost the performance of a simple element-operation by 10-20 percents,
especially if the image is rather small and the operation is quite simple.

34 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Another OpenCV idiom in this function, a call of Mat: : create() for the destination array, that allocates the destina-
tion array unless it already has the proper size and type. And while the newly allocated arrays are always continuous,
you still need to check the destination array because Mat: : create() does not always allocate a new matrix.

Mat::elemSize

Returns the matrix element size in bytes.
C++: size_tMat::elemSize() const

The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 , the method returns
3xsizeof(short) or 6.

Mat::elemSize1

Returns the size of each matrix element channel in bytes.
C++: size_tMat::elemSizel() const

The method returns the matrix element channel size in bytes, that is, it ignores the number of channels. For example,
if the matrix type is CV_16SC3 , the method returns sizeof (short) or 2.

Mat::type

Returns the type of a matrix element.
C++: intMat::type() const

The method returns a matrix element type. This is an identifier compatible with the CvMat type system, like CV_165SC3
or 16-bit signed 3-channel array, and so on.

Mat::depth

Returns the depth of a matrix element.
C++: intMat::depth() const

The method returns the identifier of the matrix element depth (the type of each individual channel). For example, for
a 16-bit signed 3-channel array, the method returns CV_16S . A complete list of matrix types contains the following
values:

e CV_8U - 8-bit unsigned integers (0. .255)

* CV_8S - 8-bit signed integers (-128..127)

e CV_16U - 16-bit unsigned integers (0. .65535)

e CV_16S - 16-bit signed integers (-32768..32767)

* CV_32S - 32-bit signed integers (-2147483648. .2147483647)

e CV_32F - 32-bit floating-point numbers (-FLT_MAX..FLT_MAX, INF, NAN)
* CV_64F - 64-bit floating-point numbers (-DBL_MAX. .DBL_MAX, INF, NAN)

2.1. Basic Structures 35

The OpenCV Reference Manual, Release 2.4.2

Mat::channels

Returns the number of matrix channels.
C++: intMat::channels() const

The method returns the number of matrix channels.

Mat::step1

Returns a normalized step.
C++: size_tMat::stepl(inti=0) const

The method returns a matrix step divided by Mat::elemSizel() . It can be useful to quickly access an arbitrary
matrix element.

Mat::size

Returns a matrix size.
C++: Size Mat::size() const

The method returns a matrix size: Size(cols, rows) . When the matrix is more than 2-dimensional, the returned
size is (-1, -1).

Mat::empty

Returns true if the array has no elements.
C++: bool Mat: :empty() const

The method returns true if Mat::total() is O or if Mat: :data is NULL. Because of pop_back() and resize()
methods M. total() == 0 does not imply that M.data == NULL.

Mat::ptr

Returns a pointer to the specified matrix row.
C++: uchar* Mat: :ptr(inti0=0)
C++: const uchar* Mat: :ptr(inti0=0) const
C++: template<typename _Tp> _Tp* Mat: :ptr(int i0=0)
C++: template<typename _Tp> const _Tp* Mat: :ptr(inti0=0) const
Parameters
i0 — A 0-based row index.

The methods return uchar* or typed pointer to the specified matrix row. See the sample in Mat: : isContinuous() to
know how to use these methods.

36 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Mat::at

Returns a reference to the specified array element.
C++: template<typename T> T& Mat::at(inti) const
C++: template<typename T> const T& Mat: :at(inti) const
C++: template<typename T> T& Mat: :at (inti, int j)
C++: template<typename T> const T& Mat: :at(inti, intj) const
C++: template<typename T> T& Mat : : at (Point pt)
C++: template<typename T> const T& Mat: :at (Point pt) const
C++: template<typename T> T& Mat: :at(inti, int j, int k)
C++: template<typename T> const T& Mat: :at(inti, int j, int k) const
C++: template<typename T> T& Mat: :at(const int* idx)
C++: template<typename T> const T& Mat: :at (const int* idx) const
Parameters
i — Index along the dimension 0
Jj — Index along the dimension 1
k — Index along the dimension 2
pt — Element position specified as Point (j,1) .
idx — Array of Mat: :dims indices.

The template methods return a reference to the specified array element. For the sake of higher performance, the index
range checks are only performed in the Debug configuration.

Note that the variants with a single index (i) can be used to access elements of single-row or single-column
2-dimensional arrays. That is, if, for example, A is a 1 x N floating-point matrix and B is an M x 1 integer
matrix, you can simply write A.at<float>(k+4) and B.at<int>(2*i+1) instead of A.at<float>(0,k+4) and
B.at<int>(2xi+1,0) , respectively.

The example below initializes a Hilbert matrix:

Mat H(100, 100, CV_64F);
for(int i = 0; i < H.rows; i++)
for(int j = 0; j < H.cols; j++)
H.at<double>(1i,j)=1./(i+j+1);

Mat::begin

Returns the matrix iterator and sets it to the first matrix element.
C++: template<typename _Tp> Matlterator_<_Tp> Mat: :begin()
C++: template<typename _Tp> MatConstlterator_<_Tp>Mat: :begin() const

The methods return the matrix read-only or read-write iterators. The use of matrix iterators is very similar to the use of
bi-directional STL iterators. In the example below, the alpha blending function is rewritten using the matrix iterators:

2.1. Basic Structures 37

The OpenCV Reference Manual, Release 2.4.2

template<typename T>
void alphaBlendRGBA(const Mat& srcl, const Mat& src2, Mat& dst)

{
typedef Vec<T, 4> VT;
const float alpha_scale = (float)std::numeric_limits<T>::max(),
inv_scale = 1.f/alpha_scale;
CV_Assert(srcl.type() == src2.type() &&
srcl.type() == DataType<VT>::type &&
srcl.size() == src2.size());
Size size = srcl.size();
dst.create(size, srcl.type());
MatConstIterator_<VT> itl = srcl.begin<VT>(), itl_end = srcl.end<VT>();
MatConstIterator_<VT> it2 = src2.begin<VT>();
MatIterator_<VT> dst_it = dst.begin<VT>();
for(; itl !'= itl_end; ++itl, ++it2, ++dst_it)
{
VT pix1l = *itl, pix2 = *it2;
float alpha = pix1[3]*inv_scale, beta = pix2[3]*inv_scale;
*dst_it = VT(saturate_cast<T>(pix1[0]*alpha + pix2[0]*beta),
saturate_cast<T>(pix1[1l]+alpha + pix2[1l]xbeta),
saturate_cast<T>(pix1[2]+alpha + pix2[2]xbeta),
saturate_cast<T>((1 - (l-alpha)=*(1l-beta))=*alpha_scale));
}
}
Mat::end

Returns the matrix iterator and sets it to the after-last matrix element.
C++: template<typename _Tp> Matlterator_<_Tp>Mat: :end()
C++: template<typename _Tp> MatConstlterator_<_Tp>Mat::end() const

The methods return the matrix read-only or read-write iterators, set to the point following the last matrix element.

Mat_

class Mat_
Template matrix class derived from Mat .

template<typename _Tp> class Mat_ : public Mat

{

public:
// ... some specific methods
// and
// no new extra fields

b

The class Mat_<_Tp> is a “thin” template wrapper on top of the Mat class. It does not have any extra data fields. Nor
this class nor Mat has any virtual methods. Thus, references or pointers to these two classes can be freely but carefully
converted one to another. For example:

38 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

// create a 100x100 8-bit matrix

Mat M(100,100,CV_8U);

// this will be compiled fine. no any data conversion will be done.
Mat_<float>& M1 = (Mat_<float>&)M;

// the program is likely to crash at the statement below

M1(99,99) = 1.f;

While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element access op-
erations and if you know matrix type at the compilation time. Note that Mat::at<_Tp>(int y, int x) and
Mat_<_Tp>::operator ()(int y, int x) do absolutely the same and run at the same speed, but the latter is cer-
tainly shorter:

Mat_<double> M(20,20);
for(int i = 0; i < M.rows; i++)
for(int j = 0; j < M.cols; j++)
M(i,j) = 1./(i+j+1);
Mat E, V;
eigen(M,E,V);
cout << E.at<double>(0,0)/E.at<double>(M.rows-1,0);

To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter:

// allocate a 320x240 color image and fill it with green (in RGB space)
Mat_<Vec3b> img(240, 320, Vec3b(0,255,0));
// now draw a diagonal white line
for(int i = 0; i < 100; i++)

img(i,i)=Vec3b(255,255,255);
// and now scramble the 2nd (red) channel of each pixel
for(int i = 0; i < img.rows; i++)

for(int j = 0; j < img.cols; j++)

img(i,j)[2]1 = (uchar)(i ~ j);

InputArray

class InputArray
This is the proxy class for passing read-only input arrays into OpenCV functions. It is defined as

typedef const _InputArray& InputArray;

where _InputArray is a class that can be constructed from Mat, Mat_<T>, Matx<T, m, n>, std::vector<T>,
std::vector<std::vector<T> >or std::vector<Mat>. It can also be constructed from a matrix expression.

Since this is mostly implementation-level class, and its interface may change in future versions, we do not describe it
in details. There are a few key things, though, that should be kept in mind:

* When you see in the reference manual or in OpenCV source code a function that takes InputArray, it means
that you can actually pass Mat, Matx, vector<T> etc. (see above the complete list).

e Optional input arguments: If some of the input arrays may be empty, pass cv::noArray() (or simply
cv::Mat() as you probably did before).

 The class is designed solely for passing parameters. That is, normally you should not declare class members,
local and global variables of this type.

e If you want to design your own function or a class method that can operate of arrays of multiple types,
you can use InputArray (or OutputArray) for the respective parameters. Inside a function you should
use _InputArray::getMat() method to construct a matrix header for the array (without copying data).
_InputArray::kind() can be used to distinguish Mat from vector<> etc., but normally it is not needed.

2.1. Basic Structures 39

The OpenCV Reference Manual, Release 2.4.2

Here is how you can use a function that takes InputArray

std::vector<Point2f> vec;
// points or a circle
for(int i = 0; 1 < 30; i++)
vec.push_back(Point2f((float) (100 + 30+cos(i*CV_PI*2/5)),
(float) (100 - 30xsin(ixCV_PI*2/5))));
cv::transform(vec, vec, cv::Matx23f(0.707, -0.707, 10, 0.707, 0.707, 20));

That is, we form an STL vector containing points, and apply in-place affine transformation to the vector using the 2x3
matrix created inline as Matx<float, 2, 3> instance.

Here is how such a function can be implemented (for simplicity, we implement a very specific case of it, according to
the assertion statement inside)

void myAffineTransform(InputArray _src, OutputArray _dst, InputArray _m)

{
// get Mat headers for input arrays. This is 0(1) operation,
// unless _src and/or _m are matrix expressions.
Mat src = _src.getMat(), m = _m.getMat();
CV_Assert(src.type() == CV_32FC2 && m.type() == CV_32F && m.size() == Size(3, 2));
// [relcreate the output array so that it has the proper size and type.
// In case of Mat it calls Mat::create, in case of STL vector it calls vector::resize.
_dst.create(src.size(), src.type());
Mat dst = _dst.getMat();
for(int i = 0; i < src.rows; i++)
for(int j = 0; j < src.cols; j++)
{
Point2f pt = src.at<Point2f>(1i, j);
dst.at<Point2f>(i, j) = Point2f(m.at<float>(0, 0)*pt.x +
m.at<float>(0, 1)*pt.y +
m.at<float>(0, 2),
m.at<float>(1, 0)*pt.x +
m.at<float>(1, 1)*pt.y +
m.at<float>(1, 2));
}
}

There is another related type, InputArrayOfArrays, which is currently defined as a synonym for InputArray:

typedef InputArray InputArrayOfArrays;

It denotes function arguments that are either vectors of vectors or vectors of matrices. A separate synonym is
needed to generate Python/Java etc. wrappers properly. At the function implementation level their use is similar,
but _InputArray::getMat(idx) should be used to get header for the idx-th component of the outer vector and
_InputArray::size().area() should be used to find the number of components (vectors/matrices) of the outer
vector.

OutputArray

class OutputArray : public InputArray

This type is very similar to InputArray except that it is used for input/output and output function parameters. Just
like with InputArray, OpenCV users should not care about OutputArray, they just pass Mat, vector<T> etc. to the
functions. The same limitation as for InputArray: Do not explicitly create OutputArray instances applies here
too.

40 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

If you want to make your function polymorphic (i.e. accept different arrays as output parameters), it is also not very
difficult. Take the sample above as the reference. Note that _OutputArray::create() needs to be called before
_OutputArray::getMat (). This way you guarantee that the output array is properly allocated.

Optional output parameters. If you do not need certain output array to be computed and returned to you, pass
cv::noArray(), just like you would in the case of optional input array. At the implementation level, use
_OutputArray: :needed() to check if certain output array needs to be computed or not.

There are several synonyms for OutputArray that are used to assist automatic Python/Java/... wrapper generators:

typedef OutputArray OutputArrayOfArrays;
typedef OutputArray InputOutputArray;
typedef OutputArray InputOutputArrayOfArrays;

NAryMatlterator

class NAryMatIterator
n-ary multi-dimensional array iterator.

class CV_EXPORTS NAryMatIterator

{

public:
//! the default constructor
NAryMatIterator();
//! the full constructor taking arbitrary number of n-dim matrices
NAryMatIterator(const Mat** arrays, Matx planes, int narrays=-1);
//! the separate iterator initialization method
void init(const Mat** arrays, Mat+ planes, int narrays=-1);
//! proceeds to the next plane of every iterated matrix
NAryMatIterator& operator ++();
//! proceeds to the next plane of every iterated matrix (postfix increment operator)
NAryMatIterator operator ++(int);
int nplanes; // the total number of planes

b

Use the class to implement unary, binary, and, generally, n-ary element-wise operations on multi-dimensional arrays.
Some of the arguments of an n-ary function may be continuous arrays, some may be not. It is possible to use con-
ventional MatIterator ‘s for each array but incrementing all of the iterators after each small operations may be a
big overhead. In this case consider using NAryMatIterator to iterate through several matrices simultaneously as
long as they have the same geometry (dimensionality and all the dimension sizes are the same). On each iteration
it.planes[0], it.planes[1], ... will be the slices of the corresponding matrices.

The example below illustrates how you can compute a normalized and threshold 3D color histogram:

void computeNormalizedColorHist(const Mat& image, Mat& hist, int N, double minProb)

{
const int histSize[] = {N, N, N};

// make sure that the histogram has a proper size and type
hist.create(3, histSize, CV_32F);

// and clear it
hist = Scalar(0);

2.1. Basic Structures 41

The OpenCV Reference Manual, Release 2.4.2

// the loop below assumes that the image
// 1is a 8-bit 3-channel. check it.
CV_Assert(image.type() == CV_8UC3);
MatConstIterator_<Vec3b> it = image.begin<Vec3b>(),
it _end = image.end<Vec3b>();

for(; it != it_end; ++it)
{

const Vec3b& pix = *it;

hist.at<float>(pix[0]*N/256, pix[1]%xN/256, pix[2]*N/256) += 1.f;

}

minProb *= image.rowsximage.cols;

Mat plane;

NAryMatIterator it(&hist, &plane, 1);
double s = 0;

// iterate through the matrix. on each iteration
// it.planes[*] (of type Mat) will be set to the current plane.
for(int p = 0; p < it.nplanes; p++, ++it)

{
threshold(it.planes[0], it.planes[0], minProb, ©, THRESH_TOZERO);
s += sum(it.planes[0])[0];

}

s =1./s;

it = NAryMatIterator(&hist, &plane, 1);
for(int p = 0; p < it.nplanes; p++, ++it)
it.planes[0] *= s;

SparseMat

class SparseMat
Sparse n-dimensional array.

class SparseMat
{
public:
typedef SparseMatIterator iterator;
typedef SparseMatConstIterator const_iterator;

// internal structure - sparse matrix header
struct Hdr
{

};

// sparse matrix node - element of a hash table
struct Node
{
size_t hashval;
size_t next;
int idx[CV_MAX_DIM];
+

////////// constructors and destructor //////////
// default constructor

42 Chapter 2. core

. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

SparseMat();

// creates matrix of the specified size and type
SparseMat (int dims, const intx _sizes, int _type);

// copy constructor

SparseMat(const SparseMat& m);

// converts dense array to the sparse form,

// if tryld is true and matrix is a single-column matrix (Nx1),
// then the sparse matrix will be 1-dimensional.
SparseMat(const Mat& m, bool tryld=false);

// converts an old-style sparse matrix to the new style.
// all the data is copied so that "m" can be safely

// deleted after the conversion

SparseMat(const CvSparseMat* m);

// destructor

~SparseMat();

///////// assignment operations ///////////

// this is an 0(1) operation; no data is copied

SparseMat& operator = (const SparseMat& m);

// (equivalent to the corresponding constructor with tryld=false)
SparseMat& operator = (const Mat& m);

// creates a full copy of the matrix
SparseMat clone() const;

// copy all the data to the destination matrix.

// the destination will be reallocated if needed.

void copyTo(SparseMat& m) const;

// converts 1D or 2D sparse matrix to dense 2D matrix.

// If the sparse matrix is 1D, the result will

// be a single-column matrix.

void copyTo(Mat& m) const;

// converts arbitrary sparse matrix to dense matrix.

// multiplies all the matrix elements by the specified scalar
void convertTo(SparseMat& m, int rtype, double alpha=1) const;

// converts sparse matrix to dense matrix with optional type conversion and scaling.

// When rtype=-1, the destination element type will be the same

// as the sparse matrix element type.

// Otherwise, rtype will specify the depth and

// the number of channels will remain the same as in the sparse matrix
void convertTo(Mat& m, int rtype, double alpha=1, double beta=0) const;

// not used now
void assignTo(SparseMat& m, int type=-1) const;

// reallocates sparse matrix. If it was already of the proper size and type,
// it is simply cleared with clear(), otherwise,

// the old matrix is released (using release()) and the new one is allocated.
void create(int dims, const intx _sizes, int _type);

// sets all the matrix elements to 0, which means clearing the hash table.
void clear();

// manually increases reference counter to the header.

void addref();

// decreses the header reference counter when it reaches 0.

// the header and all the underlying data are deallocated.

void release();

2.1. Basic Structures

43

The OpenCV Reference Manual, Release 2.4.2

// converts sparse matrix to the old-style representation.
// all the elements are copied.

operator CvSparseMat+() const;

// size of each element in bytes

// (the matrix nodes will be bigger because of

// element indices and other SparseMat::Node elements).
size_t elemSize() const;

// elemSize()/channels()

size_t elemSizel() const;

// the same is in Mat
int type() const;
int depth() const;
int channels() const;

// returns the array of sizes and 0 if the matrix is not allocated
const intx size() const;

// returns i-th size (or 0)

int size(int i) const;

// returns the matrix dimensionality

int dims() const;

// returns the number of non-zero elements

size_t nzcount() const;

// compute element hash value from the element indices:

// 1D case

size_t hash(int i0) const;

// 2D case

size_t hash(int i@, int il) const;
// 3D case

size_t hash(int i@, int il, int i2) const;
// n-D case
size_t hash(const intx idx) const;

// low-level element-access functions,

// special variants for 1D, 2D, 3D cases, and the generic one for n-D case.
//

// return pointer to the matrix element.

// 1if the element is there (it is non-zero), the pointer to it is returned
// 1f it is not there and createMissing=false, NULL pointer is returned
// 1f it is not there and createMissing=true, the new element

// is created and initialized with 0. Pointer to it is returned.

// If the optional hashval pointer is not NULL, the element hash value 1is
// not computed but xhashval is taken instead.

uchar* ptr(int i0, bool createMissing, size_tx hashval=0);

uchars ptr(int i0, int il, bool createMissing, size_t* hashval=0);

uchars ptr(int i0, int il, int i2, bool createMissing, size_t* hashval=0);
uchar* ptr(const int+ idx, bool createMissing, size_t* hashval=0);

// higher-level element access functions:
// ref<_Tp>(1i0,...[,hashval]) - equivalent to *(_Tpx)ptr(i@,...true[,hashval]).
// always return valid reference to the element.

// If it does not exist, it is created.
// find<_Tp>(10,...[,hashval]) - equivalent to (_const Tpx)ptr(io0,...false[,hashval]).
// return pointer to the element or NULL pointer if the element is not there.

// value<_Tp>(1i0,...[,hashval]) - equivalent to
// { const _Tpx p = find<_Tp>(i0,...[,hashval]); return p ? xp : _Tp(); }
// that is, 0 is returned when the element is not there.

44

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

// note that _Tp must match the actual matrix type -
// the functions do not do any on-fly type conversion

// 1D case

template<typename _Tp> _Tp& ref(int i0, size_ t* hashval=0);
template<typename _Tp> _Tp value(int i0, size_tx* hashval=0) const;
template<typename _Tp> const _Tp* find(int i@, size_t* hashval=0) const;

// 2D case

template<typename _Tp> _Tp& ref(int i0, int il, size t* hashval=0);
template<typename _Tp> _Tp value(int 10, int il, size_t* hashval=0) const;
template<typename _Tp> const _Tpx find(int i@, int il, size_t* hashval=0) const;

// 3D case

template<typename _Tp> _Tp& ref(int i@, int il, int i2, size_tx hashval=0);
template<typename _Tp> _Tp value(int i@, int il, int i2, size_t* hashval=0) const;
template<typename _Tp> const _Tp+ find(int i@, int il, int i2, size t* hashval=0) const;

// n-D case

template<typename _Tp> _Tp& ref(const int+ idx, size t* hashval=0);
template<typename _Tp> _Tp value(const intx idx, size_tx hashval=0) const;
template<typename _Tp> const _Tpx find(const intx idx, size_t* hashval=0) const;

// erase the specified matrix element.

// when there is no such an element, the methods do nothing
void erase(int i@, int il, size_t* hashval=0);

void erase(int i@, int il, int i2, size_t* hashval=0);

void erase(const intx idx, size_tx* hashval=0);

// return the matrix iterators,

// pointing to the first sparse matrix element,
SparseMatIterator begin();

SparseMatConstIterator begin() const;

// ... or to the point after the last sparse matrix element
SparseMatIterator end();

SparseMatConstIterator end() const;

// and the template forms of the above methods.

// _Tp must match the actual matrix type.

template<typename _Tp> SparseMatIterator_<_Tp> begin();
template<typename _Tp> SparseMatConstIterator_<_Tp> begin() const;
template<typename _Tp> SparseMatIterator_<_Tp> end();
template<typename _Tp> SparseMatConstIterator_< Tp> end() const;

// return value stored in the sparse martix node
template<typename _Tp> _Tp& value(Nodex n);
template<typename _Tp> const _Tp& value(const Nodex n) const;

////////////// some internally used methods ///////////////

// pointer to the sparse matrix header
Hdr* hdr;
+i

The class SparseMat represents multi-dimensional sparse numerical arrays. Such a sparse array can store elements of
any type that Mat can store. Sparse means that only non-zero elements are stored (though, as a result of operations on
a sparse matrix, some of its stored elements can actually become 0. It is up to you to detect such elements and delete

2.1. Basic Structures 45

The OpenCV Reference Manual, Release 2.4.2

them using SparseMat: :erase). The non-zero elements are stored in a hash table that grows when it is filled so that
the search time is O(1) in average (regardless of whether element is there or not). Elements can be accessed using the
following methods:

* Query operations (SparseMat::ptr and the higher-level SparseMat::ref, SparseMat::value and
SparseMat: : find), for example:

const int dims = 5;

int size[] = {10, 10, 10, 10, 10};
SparseMat sparse_mat(dims, size, CV_32F);
for(int i = 0; i < 1000; i++)

{
int idx[dims];
for(int k = 0; k < dims; k++)
idx[k] = rand()
sparse_mat.ref<float>(idx) += 1.f;
}

* Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator. That is, the
iteration loop is familiar to STL users:

// prints elements of a sparse floating-point matrix
// and the sum of elements.
SparseMatConstIterator_<float>

it = sparse_mat.begin<float>(),

it_end = sparse_mat.end<float>();

double s = 0;

int dims = sparse_mat.dims();
for(; it != it_end; ++it)

{

// print element indices and the element value
const Nodex n = it.node();
printf(" (")
for(int i = 0; i < dims; i++)
printf("
printf(":
s += *it;
}

printf("Element sum is

If you run this loop, you will notice that elements are not enumerated in a logical order (lexicographical, and so
on). They come in the same order as they are stored in the hash table (semi-randomly). You may collect pointers
to the nodes and sort them to get the proper ordering. Note, however, that pointers to the nodes may become
invalid when you add more elements to the matrix. This may happen due to possible buffer reallocation.

* Combination of the above 2 methods when you need to process 2 or more sparse matrices simultaneously. For
example, this is how you can compute unnormalized cross-correlation of the 2 floating-point sparse matrices:

double cross_corr(const SparseMat& a, const SparseMat& b)
{
const SparseMat *_a = &a, *_b = &b;
// if b contains less elements than a,
// it is faster to iterate through b
if(_a->nzcount() > _b->nzcount())
std::swap(_a, _b);
SparseMatConstIterator_<float> it = _a->begin<float>(),
it_end = _a->end<float>();
double ccorr = 0;
for(; it != it_end; ++it)

46

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

{
// take the next element from the first matrix
float avalue = *it;
const Nodex anode = it.node();
// and try to find an element with the same index in the second matrix.
// since the hash value depends only on the element index,
// reuse the hash value stored in the node
float bvalue = _b->value<float>(anode->idx,&anode->hashval);
ccorr += avaluexbvalue;

}

return ccorr;

}
SparseMat_

class SparseMat_
Template sparse n-dimensional array class derived from SparseMat

template<typename _Tp> class SparseMat_ : public SparseMat
{
public:

typedef SparseMatIterator_<_Tp> iterator;

typedef SparseMatConstIterator_<_Tp> const_iterator;

// constructors;

// the created matrix will have data type = DataType<_Tp>::type
SparseMat_();

SparseMat_(int dims, const intx _sizes);

SparseMat_(const SparseMat& m);

SparseMat_(const SparseMat_& m);

SparseMat_(const Mat& m);

SparseMat_(const CvSparseMat+ m);

// assignment operators; data type conversion is done when necessary
SparseMat_& operator = (const SparseMat& m);

SparseMat_& operator (const SparseMat_& m);

SparseMat_& operator = (const Mat& m);

// equivalent to the correspoding parent class methods
SparseMat_ clone() const;

void create(int dims, const intx _sizes);

operator CvSparseMatx() const;

// overriden methods that do extra checks for the data type
int type() const;

int depth() const;

int channels() const;

// more convenient element access operations.

// ref() is retained (but <_Tp> specification is not needed anymore);
// operator () is equivalent to SparseMat::value<_Tp>

_Tp& ref(int 10, size_t* hashval=0);

_Tp operator()(int i0, size_tx* hashval=0) const;

_Tp& ref(int i0, int il, size_t* hashval=0);

_Tp operator()(int i0, int il, size_t* hashval=0) const;

_Tp& ref(int i0, int il, int i2, size_tx* hashval=0);

_Tp operator()(int i0, int il, int i2, size_tx hashval=0) const;

2.1. Basic Structures

47

The OpenCV Reference Manual, Release 2.4.2

_Tp& ref(const intx idx, size_tx hashval=0);
_Tp operator() (const intx idx, size_tx hashval=0) const;

// iterators

SparseMatIterator_<_Tp> begin();
SparseMatConstIterator_<_Tp> begin() const;
SparseMatIterator_<_Tp> end();
SparseMatConstIterator_<_Tp> end() const;

};

SparseMat_ is a thin wrapper on top of SparseMat created in the same way as Mat_ . It simplifies notation of some
operations.

int sz[] = {10, 20, 30};
SparseMat_<double> M(3, sz);

M.ref(l, 2, 3) = M(4, 5, 6) + M(7, 8, 9);

Algorithm

class Algorithm

This is a base class for all more or less complex algorithms in OpenCYV, especially for classes of algorithms, for which
there can be multiple implementations. The examples are stereo correspondence (for which there are algorithms
like block matching, semi-global block matching, graph-cut etc.), background subtraction (which can be done using
mixture-of-gaussians models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-
Schunck etc.).

The class provides the following features for all derived classes:

* so called “virtual constructor”. That is, each Algorithm derivative is registered at program start and you
can get the list of registered algorithms and create instance of a particular algorithm by its name (see
Algorithm::create). If you plan to add your own algorithms, it is good practice to add a unique prefix to
your algorithms to distinguish them from other algorithms.

setting/retrieving algorithm parameters by name. If you used video capturing functionality from OpenCV
highgui module, you are probably familar with cvSetCaptureProperty(), cvGetCaptureProperty(),
VideoCapture::set() and VideoCapture::get(). Algorithm provides similar method where instead of
integer id’s you specify the parameter names as text strings. See Algorithm::set and Algorithm: :get for
details.

* reading and writing parameters from/to XML or YAML files. Every Algorithm derivative can store all its
parameters and then read them back. There is no need to re-implement it each time.

Here is example of SIFT use in your application via Algorithm interface:

#include "opencv2/opencv.hpp"
#include "opencv2/nonfree/nonfree.hpp"

initModule_nonfree(); // to load SURF/SIFT etc.
Ptr<Feature2D> sift = Algorithm::create<Feature2D>("Feature2D.SIFT");
FileStorage fs("sift params.xml", FileStorage::READ);

if(fs.isOpened()) // if we have file with parameters, read them

{

48 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

sift->read(fs["sift_params"]);
fs.release();
}

else // else modify the parameters and store them; user can later edit the file to use different parameters

{

sift->set("contrastThreshold", 0.01f); // lower the contrast threshold, compared to the default value

{
WriteStructContext ws(fs, "sift _params", CV_NODE_MAP);
sift->write(fs);
}
}

Mat image = imread("myimage.png", 0), descriptors;
vector<KeyPoint> keypoints;
(xsift) (image, noArray(), keypoints, descriptors);

Algorithm::get

Returns the algorithm parameter

C++: template<typename _Tp> typename ParamType<_Tp>::member_type Algorithm: :get(const string&
name) const

Parameters
name — The parameter name.

The method returns value of the particular parameter. Since the compiler can not deduce the type of the returned
parameter, you should specify it explicitly in angle brackets. Here are the allowed forms of get:

* myalgo.get<int>(“param_name”)

* myalgo.get<double>(*param_name”)

* myalgo.get<bool>(“param_name”)

* myalgo.get<string>(‘“param_name”)

* myalgo.get<Mat>(“param_name”)

* myalgo.get<vector<Mat> >(“param_name”’)

* myalgo.get<Algorithm>(“param_name”) (it returns Ptr<Algorithm>).

In some cases the actual type of the parameter can be cast to the specified type, e.g. integer parameter can be cast to
double, bool can be cast to int. But “dangerous” transformations (string<->number, double->int, 1x1 Mat<->number,
...) are not performed and the method will throw an exception. In the case of Mat or vector<Mat> parameters the
method does not clone the matrix data, so do not modify the matrices. Use Algorithm::set instead - slower, but
more safe.

Algorithm::set

Sets the algorithm parameter
C++: void Algorithm: :set(const string& name, int value)
C++: void Algorithm: : set(const string& name, double value)

C++: void Algorithm: : set(const string& name, bool value)

2.1. Basic Structures 49

The OpenCV Reference Manual, Release 2.4.2

C++: void Algorithm: : set(const string& name, const string& value)

C++: void Algorithm: :set(const string& name, const Mat& value)

C++: void Algorithm: : set(const string& name, const vector<Mat>& value)

C++: void Algorithm: : set (const string& name, const Ptr<Algorithm>& value)

Parameters
name — The parameter name.

value — The parameter value.

The method sets value of the particular parameter. Some of the algorithm parameters may be declared as read-only. If
you try to set such a parameter, you will get exception with the corresponding error message.

Algorithm::write

Stores algorithm parameters in a file storage

C++: void Algorithm: :write(FileStorage& fs) const

Parameters

fs — File storage.

The method stores all the algorithm parameters (in alphabetic order) to the file storage. The method is virtual. If you
define your own Algorithm derivative, your can override the method and store some extra information. However, it’s
rarely needed. Here are some examples:

 SIFT feature detector (from nonfree module). The class only stores algorithm parameters and no keypoints or
their descriptors. Therefore, it’s enough to store the algorithm parameters, which is what Algorithm: :write()
does. Therefore, there is no dedicated SIFT: :write().

» Background subtractor (from video module). It has the algorithm parameters and also it has the current back-
ground model. However, the background model is not stored. First, it’s rather big. Then, if you have stored the
background model, it would likely become irrelevant on the next run (because of shifted camera, changed back-
ground, different lighting etc.). Therefore, BackgroundSubtractorMOG and BackgroundSubtractorM0G2
also rely on the standard Algorithm: :write() to store just the algorithm parameters.

» Expectation Maximization (from ml module). The algorithm finds mixture of gaussians that approximates user
data best of all. In this case the model may be re-used on the next run to test new data against the trained
statistical model. So EM needs to store the model. However, since the model is described by a few parameters
that are available as read-only algorithm parameters (i.e. they are available via EM: :get()), EM also relies
on Algorithm::write() to store both EM parameters and the model (represented by read-only algorithm
parameters).

Algorithm::read

Reads algorithm parameters from a file storage

C++: void Algorithm: : read(const FileNode& fn)

Parameters

fn — File node of the file storage.

The method reads all the algorithm parameters from the specified node of a file storage. Similarly to
Algorithm::write(), if you implement an algorithm that needs to read some extra data and/or re-compute some
internal data, you may override the method.

50

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Algorithm::getList

Returns the list of registered algorithms
C++: void Algorithm: :getList (vector<string>& algorithms)
Parameters
algorithms — The output vector of algorithm names.
This static method returns the list of registered algorithms in alphabetical order. Here is how to use it

vector<string> algorithms;
Algorithm::getList(algorithms);
cout << "Algorithms: " << algorithms.size() << endl;
for (size_t i=0; i < algorithms.size(); i++)

cout << algorithms[i] << endl;

Algorithm::create

Creates algorithm instance by name
C++: template<typename _Tp> Ptr<_Tp> Algorithm: :create(const string& name)
Parameters
name — The algorithm name, one of the names returned by Algorithm: :getList().

This static method creates a new instance of the specified algorithm. If there is no such algorithm, the method will
silently return null pointer (that can be checked by Ptr::empty() method). Also, you should specify the particular
Algorithm subclass as _Tp (or simply Algorithm if you do not know it at that point).

Ptr<BackgroundSubtractor> bgfg = Algorithm::create<BackgroundSubtractor>("BackgroundSubtractor.M0G2");

Note: This is important note about seemingly mysterious behavior of Algorithm: :create() when it returns NULL
while it should not. The reason is simple - Algorithm::create() resides in OpenCV ‘s core module and the al-
gorithms are implemented in other modules. If you create algorithms dynamically, C++ linker may decide to throw
away the modules where the actual algorithms are implemented, since you do not call any functions from the mod-
ules. To avoid this problem, you need to call initModule_<modulename>(); somewhere in the beginning of the
program before Algorithm: :create(). For example, call initModule_nonfree() in order to use SURF/SIFT, call
initModule_ml() to use expectation maximization etc.

Creating Own Algorithms
The above methods are usually enough for users. If you want to make your own algorithm, derived from Algorithm,
you should basically follow a few conventions and add a little semi-standard piece of code to your class:

* Make a class and specify Algorithm as its base class.

* The algorithm parameters should be the class members. See Algorithm: :get() for the list of possible types
of the parameters.

* Add public virtual method AlgorithmInfox info() const; to your class.

* Add constructor function, AlgorithmInfo instance and implement the info () method. The simplest way is to
take http://code.opencv.org/svn/opencv/trunk/opencv/modules/ml/src/ml_init.cpp as the reference and modify it
according to the list of your parameters.

2.1. Basic Structures 51

http://code.opencv.org/svn/opencv/trunk/opencv/modules/ml/src/ml_init.cpp

The OpenCV Reference Manual, Release 2.4.2

* Add some public function (e.g. initModule_<mymodule>()) that calls info() of your algorithm and put it into
the same source file as info() implementation. This is to force C++ linker to include this object file into the

target application. See Algorithm: :create() for details.

2.2 Basic C Structures and Operations

The section describes the main data structures, used by the OpenCV 1.x API, and the basic functions to create and

process the data structures.

CvPoint

struct CvPoint

2D point with integer coordinates (usually zero-based).

int X
x-coordinate

inty
y-coordinate

C: CvPoint cvPoint (int x, int y)
constructs CvPoint structure.

C: CvPoint cvPointFrom32f (CvPoint2D32f point)
converts CvPoint2D32f to CvPoint.

See Also:

Point_

CvPoint2D32f

struct CvPoint2D32f
2D point with floating-point coordinates.

float x
x-coordinate

floaty
y-coordinate

C: CvPoint2D32f cvPoint2D32f (double x, double y)
constructs CvPoint2D32f structure.

C: CvPoint2D32f cvPointTo32f (CvPoint point)
converts CvPoint to CvPoint2D32f.

See Also:

Point_

CvPoint3D32f

struct CvPoint3D32f
3D point with floating-point coordinates

52

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

float x
x-coordinate

float y
y-coordinate

float z
z-coordinate

C: CvPoint3D32f cvPoint3D32f (double x, double y, double z)
constructs CvPoint3D32f structure.

See Also:

Point3_

CvPoint2D64f

struct CvPoint2D64f
2D point with double-precision floating-point coordinates.

double x
x-coordinate

double y
y-coordinate

C: CvPoint2D64f cvPoint2D64f (double x, double y)
constructs CvPoint2D64f structure.

See Also:

Point_

CvPoint3D64f

struct CvPoint3D64f
3D point with double-precision floating-point coordinates.

double x
x-coordinate

double y
y-coordinate

double z

C: CvPoint3D64f cvPoint3D64f (double x, double y, double z)
constructs CvPoint3D64f structure.

See Also:
Point3_

CvSize

struct CvSize
Size of a rectangle or an image.

2.2. Basic C Structures and Operations

53

The OpenCV Reference Manual, Release 2.4.2

int width
Width of the rectangle

int height
Height of the rectangle

C: CvSize cvSize (int width, int height)
constructs CvSize structure.

See Also:

Size_

CvSize2D32f

struct CvSize2D32f
Sub-pixel accurate size of a rectangle.

float width
Width of the rectangle

float height
Height of the rectangle

C: CvSize2D32f cvSize2D32f (double width, double height)
constructs CvSize2D32f structure.

See Also:

Size_

CvRect

struct CvRect
Stores coordinates of a rectangle.

int x
x-coordinate of the top-left corner

inty
y-coordinate of the top-left corner (sometimes bottom-left corner)

int width
Width of the rectangle

int height
Height of the rectangle

C: CvRect cvRect (int x, int y, int width, int height)
constructs CvRect structure.

See Also:
Rect_

CvBox2D

struct CvBox2D
Stores coordinates of a rotated rectangle.

54 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

CvPoint2D32f center
Center of the box

CvSize2D32f size
Box width and height

float angle
Angle between the horizontal axis and the first side (i.e. length) in degrees

See Also:
RotatedRect

CvScalar

struct CvScalar
A container for 1-,2-,3- or 4-tuples of doubles.
double[4] val

See Also:

Scalar_

CvTermCriteria
struct CvTermCriteria
Termination criteria for iterative algorithms.

int type
type of the termination criteria, one of:

e CV_TERMCRIT_ITER - stop the algorithm after max_iter iterations at maximum.

e CV_TERMCRIT_EPS - stop the algorithm after the achieved algorithm-dependent accuracy becomes
lower than epsilon.

* CV_TERMCRIT_ITER+CV_TERMCRIT_EPS - stop the algorithm after max_iter iterations or when the
achieved accuracy is lower than epsilon, whichever comes the earliest.

int max_iter
Maximum number of iterations

double epsilon
Required accuracy

See Also:

TermCriteria

CvMat

struct CvMat
A multi-channel dense matrix.

int type
CvMat signature (CV_MAT_MAGIC_VAL) plus type of the elements. Type of the matrix elements can be
retrieved using CV_MAT_TYPE macro:

2.2. Basic C Structures and Operations 55

The OpenCV Reference Manual, Release 2.4.2

int type = CV_MAT_TYPE(matrix->type);

For description of possible matrix elements, see Mat.

int step
Full row length in bytes

int* refcount
Underlying data reference counter

union data
Pointers to the actual matrix data:

* ptr - pointer to 8-bit unsigned elements

* s - pointer to 16-bit signed elements

* i - pointer to 32-bit signed elements

* fl - pointer to 32-bit floating-point elements
* db - pointer to 64-bit floating-point elements

int rows
Number of rows

int cols
Number of columns

Matrix elements are stored row by row. Element (i, j) (i - 0-based row index, j - 0-based column index) of a matrix can
be retrieved or modified using CV_MAT_ELEM macro:

uchar pixval = CV_MAT_ELEM(grayimg, uchar, i, j)
CV_MAT_ELEM(cameraMatrix, float, 0, 2) = image.widthx*0.5f;

To access multiple-channel matrices, you can use CV_MAT_ELEM(matrix, type, i, j*nchannels +
channel_idx).

CvMat is now obsolete; consider using Mat instead.

CvMatND

struct CvMatND
Multi-dimensional dense multi-channel array.

int type
A CvMatND signature (CV_MATND_MAGIC_VAL) plus the type of elements. Type of the matrix elements can
be retrieved using CV_MAT_TYPE macro:

int type = CV_MAT_TYPE(ndmatrix->type);
int dims
The number of array dimensions

int* refcount
Underlying data reference counter

union data
Pointers to the actual matrix data

* ptr - pointer to 8-bit unsigned elements

* s - pointer to 16-bit signed elements

56 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

* i - pointer to 32-bit signed elements
* fl - pointer to 32-bit floating-point elements
* db - pointer to 64-bit floating-point elements

array dim
Arrays of pairs (array size along the i-th dimension, distance between neighbor elements along i-th dimen-
sion):

for(int i = 0; i < ndmatrix->dims; i++)

printf("size[i] = %d, step[i] = %d\n", ndmatrix->dim[i].size, ndmatrix->dim[i].step);

CvMatND is now obsolete; consider using Mat instead.

CvSparseMat

struct CvSparseMat
Multi-dimensional sparse multi-channel array.

int type
A CvSparseMat signature (CV_SPARSE_MAT_MAGIC_VAL) plus the type of sparse matrix elements.
Similarly to CvMat and CvMatND, use CV_MAT_TYPE() to retrieve type of the elements.

int dims
Number of dimensions

int* refcount
Underlying reference counter. Not used.

CvSet* heap
A pool of hash table nodes

void** hashtable
The hash table. Each entry is a list of nodes.

int hashsize
Size of the hash table

int[] size
Array of dimension sizes

Iplimage
struct IplImage
IPL image header

int nSize
sizeof(IplImage)

int ID
Version, always equals O

int nChannels
Number of channels. Most OpenCV functions support 1-4 channels.

int alphaChannel
Ignored by OpenCV

2.2. Basic C Structures and Operations 57

The OpenCV Reference Manual, Release 2.4.2

int depth
Channel depth in bits + the optional sign bit (IPL_DEPTH_SIGN). The supported depths are:

* IPL_DEPTH_8U - unsigned 8-bit integer. Equivalent to CV_8U in matrix types.

e IPL_DEPTH_8S - signed 8-bit integer. Equivalent to CV_8S in matrix types.

e IPL_DEPTH_16U - unsigned 16-bit integer. Equivalent to CV_16U in matrix types.

e IPL_DEPTH_16S - signed 8-bit integer. Equivalent to CV_16S in matrix types.

e IPL_DEPTH_32S - signed 32-bit integer. Equivalent to CV_32S in matrix types.

e IPL_DEPTH_32F - single-precision floating-point number. Equivalent to CV_32F in matrix types.
e IPL_DEPTH_64F - double-precision floating-point number. Equivalent to CV_64F in matrix types.

char[] colorModel
Ignored by OpenCV.

char[] channelSeq
Ignored by OpenCV

int dataOrder
0 = IPL_DATA_ORDER_PIXEL - interleaved color channels, 1 - separate color channels. CreateImage()
only creates images with interleaved channels. For example, the usual layout of a color image is:
boogooToobiogioTio...

int origin
0 - top-left origin, 1 - bottom-left origin (Windows bitmap style)

int align
Alignment of image rows (4 or 8). OpenCV ignores this and uses widthStep instead.

int width
Image width in pixels

int height
Image height in pixels
IpIROI* roi
Region Of Interest (ROI). If not NULL, only this image region will be processed.

Ipllmage* maskROI
Must be NULL in OpenCV

void* imageId
Must be NULL in OpenCV

void* tileInfo
Must be NULL in OpenCV

int imageSize
Image data size in bytes. For interleaved data, this equals image->height - image->widthStep

char* imageData
A pointer to the aligned image data. Do not assign imageData directly. Use SetData().

int widthStep
The size of an aligned image row, in bytes.

int[] BorderMode
Border completion mode, ignored by OpenCV

58

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

int[] BorderConst
Constant border value, ignored by OpenCV

char* imageDataOrigin
A pointer to the origin of the image data (not necessarily aligned). This is used for image deallocation.

The IplImage is taken from the Intel Image Processing Library, in which the format is native. OpenCV only supports
a subset of possible IplImage formats, as outlined in the parameter list above.

In addition to the above restrictions, OpenCV handles ROIs differently. OpenCV functions require that the image
size or ROI size of all source and destination images match exactly. On the other hand, the Intel Image Processing
Library processes the area of intersection between the source and destination images (or ROIs), allowing them to vary
independently.

CvArr

struct CvArr

This is the “metatype” used only as a function parameter. It denotes that the function accepts arrays of multiple types,
such as Ipllmage*, CvMat* or even CvSeq* sometimes. The particular array type is determined at runtime by analyz-
ing the first 4 bytes of the header. In C++ interface the role of CvArr is played by InputArray and OutputArray.

ClearND

Clears a specific array element.
C: void cvClearND (CvArr* arr, const int* idx)
Python: cv.ClearND (arr, idx) — None
Parameters
arr — Input array
idx — Array of the element indices

The function clears (sets to zero) a specific element of a dense array or deletes the element of a sparse array. If the
sparse array element does not exists, the function does nothing.

Clonelmage

Makes a full copy of an image, including the header, data, and ROI.
C: Ipllmage* cvCloneImage (const Ipllmage* image)
Python: cv.CloneImage(image) — image

Parameters

image — The original image

CloneMat

Creates a full matrix copy.
C: CvMat* cvCloneMat (const CvMat* mat)

Python: cv.CloneMat(mat) — mat

2.2. Basic C Structures and Operations 59

The OpenCV Reference Manual, Release 2.4.2

Parameters
mat — Matrix to be copied

Creates a full copy of a matrix and returns a pointer to the copy. Note that the matrix copy is compacted, that is, it will
not have gaps between rows.

CloneMatND

Creates full copy of a multi-dimensional array and returns a pointer to the copy.
C: CvMatND* cvCloneMatND (const CvMatND* mat)
Python: cv.CloneMatND(mat) — matND

Parameters

mat — Input array

CloneSparseMat

Creates full copy of sparse array.
C: CvSparseMat* cvCloneSparseMat (const CvSparseMat* mat)
Parameters
mat — Input array

The function creates a copy of the input array and returns pointer to the copy.

ConvertScale

Converts one array to another with optional linear transformation.
C: void cvConvertScale (const CvArr* src, CvArr* dst, double scale=1, double shift=0)
Python: cv.ConvertScale(src, dst, scale=1.0, shift=0.0) — None

Python: cv.Convert (src, dst) — None

#define cvCvtScale cvConvertScale
#define cvScale cvConvertScale
#define cvConvert(src, dst) cvConvertScale((src), (dst), 1, 0)

Parameters
src — Source array
dst — Destination array
scale — Scale factor
shift — Value added to the scaled source array elements

The function has several different purposes, and thus has several different names. It copies one array to another with
optional scaling, which is performed first, and/or optional type conversion, performed after:

dst(I) = scalesrc(I) + (shiftp,shifty,...)

60 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

All the channels of multi-channel arrays are processed independently.

The type of conversion is done with rounding and saturation, that is if the result of scaling + conversion can not be
represented exactly by a value of the destination array element type, it is set to the nearest representable value on the
real axis.

Copy

Copies one array to another.
C: void cvCopy (const CvArr* src, CvArr* dst, const CvArr* mask=NULL)
Python: cv.Copy (src, dst, mask=None) — None
Parameters
src — The source array
dst — The destination array

mask — Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function copies selected elements from an input array to an output array:
dst(I) =src(I) if mask(I) #DO0.

If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays must have the
same type, the same number of dimensions, and the same size. The function can also copy sparse arrays (mask is not
supported in this case).

CreateData

Allocates array data
C: void cvCreateData (CvArr* arr)
Python: cv.CreateData(arr) — None
Parameters
arr — Array header

The function allocates image, matrix or multi-dimensional dense array data. Note that in the case of
matrix types OpenCV allocation functions are used. In the case of Ipllmage they are used unless
CV_TURN_ON_IPL_COMPATIBILITY() has been called before. In the latter case IPL functions are used to allocate
the data.

Createlmage

Creates an image header and allocates the image data.
C: Ipllmage* cvCreateImage(CvSize size, int depth, int channels)
Python: cv.CreateImage (size, depth, channels) — image
Parameters
size — Image width and height

depth — Bit depth of image elements. See IplImage for valid depths.

2.2. Basic C Structures and Operations 61

The OpenCV Reference Manual, Release 2.4.2

channels — Number of channels per pixel. See IplImage for details. This function only
creates images with interleaved channels.

This function call is equivalent to the following code:

header = cvCreateImageHeader(size, depth, channels);
cvCreateData(header);

CreatelmageHeader

Creates an image header but does not allocate the image data.
C: Ipllmage* cvCreateImageHeader (CvSize size, int depth, int channels)
Python: cv.CreateImageHeader (size, depth, channels) — image
Parameters
size — Image width and height
depth — Image depth (see CreateImage())

channels — Number of channels (see CreateImage())

CreateMat

Creates a matrix header and allocates the matrix data.
C: CvMat* cvCreateMat (int rows, int cols, int type)
Python: cv.CreateMat (rows, cols, type) — mat
Parameters
rows — Number of rows in the matrix
cols — Number of columns in the matrix

type — The type of the matrix elements in the form CV_<bit depth><S|U|F>C<number of
channels> , where S=signed, U=unsigned, F=float. For example, CV _ 8UC1 means the
elements are 8-bit unsigned and the there is 1 channel, and CV _ 32SC2 means the elements
are 32-bit signed and there are 2 channels.

The function call is equivalent to the following code:

CvMat* mat = cvCreateMatHeader(rows, cols, type);
cvCreateData(mat);

CreateMatHeader

Creates a matrix header but does not allocate the matrix data.
C: CvMat* cvCreateMatHeader (int rows, int cols, int type)
Python: cv.CreateMatHeader (rows, cols, type) — mat
Parameters
rows — Number of rows in the matrix

cols — Number of columns in the matrix

62 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

type — Type of the matrix elements, see CreateMat ()

The function allocates a new matrix header and returns a pointer to it. The matrix data can then be allocated using
CreateData() or set explicitly to user-allocated data via SetData().

CreateMatND

Creates the header and allocates the data for a multi-dimensional dense array.
C: CvMatND* cvCreateMatND (int dims, const int* sizes, int type)
Python: cv.CreateMatND (dims, type) — matND

Parameters

dims — Number of array dimensions. This must not exceed CV_MAX_DIM (32 by default,
but can be changed at build time).

sizes — Array of dimension sizes.
type — Type of array elements, see CreateMat() .
This function call is equivalent to the following code:

CvMatND* mat = cvCreateMatNDHeader(dims, sizes, type);
cvCreateData(mat);

CreateMatNDHeader

Creates a new matrix header but does not allocate the matrix data.
C: CvMatND* cvCreateMatNDHeader (int dims, const int* sizes, int type)
Python: cv.CreateMatNDHeader (dims, type) — matND
Parameters
dims — Number of array dimensions
sizes — Array of dimension sizes
type — Type of array elements, see CreateMat ()

The function allocates a header for a multi-dimensional dense array. The array data can further be allocated using
CreateData() or set explicitly to user-allocated data via SetData().

CreateSparseMat

Creates sparse array.
C: CvSparseMat* cvCreateSparseMat (int dims, const int* sizes, int type)
Parameters

dims — Number of array dimensions. In contrast to the dense matrix, the number of dimen-
sions is practically unlimited (up to 2'¢).

sizes — Array of dimension sizes

type — Type of array elements. The same as for CvMat

2.2. Basic C Structures and Operations 63

The OpenCV Reference Manual, Release 2.4.2

The function allocates a multi-dimensional sparse array. Initially the array contain no elements, that is PtrND () and
other related functions will return O for every index.

CrossProduct

Calculates the cross product of two 3D vectors.
C: void cvCrossProduct (const CvArr* srcl, const CvArr* src2, CvArr* dst)
Python: cv.CrossProduct(srcl, src2, dst) — None
Parameters
srcl — The first source vector
src2 — The second source vector
dst — The destination vector

The function calculates the cross product of two 3D vectors:

dst =srcl x src2

or:
dsty = srclysrc23 —srclzsrc2;
dsty; = srclzsrc2; —srclysrc2s
dst3z = srclysrc2; —srclsrc2y
DotProduct

Calculates the dot product of two arrays in Euclidean metrics.
C: double cvDotProduct (const CvArr* srcl, const CvArr* src2)
Python: cv.DotProduct(srcl, src2) — float
Parameters

srcl — The first source array

src2 — The second source array
The function calculates and returns the Euclidean dot product of two arrays.

srcl esrc2 = Z(srcl(l)srcz(l))
I

In the case of multiple channel arrays, the results for all channels are accumulated. In particular, cvDotProduct(a,a)
where a is a complex vector, will return ||a]|2. The function can process multi-dimensional arrays, row by row, layer
by layer, and so on.

Get?D

CvScalar cvGetl1D (const CvArr* arr, int idx0)
CvScalar cvGet2D (const CvArr* arr, int idx0, int idx1)

CvScalar cvGet3D (const CvArr* arr, int idx0, int idx1, int idx2)

CvScalar cvGetND (const CvArr™* arr, const int* idx)

64 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Python: cv.GetlD (arr, idx) — scalar
Python: cv.Get2D (arr, idx0, idx1) — scalar
Python: cv.Get3D (arr, idx0, idx1, idx2) — scalar

Python: cv.GetND (arr, indices) — scalar
Return a specific array element.

Parameters
arr — Input array
idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices

The functions return a specific array element. In the case of a sparse array the functions return 0 if the requested node
does not exist (no new node is created by the functions).

GetCol(s)

Returns one of more array columns.
C: CvMat* cvGetCol (const CvArr* arr, CvMat* submat, int col)
C: CvMat* cvGetCols (const CvArr* arr, CvMat* submat, int start_col, int end_col)
Python: cv.GetCol(arr, col) — submat
Python: cv.GetCols (arr, startCol, endCol) — submat
Parameters
arr — Input array
submat — Pointer to the resulting sub-array header
col — Zero-based index of the selected column
start_col — Zero-based index of the starting column (inclusive) of the span
end_col — Zero-based index of the ending column (exclusive) of the span

The functions return the header, corresponding to a specified column span of the input array. That is, no data is copied.
Therefore, any modifications of the submatrix will affect the original array. If you need to copy the columns, use
CloneMat(). cvGetCol(arr, submat, col) is ashortcut for cvGetCols(arr, submat, col, col+l).

GetDiag

Returns one of array diagonals.
C: CvMat* cvGetDiag(const CvArr* arr, CvMat* submat, int diag=0)
Python: cv.GetDiag(arr, diag=0) — submat
Parameters
arr — Input array

submat — Pointer to the resulting sub-array header

2.2. Basic C Structures and Operations 65

The OpenCV Reference Manual, Release 2.4.2

diag — Index of the array diagonal. Zero value corresponds to the main diagonal, -1 corre-
sponds to the diagonal above the main, 1 corresponds to the diagonal below the main, and
so forth.

The function returns the header, corresponding to a specified diagonal of the input array.

GetDims

Return number of array dimensions
C: int cvGetDims (const CvArr* arr, int* sizes=NULL)
Python: cv.GetDims (arr) -> (diml, dim2, ...)
Parameters
arr — Input array

sizes — Optional output vector of the array dimension sizes. For 2d arrays the number of
rows (height) goes first, number of columns (width) next.

The function returns the array dimensionality and the array of dimension sizes. In the case of IplImage or CvMart it
always returns 2 regardless of number of image/matrix rows. For example, the following code calculates total number
of array elements:

int sizes[CV_MAX_DIM];
int i, total = 1;
int dims = cvGetDims(arr, size);
for(i = 0; i < dims; i++)
total *= sizes[i];

GetDimSize

Returns array size along the specified dimension.
C: int cvGetDimSize (const CvArr* arr, int index)
Parameters
arr — Input array

index — Zero-based dimension index (for matrices 0 means number of rows, 1 means number
of columns; for images 0 means height, 1 means width)

GetElemType

Returns type of array elements.
C: int cvGetElemType (const CvArr* arr)
Python: cv.GetElemType (arr) — int
Parameters
arr — Input array

The function returns type of the array elements. In the case of IplImage the type is converted to CvMat-like represen-
tation. For example, if the image has been created as:

66 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

IplImage* img = cvCreateImage(cvSize (640, 480), IPL_DEPTH_8U, 3);

The code cvGetElemType(img) will return CV_8UC3.

Getlmage

Returns image header for arbitrary array.
C: Ipllmage* cvGetImage (const CvArr* arr, Ipllmage* image_header)
Python: cv.GetImage(arr) — iplimage
Parameters
arr — Input array
image_header — Pointer to IplImage structure used as a temporary buffer

The function returns the image header for the input array that can be a matrix (CvMat) or image (IplImage). In the
case of an image the function simply returns the input pointer. In the case of CvMat it initializes an image_header
structure with the parameters of the input matrix. Note that if we transform IplImage to CvMat using GetMat () and
then transform CvMat back to Ipllmage using this function, we will get different headers if the ROl is set in the original
image.

GetlmageCOl

Returns the index of the channel of interest.
C: int cvGetImageCOI (const Ipllmage* image)
Python: cv.GetImageCOI(image) — int
Parameters
image — A pointer to the image header

Returns the channel of interest of in an IplImage. Returned values correspond to the coi in SetImageCOI().

GetlmageROI

Returns the image ROL.
C: CvRect cvGetImageROI (const Ipllmage* image)
Python: cv.GetImageROI(image) — CvRect
Parameters
image — A pointer to the image header

If there is no ROI set, cvRect (0,0, image->width, image->height) is returned.

GetMat

Returns matrix header for arbitrary array.
C: CvMat* cvGetMat (const CvArr* arr, CvMat* header, int* coi=NULL, int allowND=0)

Python: cv.GetMat (arr, allowND=0) — mat

2.2. Basic C Structures and Operations 67

The OpenCV Reference Manual, Release 2.4.2

Parameters
arr — Input array
header — Pointer to CvMat structure used as a temporary buffer
coi — Optional output parameter for storing COI

allowND - If non-zero, the function accepts multi-dimensional dense arrays (CvMatND*)
and returns 2D matrix (if CvMatND has two dimensions) or 1D matrix (when CvMatND
has 1 dimension or more than 2 dimensions). The CvMatND array must be continuous.

The function returns a matrix header for the input array that can be a matrix - CvMat, an image - IplImage, or a
multi-dimensional dense array - CvMatND (the third option is allowed only if allowND != 0) . In the case of matrix
the function simply returns the input pointer. In the case of IplImage* or CvMatND it initializes the header structure
with parameters of the current image ROI and returns &eader. Because COI is not supported by CvMat, it is returned
separately.

The function provides an easy way to handle both types of arrays - IplImage and CvMat using the same code. Input
array must have non-zero data pointer, otherwise the function will report an error.

See Also:

GetImage(), cvarrToMat().

Note: If the input array is IplImage with planar data layout and COI set, the function returns the pointer to the
selected plane and COI == 0. This feature allows user to process IplImage structures with planar data layout, even
though OpenCV does not support such images.

GetNextSparseNode

Returns the next sparse matrix element
C: CvSparseNode* cvGetNextSparseNode (CvSparseMatlterator* mat_iterator)
Parameters
mat_iterator — Sparse array iterator

The function moves iterator to the next sparse matrix element and returns pointer to it. In the current version there is
no any particular order of the elements, because they are stored in the hash table. The sample below demonstrates how
to iterate through the sparse matrix:

// print all the non-zero sparse matrix elements and compute their sum
double sum = 0;

int i, dims = cvGetDims(sparsemat);

CvSparseMatIterator it;

CvSparseNode* node = cvInitSparseMatIterator(sparsemat, &it);

for(; node != 0; node = cvGetNextSparseNode(&it))
{
/* get pointer to the element indices x/
int* idx = CV_NODE_IDX(array, node);
/* get value of the element (assume that the type is CV_32FC1) x*/
float val = x(float+)CV_NODE_VAL(array, node);
printf("M");
for(i = 0; i < dims; i++)
printf("[%d]", idx[i]);
printf("=%g\n", val);

68 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

sum += val;

}

printf("nTotal sum = %g\n", sum);

GetRawData

Retrieves low-level information about the array.
C: void cvGetRawData (const CvArr* arr, uchar** data, int* step=NULL, CvSize* roi_size=NULL)
Parameters
arr — Array header
data — Output pointer to the whole image origin or ROI origin if ROI is set
step — Output full row length in bytes
roi_size — Output ROI size

The function fills output variables with low-level information about the array data. All output parameters are optional,
so some of the pointers may be set to NULL. If the array is IplImage with ROI set, the parameters of ROI are returned.

The following example shows how to get access to array elements. It computes absolute values of the array elements

float+ data;
int step;
CvSize size;

cvGetRawData(array, (ucharxx)&data, &step, &size);
step /= sizeof(datal[0]);

for(int y = 0; y < size.height; y++, data += step)
for(int x = 0; x < size.width; x++)
data[x] = (float)fabs(data[x]);

GetReal?D

Return a specific element of single-channel 1D, 2D, 3D or nD array.
C: double cvGetReallD (const CvArr* arr, int idx0)
C: double cvGetReal2D (const CvArr* arr, int idx0, int idx1)
C: double cvGetReal3D (const CvArr* arr, int idx0, int idx1, int idx2)
C: double cvGetRealND (const CvArr* arr, const int* idx)
Python: cv.GetReallD (arr, idx0) — float
Python: cv.GetReal2D (arr, idx0, idx1) — float
Python: cv.GetReal3D (arr, idx0, idx1, idx2) — float
Python: cv.GetRealND (arr, idx) — float

Parameters

arr — Input array. Must have a single channel.

idx0 — The first zero-based component of the element index

2.2. Basic C Structures and Operations 69

The OpenCV Reference Manual, Release 2.4.2

idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices

Returns a specific element of a single-channel array. If the array has multiple channels, a runtime error is raised. Note
that Get?D functions can be used safely for both single-channel and multiple-channel arrays though they are a bit
slower.

In the case of a sparse array the functions return O if the requested node does not exist (no new node is created by the
functions).

GetRow(s)

Returns array row or row span.
C: CvMat* cvGetRow (const CvArr* arr, CvMat* submat, int row)
C: CvMat* cvGetRows (const CvArr* arr, CvMat* submat, int start_row, int end_row, int delta_row=1)
Python: cv.GetRow(arr, row) — submat
Python: cv.GetRows (arr, startRow, endRow, deltaRow=1) — submat
Parameters
arr — Input array
submat — Pointer to the resulting sub-array header
row — Zero-based index of the selected row
start_row — Zero-based index of the starting row (inclusive) of the span
end_row — Zero-based index of the ending row (exclusive) of the span

delta_row — Index step in the row span. That is, the function extracts every delta_row -th
row from start_row and up to (but not including) end_row .

The functions return the header, corresponding to a specified row/row span of the input array. cvGetRow(arr,
submat, row) is a shortcut for cvGetRows (arr, submat, row, row+l).

GetSize

Returns size of matrix or image ROI.
C: CvSize cvGetSize (const CvArr* arr)
Python: cv.GetSize (arr)-> (width, height)
Parameters
arr — array header

The function returns number of rows (CvSize::height) and number of columns (CvSize::width) of the input matrix or
image. In the case of image the size of ROI is returned.

70 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

GetSubRect

Returns matrix header corresponding to the rectangular sub-array of input image or matrix.
C: CvMat* cvGetSubRect (const CvArr* arr, CvMat* submat, CvRect rect)
Python: cv.GetSubRect (arr, rect) — submat
Parameters
arr — Input array
submat — Pointer to the resultant sub-array header
rect — Zero-based coordinates of the rectangle of interest

The function returns header, corresponding to a specified rectangle of the input array. In other words, it allows the
user to treat a rectangular part of input array as a stand-alone array. ROI is taken into account by the function so the
sub-array of ROI is actually extracted.

DecRefData

Decrements an array data reference counter.
C: void cvDecRefData (CvArr* arr)
Parameters
arr — Pointer to an array header

The function decrements the data reference counter in a CvMat or CvMatND if the reference counter pointer is not
NULL. If the counter reaches zero, the data is deallocated. In the current implementation the reference counter is not
NULL only if the data was allocated using the CreateData() function. The counter will be NULL in other cases such
as: external data was assigned to the header using SetData (), header is part of a larger matrix or image, or the header
was converted from an image or n-dimensional matrix header.

IncRefData

Increments array data reference counter.
C: int cvIncRefData(CvArr* arr)
Parameters
arr — Array header

The function increments CvMat or CvMatND data reference counter and returns the new counter value if the reference
counter pointer is not NULL, otherwise it returns zero.

InitimageHeader

Initializes an image header that was previously allocated.

C: Ipllmage* cvInitImageHeader (Ipllmage* image, CvSize size, int depth, int channels, int origin=0, int
align=4)

Parameters
image — Image header to initialize

size — Image width and height

2.2. Basic C Structures and Operations 71

The OpenCV Reference Manual, Release 2.4.2

depth — Image depth (see CreateImage())

channels — Number of channels (see CreateImage())

origin — Top-left IPL_ORIGIN_TL or bottom-left IPL_ORIGIN_BL
align — Alignment for image rows, typically 4 or 8§ bytes

The returned IplImagex* points to the initialized header.

InitMatHeader

Initializes a pre-allocated matrix header.

C: CvMat* cvInitMatHeader (CvMat* mat, int rows, int cols, int type, void* data=NULL, int
step=CV_AUTOSTEP)

Parameters
mat — A pointer to the matrix header to be initialized
rows — Number of rows in the matrix
cols — Number of columns in the matrix
type — Type of the matrix elements, see CreateMat() .
data — Optional: data pointer assigned to the matrix header

step — Optional: full row width in bytes of the assigned data. By default, the minimal
possible step is used which assumes there are no gaps between subsequent rows of the
matrix.

This function is often used to process raw data with OpenCV matrix functions. For example, the following code
computes the matrix product of two matrices, stored as ordinary arrays:

double a[] = { 1, 2, 3, 4,
5,6, 7, 8,
9, 10, 11, 12 };
double b[] = { 1, 5, 9,
2, 6, 10,
3, 7, 11,
4, 8, 12 };
double c[9];
CvMat Ma, Mb, Mc ;
cvInitMatHeader(&Ma, 3, 4, CV_64FCl, a);
cvInitMatHeader(&Mb, 4, 3, CV_64FCl, b);
cvInitMatHeader(&Mc, 3, 3, CV_64FCl, c);

cvMatMulAdd (&Ma, &Mb, 0, &Mc);
// the c array now contains the product of a (3x4) and b (4x3)

InitMatNDHeader

Initializes a pre-allocated multi-dimensional array header.

C: CvMatND* cvInitMatNDHeader (CvMatND* mat, int dims, const int* sizes, int type, void*
data=NULL)

72 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Parameters
mat — A pointer to the array header to be initialized
dims — The number of array dimensions
sizes — An array of dimension sizes
type — Type of array elements, see CreateMat ()

data — Optional data pointer assigned to the matrix header

InitSparseMatlterator

Initializes sparse array elements iterator.

C: CvSparseNode* cvInitSparseMatIterator(const CvSparseMat* mat, CvSparseMatlterator*
mat_iterator)

Parameters
mat — Input array
mat_iterator — Initialized iterator

The function initializes iterator of sparse array elements and returns pointer to the first element, or NULL if the array
is empty.

Mat

Initializes matrix header (lightweight variant).
C: CvMat cvMat (int rows, int cols, int type, void* data=NULL)
Parameters
rows — Number of rows in the matrix
cols — Number of columns in the matrix
type — Type of the matrix elements - see CreateMat ()
data — Optional data pointer assigned to the matrix header

Initializes a matrix header and assigns data to it. The matrix is filled row-wise (the first cols elements of data form
the first row of the matrix, etc.)

This function is a fast inline substitution for InitMatHeader (). Namely, it is equivalent to:

CvMat mat;
cvInitMatHeader(&mat, rows, cols, type, data, CV_AUTOSTEP);

Ptr?D

Return pointer to a particular array element.

C: uchar* cvPtrlD(const CvArr* arr, int idx0, int* type=NULL)

C: uchar* cvPtr2D(const CvArr* arr, int idx0, int idx1, int* type=NULL)

C: uchar* cvPtr3D(const CvArr* arr, int idx0, int idx1, int idx2, int* type=NULL)

2.2. Basic C Structures and Operations 73

The OpenCV Reference Manual, Release 2.4.2

C: uchar* cvPtrND(const CvArr* arr, const int* idx, int* type=NULL, int create_node=1, unsigned int*

precalc_hashval=NULL)

Parameters

The functions return a pointer to a specific array element. Number of array dimension should match to the number
of indices passed to the function except for cvPtri1D function that can be used for sequential access to 1D, 2D or nD

dense arrays.

The functions can be used for sparse arrays as well - if the requested node does not exist they create it and set it to

Z€ro.

All these as well as other functions accessing array elements (GetND() , GetRealND() , Set() , SetND() ,

arr — Input array

idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices

type — Optional output parameter: type of matrix elements

create_node — Optional input parameter for sparse matrices. Non-zero value of the param-
eter means that the requested element is created if it does not exist already.

precalc_hashval — Optional input parameter for sparse matrices. If the pointer is not NULL,
the function does not recalculate the node hash value, but takes it from the specified location.
It is useful for speeding up pair-wise operations (TODO: provide an example)

SetReallND ()) raise an error in case if the element index is out of range.

ReleaseData

Releases array data.

C: void cvReleaseData(CvArr* arr)

Parameters

The function releases the array data. In the case of CvMat or CvMatND it simply calls cvDecRefData(), that is the

arr — Array header

function can not deallocate external data. See also the note to CreateData() .

Releaselmage

Deallocates the image header and the image data.

C: void cvReleaseImage (Ipllmage** image)

Parameters

image — Double pointer to the image header

This call is a shortened form of

if(+ximage)

{

cvReleaseData(*image);

74

Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

cvReleaseImageHeader (image);

ReleaselmageHeader

Deallocates an image header.
C: void cvReleaseImageHeader (Ipllmage** image)
Parameters
image — Double pointer to the image header
This call is an analogue of

if(image)

{
iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI);
ximage = 0;

}

but it does not use IPL functions by default (see the CV_TURN_ON_IPL_COMPATIBILITY macro).

ReleaseMat

Deallocates a matrix.
C: void cvReleaseMat (CvMat** mat)
Parameters
mat — Double pointer to the matrix

The function decrements the matrix data reference counter and deallocates matrix header. If the data reference counter
is 0, it also deallocates the data.

if (xmat)
cvDecRefData(*mat);
cvFree((voids*)mat);

ReleaseMatND

Deallocates a multi-dimensional array.
C: void cvReleaseMatND (CvMatND** mat)
Parameters
mat — Double pointer to the array

The function decrements the array data reference counter and releases the array header. If the reference counter reaches
0, it also deallocates the data.

if(xmat)
cvDecRefData(*mat);
cvFree((voids*)mat);

2.2. Basic C Structures and Operations 75

The OpenCV Reference Manual, Release 2.4.2

ReleaseSparseMat

Deallocates sparse array.
C: void cvReleaseSparseMat (CvSparseMat** mat)
Parameters
mat — Double pointer to the array

The function releases the sparse array and clears the array pointer upon exit.

ResetimageROI

Resets the image ROI to include the entire image and releases the ROI structure.
C: void cvResetImageROI (Ipllmage* image)
Python: cv.ResetImageROI(image) — None
Parameters
image — A pointer to the image header
This produces a similar result to the following, but in addition it releases the ROI structure.

cvSetImageROI(image, cvRect(0, O, image->width, image->height));
cvSetImageCOI(image, 0);

Reshape

Changes shape of matrix/image without copying data.
C: CvMat* cvReshape (const CvArr* arr, CvMat* header, int new_cn, int new_rows=0)
Python: cv.Reshape (arr, newCn, newRows=0) — mat
Parameters
arr — Input array
header — Output header to be filled

new_cn — New number of channels. ‘new_cn = 0’ means that the number of channels
remains unchanged.

new_rows — New number of rows. ‘new_rows = (0’ means that the number of rows remains
unchanged unless it needs to be changed according to new_cn value.

The function initializes the CvMat header so that it points to the same data as the original array but has a different
shape - different number of channels, different number of rows, or both.

The following example code creates one image buffer and two image headers, the first is for a 320x240x3 image and
the second is for a 960x240x1 image:

IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
CvMat gray_mat_hdr;

IplImage gray_img_hdr, *gray_img;

cvReshape(color_img, &gray_mat_hdr, 1);

gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr);

And the next example converts a 3x3 matrix to a single 1x9 vector:

76 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

CvMat* mat = cvCreateMat(3, 3, CV_32F);
CvMat row_header, xrow;
row = cvReshape(mat, &row_header, 0, 1);

ReshapeMatND

Changes the shape of a multi-dimensional array without copying the data.

C: CvArr* cvReshapeMatND (const CvArr* arr, int sizeof header, CvArr* header, int new_cn, int
new_dims, int* new_sizes)

Python: cv.ReshapeMatND (arr, newCn, newDims) — mat
Parameters
arr — Input array

sizeof_header — Size of output header to distinguish between Ipllmage, CvMat and Cv-
MatND output headers

header — Output header to be filled

new_cn — New number of channels. new_cn = 0 means that the number of channels re-
mains unchanged.

new_dims — New number of dimensions. new_dims = 0 means that the number of dimen-
sions remains the same.

new_sizes — Array of new dimension sizes. Only new_dims -1 values are used, because the
total number of elements must remain the same. Thus, if new_dims = 1, new_sizes array
is not used.

The function is an advanced version of Reshape () that can work with multi-dimensional arrays as well (though it can
work with ordinary images and matrices) and change the number of dimensions.

Below are the two samples from the Reshape () description rewritten using ReshapeMatND () :

IplImagex color_img = cvCreateImage(cvSize(320,240), IPL DEPTH_8U, 3);
IplImage gray_img_hdr, *gray_img;
gray_img = (IplImagex)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0);

/* second example is modified to convert 2x2x2 array to 8x1 vector x/
int size[] = { 2, 2, 2 };

CvMatND* mat = cvCreateMatND(3, size, CV_32F);

CvMat row_header, xrow;

row = (CvMat*)cvReshapeND(mat, &row_header, 0, 1, 0);

Set

Sets every element of an array to a given value.
C: void cvSet (CvArr* arr, CvScalar value, const CvArr* mask=NULL)
Python: cv.Set (arr, value, mask=None) — None

Parameters

arr — The destination array

2.2. Basic C Structures and Operations 77

The OpenCV Reference Manual, Release 2.4.2

value — Fill value

mask — Operation mask, 8-bit single channel array; specifies elements of the destination
array to be changed

The function copies the scalar value to every selected element of the destination array:
arr(I) =value if mask(I)#0

If array arr is of IplImage type, then is ROI used, but COI must not be set.

Set?D

Change the particular array element.

C: void cvSetlD (CvArr* arr, int idx0, CvScalar value)

C: void cvSet2D (CvArr* arr, int idx0, int idx1, CvScalar value)

C: void cvSet3D (CvArr* arr, int idx0, int idx1, int idx2, CvScalar value)

C: void cvSetND (CvArr* arr, const int* idx, CvScalar value)

Python: cv.SetlD (arr, idx, value) — None

Python: cv.Set2D(arr, idx0, idx1, value) — None

Python: cv.Set3D(arr, idx0, idx1, idx2, value) — None

Python: cv.SetND (arr, indices, value) — None

Parameters

arr — Input array
idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices
value — The assigned value

The functions assign the new value to a particular array element. In the case of a sparse array the functions create the
node if it does not exist yet.

SetData

Assigns user data to the array header.
C: void cvSetData (CvArr* arr, void* data, int step)
Python: cv.SetData/(arr, data, step) — None
Parameters
arr — Array header
data — User data

step — Full row length in bytes

78 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

The function assigns user data to the array header. Header should be initialized before using cvCreateMatHeader(),
cvCreateImageHeader(), cvCreateMatNDHeader (), cvInitMatHeader(), cvInitImageHeader() or
cvInitMatNDHeader ().

SetimageCOl

Sets the channel of interest in an Ipllmage.
C: void cvSetImageCOI (Iplimage* image, int coi)
Python: cv.SetImageCOI (image, coi) — None
Parameters
image — A pointer to the image header

coi — The channel of interest. O - all channels are selected, 1 - first channel is selected, etc.
Note that the channel indices become 1-based.

If the ROl is set to NULL and the coi is not 0, the ROI is allocated. Most OpenCV functions do not support the COI
setting, so to process an individual image/matrix channel one may copy (via Copy () or Split()) the channel to a
separate image/matrix, process it and then copy the result back (via Copy () or Merge ()) if needed.

SetlmageROI

Sets an image Region Of Interest (ROI) for a given rectangle.
C: void cvSetImageROI (Ipllmage* image, CvRect rect)
Python: cv.SetImageROI(image, rect) — None
Parameters
image — A pointer to the image header
rect — The ROI rectangle
If the original image ROI was NULL and the rect is not the whole image, the ROI structure is allocated.

Most OpenCV functions support the use of ROI and treat the image rectangle as a separate image. For example, all of
the pixel coordinates are counted from the top-left (or bottom-left) corner of the ROI, not the original image.

SetReal?D

Change a specific array element.

C: void cvSetReallD (CvArr* arr, int idx0, double value)

C: void cvSetReal2b (CvArr* arr, int idx0, int idx1, double value)

C: void cvSetReal3D (CvArr* arr, int idx0, int idx1, int idx2, double value)
C: void cvSetReallND (CvArr* arr, const int* idx, double value)

Python: cv.SetReallD (arr, idx, value) — None

Python: cv.SetReal2D (arr, idx0, idx1, value) — None

Python: cv.SetReal3D (arr, idx0, idx1, idx2, value) — None

Python: cv.SetRealND (arr, indices, value) — None

2.2. Basic C Structures and Operations 79

The OpenCV Reference Manual, Release 2.4.2

Parameters
arr — Input array
idx0 — The first zero-based component of the element index
idx1 — The second zero-based component of the element index
idx2 — The third zero-based component of the element index
idx — Array of the element indices
value — The assigned value

The functions assign a new value to a specific element of a single-channel array. If the array has multiple channels, a
runtime error is raised. Note that the Set*D function can be used safely for both single-channel and multiple-channel
arrays, though they are a bit slower.

In the case of a sparse array the functions create the node if it does not yet exist.

SetZero

Clears the array.
C: void cvSetZero (CvArr* arr)
Python: cv.SetZero(arr) — None
Parameters
arr — Array to be cleared

The function clears the array. In the case of dense arrays (CvMat, CvMatND or Ipllmage), cvZero(array) is equivalent
to cvSet(array,cvScalarAll(0),0). In the case of sparse arrays all the elements are removed.

mGet

Returns the particular element of single-channel floating-point matrix.
C: double cvmGet (const CvMat* mat, int row, int col)
Python: cv.mGet (mat, row, col) — float
Parameters
mat — Input matrix
row — The zero-based index of row
col — The zero-based index of column

The function is a fast replacement for GetReal2D () in the case of single-channel floating-point matrices. It is faster
because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column
ranges only in debug mode.

mSet

Sets a specific element of a single-channel floating-point matrix.
C: void cvmSet (CvMat* mat, int row, int col, double value)

Python: cv.mSet (mat, row, col, value) — None

80 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Parameters
mat — The matrix
row — The zero-based index of row
col — The zero-based index of column
value — The new value of the matrix element

The function is a fast replacement for SetReal2D () in the case of single-channel floating-point matrices. It is faster
because it is inline, it does fewer checks for array type and array element type, and it checks for the row and column
ranges only in debug mode.

SetIPLAllocators

Makes OpenCV use IPL functions for allocating Ipllmage and IpIROI structures.

C: void cvSetIPLAllocators (Cv_iplCreateImageHeader create_header, Cv_iplAllocateImageData al-
locate_data, Cv_iplDeallocate deallocate, Cv_iplCreateROI create_roi,
Cv_iplClonelmage clone_image)

Normally, the function is not called directly. Instead, a simple macro CV_TURN_ON_IPL_COMPATIBILITY() is used
that calls cvSetIPLAllocators and passes there pointers to IPL allocation functions.

CV_TURN_ON_IPL_COMPATIBILITY()

RNG

Initializes a random number generator state.
C: CvRNG cvRNG(int64 seed=-1)
Python: cv.RNG(seed=-1LL) — CVvRNG
Parameters
seed — 64-bit value used to initiate a random sequence

The function initializes a random number generator and returns the state. The pointer to the state can be then passed to
the RandInt (), RandReal() and RandArr () functions. In the current implementation a multiply-with-carry generator
is used.

See Also:
the C++ class RNG replaced CvRNG.

RandArr

Fills an array with random numbers and updates the RNG state.
C: void cvRandArr (CvRNG* rng, CvArr* arr, int dist_type, CvScalar param1, CvScalar param?2)
Python: cv.RandArr (rng, arr, distType, paraml, param2) — None
Parameters
rng — CvRNG state initialized by RNG()

arr — The destination array

2.2. Basic C Structures and Operations 81

The OpenCV Reference Manual, Release 2.4.2

dist_type — Distribution type
— CV_RAND_UNI uniform distribution
— CV_RAND_NORMAL normal or Gaussian distribution

paraml — The first parameter of the distribution. In the case of a uniform distribution it
is the inclusive lower boundary of the random numbers range. In the case of a normal
distribution it is the mean value of the random numbers.

param2 — The second parameter of the distribution. In the case of a uniform distribution
it is the exclusive upper boundary of the random numbers range. In the case of a normal
distribution it is the standard deviation of the random numbers.

The function fills the destination array with uniformly or normally distributed random numbers.
See Also:
randu(), randn(), RNG: : fill().

RandInt

Returns a 32-bit unsigned integer and updates RNG.
C: unsigned int cvRandInt (CvRNG* rng)
Python: cv.RandInt(rng) — unsigned
Parameters
rng — CvRNG state initialized by RNG ().

The function returns a uniformly-distributed random 32-bit unsigned integer and updates the RNG state. It is similar
to the rand() function from the C runtime library, except that OpenCV functions always generates a 32-bit random
number, regardless of the platform.

RandReal

Returns a floating-point random number and updates RNG.
C: double cvRandReal (CvRNG* rng)
Python: cv.RandReal(rng) — float
Parameters
rng — RNG state initialized by RNG ()

The function returns a uniformly-distributed random floating-point number between 0 and 1 (1 is not included).

fromarray

Create a CvMat from an object that supports the array interface.
Python: cv.fromarray (array, allowND=False) — mat
Parameters
object — Any object that supports the array interface
allowND — If true, will return a CvMatND

82 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

If the object supports the array interface , return a CvMat or CvMatND, depending on allowND flag:

e If allowND = False, then the object’s array must be either 2D or 3D. If it is 2D, then the returned CvMat has
a single channel. If it is 3D, then the returned CvMat will have N channels, where N is the last dimension of the
array. In this case, N cannot be greater than OpenCV’s channel limit, CV_CN_MAX.

e If*‘allowND = True*‘, then fromarray returns a single-channel CvMatND with the same shape as the original
array.

For example, NumPy arrays support the array interface, so can be converted to OpenCV objects:

Note: In the new Python wrappers (cv2 module) the function is not needed, since cv2 can process Numpy arrays (and
this is the only supported array type).

2.3 Dynamic Structures

The section describes OpenCV 1.x API for creating growable sequences and other dynamic data structures allocated
in CvMemStorage. If you use the new C++, Python, Java etc interface, you will unlikely need this functionality. Use
std: :vector or other high-level data structures.

CvMemStorage

struct CvMemStorage
A storage for various OpenCV dynamic data structures, such as CvSeq, CvSet etc.

CvMemBlock* bottom
the first memory block in the double-linked list of blocks

CvMemBlock* top
the current partially allocated memory block in the list of blocks

CvMemStorage* parent
the parent storage (if any) from which the new memory blocks are borrowed.

int free_space
number of free bytes in the top block

int block_size
the total size of the memory blocks

Memory storage is a low-level structure used to store dynamically growing data structures such as sequences, contours,
graphs, subdivisions, etc. It is organized as a list of memory blocks of equal size - bottom field is the beginning of
the list of blocks and top is the currently used block, but not necessarily the last block of the list. All blocks between
bottom and top, not including the latter, are considered fully occupied; all blocks between top and the last block, not
including top, are considered free and top itself is partly occupied - free_space contains the number of free bytes
left in the end of top.

A new memory buffer that may be allocated explicitly by MemStorageAlloc() function or implicitly by higher-level
functions, such as SeqPush (), GraphAddEdge () etc.

The buffer is put in the end of already allocated space in the top memory block, if there is enough free space. After
allocation, free_space is decreased by the size of the allocated buffer plus some padding to keep the proper alignment.
When the allocated buffer does not fit into the available portion of top, the next storage block from the list is taken as
top and free_space is reset to the whole block size prior to the allocation.

2.3. Dynamic Structures 83

http://docs.scipy.org/doc/numpy/reference/arrays.interface.html
http://numpy.scipy.org/

The OpenCV Reference Manual, Release 2.4.2

If there are no more free blocks, a new block is allocated (or borrowed from the parent, see
CreateChildMemStorage()) and added to the end of list. Thus, the storage behaves as a stack with bottom in-
dicating bottom of the stack and the pair (top, free_space) indicating top of the stack. The stack top may be saved
via SaveMemStoragePos (), restored via RestoreMemStoragePos (), or reset via ClearMemStorage().

CvMemBlock

struct CvMemBlock

The structure CvMemBlock represents a single block of memory storage. The actual data in the memory blocks follows
the header.

CvMemStoragePos

struct CvMemStoragePos

The structure stores the position in the memory storage. It is used by SaveMemStoragePos() and
RestoreMemStoragePos().

CvSeq

struct CvSeq
Dynamically growing sequence.

int flags
sequence flags, including the sequence signature (CV_SEQ_MAGIC_VAL or CV_SET_MAGIC_VAL),
type of the elements and some other information about the sequence.

int header_size
size of the sequence header. It should be sizeof(CvSeq) at minimum. See CreateSeq().

CvSeq* h_prev
CvSeq* h_next
CvSeq* v_prev

CvSeq* v_next
pointers to another sequences in a sequence tree. Sequence trees are used to store hierarchical contour
structures, retrieved by FindContours ()

int total
the number of sequence elements

int elem_size
size of each sequence element in bytes

CvMemStorage* storage
memory storage where the sequence resides. It can be a NULL pointer.

CvSeqgBlock* first
pointer to the first data block

The structure CvSeq is a base for all of OpenCV dynamic data structures. There are two types of sequences - dense
and sparse. The base type for dense sequences is CvSeq and such sequences are used to represent growable 1d arrays
- vectors, stacks, queues, and deques. They have no gaps in the middle - if an element is removed from the middle or
inserted into the middle of the sequence, the elements from the closer end are shifted. Sparse sequences have CvSet
as a base class and they are discussed later in more detail. They are sequences of nodes; each may be either occupied

84 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

or free as indicated by the node flag. Such sequences are used for unordered data structures such as sets of elements,
graphs, hash tables and so forth.

CvSlice

struct CvSlice
A sequence slice. In C++ interface the class Range should be used instead.

int start_index
inclusive start index of the sequence slice

int end_index
exclusive end index of the sequence slice

There are helper functions to construct the slice and to compute its length:
C: CvSlice cvSlice (int start, int end)
Parameters
start — Inclusive left boundary.
end — Exclusive right boundary.

#define CV_WHOLE_SEQ_END_INDEX OX3Fffffff
#define CV_WHOLE_SEQ cvSlice(0, CV_WHOLE_SEQ_END_INDEX)

C: int cvSliceLength (CvSlice slice, const CvSeq* seq)
Parameters
slice — The slice of sequence.
seq — Source sequence.
Calculates the sequence slice length.

Some of functions that operate on sequences take a CvSlice slice parameter that is often set to the whole sequence
(CV_WHOLE_SEQ) by default. Either of the start_index and end_index may be negative or exceed the sequence
length. If they are equal, the slice is considered empty (i.e., contains no elements). Because sequences are treated
as circular structures, the slice may select a few elements in the end of a sequence followed by a few elements at
the beginning of the sequence. For example, cvSlice(-2, 3) in the case of a 10-element sequence will select a
5-element slice, containing the pre-last (8th), last (9th), the very first (Oth), second (1th) and third (2nd) elements. The
functions normalize the slice argument in the following way:

1. SliceLength() is called to determine the length of the slice,

2. start_index of the slice is normalized similarly to the argument of GetSeqElem() (i.e., negative indices are
allowed). The actual slice to process starts at the normalized start_index and lasts SliceLength() elements
(again, assuming the sequence is a circular structure).

If a function does not accept a slice argument, but you want to process only a part of the sequence, the sub-sequence
may be extracted using the SeqSlice () function, or stored into a continuous buffer with CvtSeqToArray () (option-
ally, followed by MakeSegHeaderForArray()).

CvSet

struct CvSet

2.3. Dynamic Structures 85

The OpenCV Reference Manual, Release 2.4.2

The structure CvSet is a base for OpenCV 1.x sparse data structures. It is derived from CvSeq and includes an
additional member free_elems - a list of free nodes. Every node of the set, whether free or not, is an element of the
underlying sequence. While there are no restrictions on elements of dense sequences, the set (and derived structures)
elements must start with an integer field and be able to fit CvSetElem structure, because these two fields (an integer
followed by a pointer) are required for the organization of a node set with the list of free nodes. If a node is free, the
flags field is negative (the most-significant bit, or MSB, of the field is set), and the next_free points to the next free
node (the first free node is referenced by the free_elems field of CvSet). And if a node is occupied, the flags field is
positive and contains the node index that may be retrieved using the (set_elem->flags & CV_SET_ELEM_IDX MASK)
expressions, the rest of the node content is determined by the user. In particular, the occupied nodes are not linked as
the free nodes are, so the second field can be used for such a link as well as for some different purpose. The macro
CV_IS_SET_ELEM(set_elem_ptr) can be used to determined whether the specified node is occupied or not.

Initially the set and the free node list are empty. When a new node is requested from the set, it is taken from the list of
free nodes, which is then updated. If the list appears to be empty, a new sequence block is allocated and all the nodes
within the block are joined in the list of free nodes. Thus, the total field of the set is the total number of nodes both
occupied and free. When an occupied node is released, it is added to the list of free nodes. The node released last will
be occupied first.

CvSet is used to represent graphs (CvGraph), sparse multi-dimensional arrays (CvSparseMat), and planar subdivisions
(CvSubdiv2D).

CvGraph

struct CvGraph

The structure CvGraph is a base for graphs used in OpenCV 1.x. It inherits from CvSet, that is, it is considered as a
set of vertices. Besides, it contains another set as a member, a set of graph edges. Graphs in OpenCV are represented
using adjacency lists format.

CvGraphScanner

struct CvGraphScanner

The structure CvGraphScanner is used for depth-first graph traversal. See discussion of the functions below.

CvTreeNodelterator

struct CvTreeNodeIterator

The structure CvTreeNodeIterator is used to traverse trees of sequences.

ClearGraph

Clears a graph.
C: void cvClearGraph (CvGraph* graph)
Parameters
graph — Graph

The function removes all vertices and edges from a graph. The function has O(1) time complexity.

86 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

ClearMemStorage

Clears memory storage.
C: void cvClearMemStorage (CvMemStorage* storage)
Parameters
storage — Memory storage

The function resets the top (free space boundary) of the storage to the very beginning. This function does not deallocate
any memory. If the storage has a parent, the function returns all blocks to the parent.

ClearSeq

Clears a sequence.
C: void cvClearSeq(CvSeq* seq)
Parameters
seq — Sequence

The function removes all elements from a sequence. The function does not return the memory to the storage block, but
this memory is reused later when new elements are added to the sequence. The function has ‘O(1)’ time complexity.

Note: It is impossible to deallocate a sequence, i.e. free space in the memory storage occupied by the sequence.
Instead, call ClearMemStorage() or ReleaseMemStorage() from time to time somewhere in a top-level processing
loop.

ClearSet

Clears a set.
C: void cvClearSet (CvSet* set_header)
Parameters
set_header — Cleared set

The function removes all elements from set. It has O(1) time complexity.

CloneGraph

Clones a graph.
C: CvGraph* cvCloneGraph (const CvGraph* graph, CvMemStorage* storage)
Parameters
graph — The graph to copy
storage — Container for the copy

The function creates a full copy of the specified graph. If the graph vertices or edges have pointers to some external
data, it can still be shared between the copies. The vertex and edge indices in the new graph may be different from the
original because the function defragments the vertex and edge sets.

2.3. Dynamic Structures 87

The OpenCV Reference Manual, Release 2.4.2

CloneSeq

Creates a copy of a sequence.
C: CvSeq* cvCloneSeq(const CvSeq* seq, CvMemStorage* storage=NULL)
Python: cv.CloneSeq(seq, storage) — None
Parameters
seq — Sequence

storage — The destination storage block to hold the new sequence header and the copied
data, if any. If it is NULL, the function uses the storage block containing the input sequence.

The function makes a complete copy of the input sequence and returns it.

The call cvCloneSeq(seq, storage) isequivalent to cvSeqSlice(seq, CV_WHOLE_SEQ, storage, 1).

CreateChildMemStorage

Creates child memory storage.
C: CvMemStorage* cvCreateChildMemStorage (CvMemStorage* parent)
Parameters
parent — Parent memory storage

The function creates a child memory storage that is similar to simple memory storage except for the differences in the
memory allocation/deallocation mechanism. When a child storage needs a new block to add to the block list, it tries to
get this block from the parent. The first unoccupied parent block available is taken and excluded from the parent block
list. If no blocks are available, the parent either allocates a block or borrows one from its own parent, if any. In other
words, the chain, or a more complex structure, of memory storages where every storage is a child/parent of another is
possible. When a child storage is released or even cleared, it returns all blocks to the parent. In other aspects, child
storage is the same as simple storage.

Child storage is useful in the following situation. Imagine that the user needs to process dynamic data residing in a
given storage area and put the result back to that same storage area. With the simplest approach, when temporary data
is resided in the same storage area as the input and output data, the storage area will look as follows after processing:

Dynamic data processing without using child storage

88 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

ot hapt. Rorage

A
Bgnt ¢ Dcc¥pied) Data

Ten;--:-rm‘_'r&;a { Crrhage) Chatgnat Drata

That is, garbage appears in the middle of the storage. However, if one creates a child memory storage at the beginning
of processing, writes temporary data there, and releases the child storage at the end, no garbage will appear in the
source/destination storage:

Dynamic data processing using a child storage

BpatfChatpazt Sorage

B s R R W

-

Wil be Tetmrie d tp fhe TaTert

e
.

CreateGraph

Creates an empty graph.

C: CvGraph* cvCreateGraph (int graph_flags, int header_size, int vtx_size, int edge_size, CvMemStorage*
storage)

Parameters

graph_flags — Type of the created graph. Usually, it is either CV_SEQ_KIND_GRAPH
for generic unoriented graphs and CV_SEQ_KIND_GRAPH | CV_GRAPH_FLAG_ORIENTED for
generic oriented graphs.

header_size — Graph header size; may not be less than sizeof (CvGraph)

2.3. Dynamic Structures 89

The OpenCV Reference Manual, Release 2.4.2

vtx_size — Graph vertex size; the custom vertex structure must start with CvGraphVtx (use
CV_GRAPH_VERTEX_FIELDS())

edge_size — Graph edge size; the custom edge structure must start with CvGraphEdge (use
CV_GRAPH_EDGE_FIELDS())

storage — The graph container

The function creates an empty graph and returns a pointer to it.

CreateGraphScanner

Creates structure for depth-first graph traversal.

C: CvGraphScanner* cvCreateGraphScanner (CvGraph* graph, CvGraphVtx* vtx=NULL, int
mask=CV_GRAPH_ALL_ITEMS)

Parameters
graph — Graph

vtx — Initial vertex to start from. If NULL, the traversal starts from the first vertex (a vertex
with the minimal index in the sequence of vertices).

mask — Event mask indicating which events are of interest to the user (where
NextGraphItem() function returns control to the user) It can be CV_GRAPH_ALL_ITEMS
(all events are of interest) or a combination of the following flags:

— CV_GRAPH_VERTEX stop at the graph vertices visited for the first time

— CV_GRAPH_TREE_EDGE stop at tree edges (tree edge is the edge connecting the
last visited vertex and the vertex to be visited next)

— CV_GRAPH_BACK_EDGE stop at back edges (back edge is an edge connecting the
last visited vertex with some of its ancestors in the search tree)

— CV_GRAPH_FORWARD_EDGE stop at forward edges (forward edge is an edge
connecting the last visited vertex with some of its descendants in the search tree. The
forward edges are only possible during oriented graph traversal)

— CV_GRAPH_CROSS_EDGE stop at cross edges (cross edge is an edge connecting
different search trees or branches of the same tree. The cross edges are only possible
during oriented graph traversal)

— CV_GRAPH_ANY_EDGE stop at any edge (tree, back, forward , and cross
edges)

— CV_GRAPH_NEW_TREE stop in the beginning of every new search tree. When the
traversal procedure visits all vertices and edges reachable from the initial vertex (the vis-
ited vertices together with tree edges make up a tree), it searches for some unvisited vertex
in the graph and resumes the traversal process from that vertex. Before starting a new tree
(including the very first tree when cvNextGraphItem is called for the first time) it gener-
ates a CV_GRAPH_NEW_TREE event. For unoriented graphs, each search tree corresponds
to a connected component of the graph.

— CV_GRAPH_BACKTRACKING stop at every already visited vertex during backtrack-
ing - returning to already visited vertexes of the traversal tree.

The function creates a structure for depth-first graph traversal/search. The initialized structure is used in the
NextGraphItem() function - the incremental traversal procedure.

920 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

CreateMemStorage

Creates memory storage.

C: CvMemStorage* cvCreateMemStorage (int block_size=0)

Python: cv.CreateMemStorage (blockSize=0) — memstorage
Parameters

block_size — Size of the storage blocks in bytes. If it is 0, the block size is set to a default
value - currently it is about 64K.

The function creates an empty memory storage. See CvMemStorage description.

CreateSeq

Creates a sequence.
C: CvSeq* cvCreateSeq(int seq_flags, size_t header_size, size_t elem_size, CvMemStorage* storage)
Parameters

seq_flags — Flags of the created sequence. If the sequence is not passed to any function
working with a specific type of sequences, the sequence value may be set to 0, otherwise the
appropriate type must be selected from the list of predefined sequence types.

header_size — Size of the sequence header; must be greater than or equal to sizeof (CvSeq)
. If a specific type or its extension is indicated, this type must fit the base type header.

elem_size — Size of the sequence elements in bytes. The size must be consistent with
the sequence type. For example, for a sequence of points to be created, the element type
CV_SEQ_ELTYPE_POINT should be specified and the parameter elem_size must be equal to
sizeof(CvPoint) .

storage — Sequence location

The function creates a sequence and returns the pointer to it. The function allocates the sequence header in the storage
block as one continuous chunk and sets the structure fields flags , elemSize , headerSize , and storage to passed
values, sets delta_elems to the default value (that may be reassigned using the SetSeqBlockSize () function), and
clears other header fields, including the space following the first sizeof (CvSeq) bytes.

CreateSet

Creates an empty set.
C: CvSet* cvCreateSet (int set_flags, int header_size, int elem_size, CvMemStorage* storage)
Parameters
set_flags — Type of the created set
header_size — Set header size; may not be less than sizeof (CvSet)
elem_size — Set element size; may not be less than CvSetElem
storage — Container for the set

The function creates an empty set with a specified header size and element size, and returns the pointer to the set. This
function is just a thin layer on top of CreateSeq().

2.3. Dynamic Structures 91

The OpenCV Reference Manual, Release 2.4.2

CvtSeqToArray

Copies a sequence to one continuous block of memory.
C: void* cvCvtSeqToArray (const CvSeq* seq, void* elements, CvSlice slice=CV_WHOLE_SEQ)
Parameters
seq — Sequence

elements — Pointer to the destination array that must be large enough. It should be a pointer
to data, not a matrix header.

slice — The sequence portion to copy to the array

The function copies the entire sequence or subsequence to the specified buffer and returns the pointer to the buffer.

EndWriteSeq

Finishes the process of writing a sequence.
C: CvSeq* cvEndWriteSeq(CvSeqWriter* writer)
Parameters
writer — Writer state

The function finishes the writing process and returns the pointer to the written sequence. The function also truncates
the last incomplete sequence block to return the remaining part of the block to memory storage. After that, the
sequence can be read and modified safely. See StartWriteSeq() and StartAppendToSeq()

FindGraphEdge

Finds an edge in a graph.
C: CvGraphEdge* cvFindGraphEdge (const CvGraph* graph, int start_idx, int end_idx)
Parameters
graph — Graph
start_idx — Index of the starting vertex of the edge

end_idx — Index of the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

#define cvGraphFindEdge cvFindGraphEdge

The function finds the graph edge connecting two specified vertices and returns a pointer to it or NULL if the edge
does not exist.

FindGraphEdgeByPtr

Finds an edge in a graph by using its pointer.

C: CvGraphEdge* cvFindGraphEdgeByPtr (const CvGraph* graph, const CvGraphVtx* start_vtx, const
CvGraphVix* end_vtx)

Parameters

graph — Graph

92 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

start_vtx — Pointer to the starting vertex of the edge

end_vtx — Pointer to the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr

The function finds the graph edge connecting two specified vertices and returns pointer to it or NULL if the edge does
not exists.

FlushSeqWriter

Updates sequence headers from the writer.
C: void cvFlushSegWriter (CvSeqWriter* writer)
Parameters
writer — Writer state

The function is intended to enable the user to read sequence elements, whenever required, during the writing process,
e.g., in order to check specific conditions. The function updates the sequence headers to make reading from the
sequence possible. The writer is not closed, however, so that the writing process can be continued at any time. If an
algorithm requires frequent flushes, consider using SeqPush () instead.

GetGraphVix

Finds a graph vertex by using its index.
C: CvGraphVtx* cvGetGraphVtx (CvGraph* graph, int vtx_idx)
Parameters
graph — Graph
vtx_idx — Index of the vertex

The function finds the graph vertex by using its index and returns the pointer to it or NULL if the vertex does not
belong to the graph.

GetSeqElem

Returns a pointer to a sequence element according to its index.
C: schar* cvGetSeqElem(const CvSeq* seq, int index)
Parameters

seq — Sequence

index — Index of element
#define CV_GET_SEQ_ELEM(TYPE, seq, index) (TYPEx)cvGetSeqElem((CvSeqgx)(seq), (index))
The function finds the element with the given index in the sequence and returns the pointer to it. If the element
is not found, the function returns 0. The function supports negative indices, where -1 stands for the last sequence
element, -2 stands for the one before last, etc. If the sequence is most likely to consist of a single sequence block or

the desired element is likely to be located in the first block, then the macro CV_GET_SEQ_ELEM(elemType, seq,
index) should be used, where the parameter elemType is the type of sequence elements (CvPoint for example),

2.3. Dynamic Structures 93

The OpenCV Reference Manual, Release 2.4.2

the parameter seq is a sequence, and the parameter index is the index of the desired element. The macro checks first
whether the desired element belongs to the first block of the sequence and returns it if it does; otherwise the macro
calls the main function GetSeqElem . Negative indices always cause the GetSeqElem() call. The function has O(1)
time complexity assuming that the number of blocks is much smaller than the number of elements.

GetSeqgReaderPos

Returns the current reader position.
C: int cvGetSeqReaderPos (CvSeqReader* reader)
Parameters
reader — Reader state

The function returns the current reader position (within O ... reader->seq->total - 1).

GetSetElem

Finds a set element by its index.
C: CvSetElem* cvGetSetElem(const CvSet* set_header, int idx)
Parameters
set_header — Set
idx — Index of the set element within a sequence

The function finds a set element by its index. The function returns the pointer to it or O if the index is invalid or the
corresponding node is free. The function supports negative indices as it uses GetSeqElem() to locate the node.

GraphAddEdge

Adds an edge to a graph.

C: int cvGraphAddEdge (CvGraph* graph, int start_idx, int end_idx, const CvGraphEdge* edge=NULL, Cv-
GraphEdge** inserted_edge=NULL)

Parameters
graph — Graph
start_idx — Index of the starting vertex of the edge

end_idx — Index of the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

edge — Optional input parameter, initialization data for the edge
inserted_edge — Optional output parameter to contain the address of the inserted edge

The function connects two specified vertices. The function returns 1 if the edge has been added successfully, O if
the edge connecting the two vertices exists already and -1 if either of the vertices was not found, the starting and the
ending vertex are the same, or there is some other critical situation. In the latter case (i.e., when the result is negative),
the function also reports an error by default.

94 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

GraphAddEdgeByPtr

Adds an edge to a graph by using its pointer.

C: int cvGraphAddEdgeByPtr (CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx, const Cv-
GraphEdge* edge=NULL, CvGraphEdge** inserted_edge=NULL)

Parameters
graph — Graph
start_vtx — Pointer to the starting vertex of the edge

end_vtx — Pointer to the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

edge — Optional input parameter, initialization data for the edge

inserted_edge — Optional output parameter to contain the address of the inserted edge
within the edge set

The function connects two specified vertices. The function returns 1 if the edge has been added successfully, O if the
edge connecting the two vertices exists already, and -1 if either of the vertices was not found, the starting and the
ending vertex are the same or there is some other critical situation. In the latter case (i.e., when the result is negative),
the function also reports an error by default.

GraphAddVix

Adds a vertex to a graph.

C: int cvGraphAddVtx (CvGraph* graph, const CvGraphVtx* vtx=NULL, CvGraphVtx** in-
serted_vtx=NULL)

Parameters
graph — Graph

vtx — Optional input argument used to initialize the added vertex (only user-defined fields
beyond sizeof (CvGraphVtx) are copied)

inserted_vtx — Optional output argument. If not NULL , the address of the new vertex is
written here.

The function adds a vertex to the graph and returns the vertex index.

GraphEdgeldx

Returns the index of a graph edge.
C: int cvGraphEdgeIdx (CvGraph* graph, CvGraphEdge* edge)
Parameters
graph — Graph
edge — Pointer to the graph edge

The function returns the index of a graph edge.

2.3. Dynamic Structures 95

The OpenCV Reference Manual, Release 2.4.2

GraphRemoveEdge

Removes an edge from a graph.
C: void cvGraphRemoveEdge (CvGraph* graph, int start_idx, int end_idx)
Parameters
graph — Graph
start_idx — Index of the starting vertex of the edge

end_idx — Index of the ending vertex of the edge. For an unoriented graph, the order of the
vertex parameters does not matter.

The function removes the edge connecting two specified vertices. If the vertices are not connected [in that order], the
function does nothing.

GraphRemoveEdgeByPtr

Removes an edge from a graph by using its pointer.
C: void cvGraphRemoveEdgeByPtr (CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_vtx)
Parameters
graph — Graph
start_vtx — Pointer to the starting vertex of the edge

end_vtx — Pointer to the ending vertex of the edge. For an unoriented graph, the order of
the vertex parameters does not matter.

The function removes the edge connecting two specified vertices. If the vertices are not connected [in that order], the
function does nothing.

GraphRemoveVitx

Removes a vertex from a graph.
C: int cvGraphRemoveVtx (CvGraph* graph, int index)
Parameters
graph — Graph
index — Index of the removed vertex

The function removes a vertex from a graph together with all the edges incident to it. The function reports an error if
the input vertex does not belong to the graph. The return value is the number of edges deleted, or -1 if the vertex does
not belong to the graph.

GraphRemoveVitxByPtr

Removes a vertex from a graph by using its pointer.
C: int cvGraphRemoveVtxByPtr (CvGraph* graph, CvGraphVtx* vtx)
Parameters

graph — Graph

96 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

vtx — Pointer to the removed vertex

The function removes a vertex from the graph by using its pointer together with all the edges incident to it. The
function reports an error if the vertex does not belong to the graph. The return value is the number of edges deleted,
or -1 if the vertex does not belong to the graph.

GraphVtxDegree

Counts the number of edges incident to the vertex.
C: int cvGraphVtxDegree (const CvGraph* graph, int vtx_idx)
Parameters
graph — Graph
vtx_idx — Index of the graph vertex

The function returns the number of edges incident to the specified vertex, both incoming and outgoing. To count the
edges, the following code is used:

CvGraphEdge* edge = vertex->first; int count = 0;
while(edge)
{
edge = CV_NEXT_GRAPH_EDGE(edge, vertex);
count++;

}

The macro CV_NEXT_GRAPH_EDGE(edge, vertex) returns the edge incident to vertex that follows after edge .

GraphVtxDegreeByPtr

Finds an edge in a graph.
C: int cvGraphVtxDegreeByPtr (const CvGraph* graph, const CvGraphVix* vtx)
Parameters
graph — Graph
vtx — Pointer to the graph vertex

The function returns the number of edges incident to the specified vertex, both incoming and outcoming.

GraphVixldx

Returns the index of a graph vertex.
C: int cvGraphVtxIdx (CvGraph* graph, CvGraphVtx* vtx)
Parameters
graph — Graph
vtx — Pointer to the graph vertex

The function returns the index of a graph vertex.

2.3. Dynamic Structures 97

The OpenCV Reference Manual, Release 2.4.2

InitTreeNodelterator

Initializes the tree node iterator.
C: void cvInitTreeNodeIterator (CvTreeNodelterator* tree_iterator, const void* first, int max_level)
Parameters
tree_iterator — Tree iterator initialized by the function
first — The initial node to start traversing from

max_level — The maximal level of the tree (first node assumed to be at the first level) to
traverse up to. For example, 1 means that only nodes at the same level as first should be
visited, 2 means that the nodes on the same level as first and their direct children should
be visited, and so forth.

The function initializes the tree iterator. The tree is traversed in depth-first order.

InsertNodelntoTree

Adds a new node to a tree.
C: void cvInsertNodeIntoTree(void* node, void* parent, void* frame)
Parameters
node — The inserted node
parent — The parent node that is already in the tree

frame — The top level node. If parent and frame are the same, the v_prev field of node is
set to NULL rather than parent .

The function adds another node into tree. The function does not allocate any memory, it can only modify links of the
tree nodes.

MakeSeqHeaderForArray

Constructs a sequence header for an array.

C: CvSeq* cvMakeSeqHeaderForArray (int seq_type, int header_size, int elem_size, void* elements, int
total, CvSeq* seq, CvSeqBlock* block)

Parameters
seq_type — Type of the created sequence

header_size — Size of the header of the sequence. Parameter sequence must point to the
structure of that size or greater

elem_size — Size of the sequence elements
elements — Elements that will form a sequence

total — Total number of elements in the sequence. The number of array elements must be
equal to the value of this parameter.

seq — Pointer to the local variable that is used as the sequence header

block — Pointer to the local variable that is the header of the single sequence block

98 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

The function initializes a sequence header for an array. The sequence header as well as the sequence block are allocated
by the user (for example, on stack). No data is copied by the function. The resultant sequence will consists of a single
block and have NULL storage pointer; thus, it is possible to read its elements, but the attempts to add elements to the
sequence will raise an error in most cases.

MemStorageAlloc

Allocates a memory buffer in a storage block.
C: void* cvMemStorageAlloc (CvMemStorage* storage, size_t size)
Parameters
storage — Memory storage
size — Buffer size

The function allocates a memory buffer in a storage block. The buffer size must not exceed the storage block size,
otherwise a runtime error is raised. The buffer address is aligned by CV_STRUCT_ALIGN=sizeof (double) (for the
moment) bytes.

MemStorageAllocString

Allocates a text string in a storage block.
C: CvString cvMemStorageAllocString (CvMemStorage™* storage, const char* ptr, int len=-1)
Parameters
storage — Memory storage
ptr — The string

len — Length of the string (not counting the ending NUL) . If the parameter is negative, the
function computes the length.

typedef struct CvString

{
int len;
char* ptr;
}
CvString;

The function creates copy of the string in memory storage. It returns the structure that contains user-passed or com-
puted length of the string and pointer to the copied string.

NextGraphltem

Executes one or more steps of the graph traversal procedure.
C: int cvNextGraphItem(CvGraphScanner* scanner)
Parameters
scanner — Graph traversal state. It is updated by this function.

The function traverses through the graph until an event of interest to the user (that is, an event, specified in the mask in
the CreateGraphScanner () call) is met or the traversal is completed. In the first case, it returns one of the events listed
in the description of the mask parameter above and with the next call it resumes the traversal. In the latter case, it returns

2.3. Dynamic Structures 99

The OpenCV Reference Manual, Release 2.4.2

CV_GRAPH_OVER (-1). When the event is CV_GRAPH_VERTEX , CV_GRAPH_BACKTRACKING , or CV_GRAPH_NEW_TREE ,
the currently observed vertex is stored in scanner-:math: ‘>‘vtx . And if the event is edge-related, the edge itself is
stored at scanner-:math: ‘>‘edge , the previously visited vertex - at scanner-:math: ‘>‘vtx and the other ending
vertex of the edge - at scanner-:math: ‘>‘dst .

NextTreeNode

Returns the currently observed node and moves the iterator toward the next node.
C: void* cvNextTreeNode (CvTreeNodelterator* tree_iterator)
Parameters
tree_iterator — Tree iterator initialized by the function

The function returns the currently observed node and then updates the iterator - moving it toward the next node. In
other words, the function behavior is similar to the *p++ expression on a typical C pointer or C++ collection iterator.
The function returns NULL if there are no more nodes.

PrevTreeNode

Returns the currently observed node and moves the iterator toward the previous node.
C: void* cvPrevTreeNode (CvTreeNodelterator* tree_iterator)
Parameters
tree_iterator — Tree iterator initialized by the function

The function returns the currently observed node and then updates the iterator - moving it toward the previous node. In
other words, the function behavior is similar to the *p- - expression on a typical C pointer or C++ collection iterator.
The function returns NULL if there are no more nodes.

ReleaseGraphScanner

Completes the graph traversal procedure.
C: void cvReleaseGraphScanner (CvGraphScanner** scanner)
Parameters
scanner — Double pointer to graph traverser

The function completes the graph traversal procedure and releases the traverser state.

ReleaseMemStorage

Releases memory storage.
C: void cvReleaseMemStorage (CvMemStorage™* storage)
Parameters
storage — Pointer to the released storage

The function deallocates all storage memory blocks or returns them to the parent, if any. Then it deallocates the storage
header and clears the pointer to the storage. All child storage associated with a given parent storage block must be
released before the parent storage block is released.

100 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

RestoreMemStoragePos

Restores memory storage position.
C: void cvRestoreMemStoragePos (CvMemStorage* storage, CvMemStoragePos* pos)
Parameters
storage — Memory storage
pos — New storage top position

The function restores the position of the storage top from the parameter pos . This function and the function
cvClearMemStorage are the only methods to release memory occupied in memory blocks. Note again that there
is no way to free memory in the middle of an occupied portion of a storage block.

SaveMemStoragePos

Saves memory storage position.
C: void cvSaveMemStoragePos (const CvMemStorage* storage, CvMemStoragePos* pos)
Parameters
storage — Memory storage
pos — The output position of the storage top

The function saves the current position of the storage top to the parameter pos . The function
cvRestoreMemStoragePos can further retrieve this position.

SeqElemldx

Returns the index of a specific sequence element.
C: int cvSeqElemIdx (const CvSeq* seq, const void* element, CvSeqBlock** block=NULL)
Parameters
seq — Sequence
element — Pointer to the element within the sequence

block — Optional argument. If the pointer is not NULL , the address of the sequence block
that contains the element is stored in this location.

The function returns the index of a sequence element or a negative number if the element is not found.

Seqlnsert

Inserts an element in the middle of a sequence.
C: schar* cvSeqInsert(CvSeq* seq, int before_index, const void* element=NULL)
Parameters
seq — Sequence

before_index — Index before which the element is inserted. Inserting before O (the min-
imal allowed value of the parameter) is equal to SeqPushFront() and inserting before
seq->total (the maximal allowed value of the parameter) is equal to SeqPush () .

2.3. Dynamic Structures 101

The OpenCV Reference Manual, Release 2.4.2

element — Inserted element

The function shifts the sequence elements from the inserted position to the nearest end of the sequence and copies the
element content there if the pointer is not NULL. The function returns a pointer to the inserted element.

SeqglnsertSlice

Inserts an array in the middle of a sequence.
C: void cvSeqInsertSlice(CvSeq* seq, int before_index, const CvArr* from_arr)
Parameters
seq — Sequence
before_index — Index before which the array is inserted
from_arr — The array to take elements from

The function inserts all fromArr array elements at the specified position of the sequence. The array fromArr can be a
matrix or another sequence.

Seqlnvert

Reverses the order of sequence elements.
C: void cvSeqInvert(CvSeq* seq)
Parameters
seq — Sequence

The function reverses the sequence in-place - the first element becomes the last one, the last element becomes the first
one and so forth.

SeqPop

Removes an element from the end of a sequence.
C: void cvSeqPop (CvSeq* seq, void* element=NULL)
Parameters
seq — Sequence

element — Optional parameter . If the pointer is not zero, the function copies the removed
element to this location.

The function removes an element from a sequence. The function reports an error if the sequence is already empty. The
function has O(1) complexity.

SeqPopFront

Removes an element from the beginning of a sequence.
C: void cvSeqPopFront (CvSeq* seq, void* element=NULL)
Parameters

seq — Sequence

102 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

element — Optional parameter. If the pointer is not zero, the function copies the removed
element to this location.

The function removes an element from the beginning of a sequence. The function reports an error if the sequence is
already empty. The function has O(1) complexity.

SeqPopMulti

Removes several elements from either end of a sequence.
C: void cvSeqPopMulti(CvSeq* seq, void* elements, int count, int in_front=0)
Parameters
seq — Sequence
elements — Removed elements
count — Number of elements to pop
in_front — The flags specifying which end of the modified sequence.
— CV_BACK the elements are added to the end of the sequence
— CV_FRONT the elements are added to the beginning of the sequence

The function removes several elements from either end of the sequence. If the number of the elements to be removed
exceeds the total number of elements in the sequence, the function removes as many elements as possible.

SeqPush

Adds an element to the end of a sequence.
C: schar* cvSeqPush (CvSeq* seq, const void* element=NULL)
Parameters
seq — Sequence
element — Added element

The function adds an element to the end of a sequence and returns a pointer to the allocated element. If the input
element is NULL, the function simply allocates a space for one more element.

The following code demonstrates how to create a new sequence using this function:

CvMemStoragex storage = cvCreateMemStorage(0);
CvSeq+ seq = cvCreateSeq(CV_32SCl, /* sequence of integer elements x*/
sizeof(CvSeq), /* header size - no extra fields x/
sizeof(int), /x element size x/
storage /* the container storage */);
int i;
for(i =0; i < 100; i++)
{
intx added = (intx)cvSeqPush(seq, &i);
printf("

/* release memory storage in the end x/
cvReleaseMemStorage(&storage);

2.3. Dynamic Structures 103

The OpenCV Reference Manual, Release 2.4.2

The function has O(1) complexity, but there is a faster method for writing large sequences (see StartWriteSeq() and
related functions).

SeqPushFront

Adds an element to the beginning of a sequence.
C: schar* cvSeqPushFront (CvSeq* seq, const void* element=NULL)
Parameters
seq — Sequence
element — Added element

The function is similar to SeqPush () but it adds the new element to the beginning of the sequence. The function has
O(1) complexity.

SeqPushMulti

Pushes several elements to either end of a sequence.
C: void cvSeqPushMulti(CvSeq* seq, const void* elements, int count, int in_front=0)
Parameters
seq — Sequence
elements — Added elements
count — Number of elements to push
in_front — The flags specifying which end of the modified sequence.
— CV_BACK the elements are added to the end of the sequence
— CV_FRONT the elements are added to the beginning of the sequence

The function adds several elements to either end of a sequence. The elements are added to the sequence in the same
order as they are arranged in the input array but they can fall into different sequence blocks.

SeqRemove

Removes an element from the middle of a sequence.
C: void cvSeqRemove (CvSeq* seq, int index)
Parameters
seq — Sequence
index — Index of removed element

The function removes elements with the given index. If the index is out of range the function reports an error. An
attempt to remove an element from an empty sequence is a special case of this situation. The function removes an
element by shifting the sequence elements between the nearest end of the sequence and the index -th position, not
counting the latter.

104 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

SeqRemoveSlice

Removes a sequence slice.
C: void cvSeqRemoveSlice(CvSeq* seq, CvSlice slice)
Parameters
seq — Sequence
slice — The part of the sequence to remove

The function removes a slice from the sequence.

SeqSearch

Searches for an element in a sequence.

C: schar* cvSeqSearch (CvSeq* seq, const void* elem, CvCmpFunc func, int is_sorted, int* elem_idx, void*
userdata=NULL)

Parameters
seq — The sequence
elem — The element to look for

func — The comparison function that returns negative, zero or positive value depending on
the relationships among the elements (see also SeqSort())

is_sorted — Whether the sequence is sorted or not
elem_idx — Output parameter; index of the found element

userdata — The user parameter passed to the comparison function; helps to avoid global
variables in some cases

/*a<b?-1:a>b7?21:0 %/

typedef int (CV_CDECL* CvCmpFunc) (const void* a, const void* b, voidx userdata);

The function searches for the element in the sequence. If the sequence is sorted, a binary O(log(N)) search is used;
otherwise, a simple linear search is used. If the element is not found, the function returns a NULL pointer and the
index is set to the number of sequence elements if a linear search is used, or to the smallest index i, seq(i)>elem.

SeqSlice

Makes a separate header for a sequence slice.

C: CvSeq* cvSeqSlice(const CvSeq* seq, CvSlice slice, CvMemStorage* storage=NULL, int copy_data=0
)

Parameters
seq — Sequence
slice — The part of the sequence to be extracted

storage — The destination storage block to hold the new sequence header and the copied
data, if any. If it is NULL, the function uses the storage block containing the input sequence.

copy_data — The flag that indicates whether to copy the elements of the extracted slice (
copy_data!=0) or not (copy_data=0)

2.3. Dynamic Structures 105

The OpenCV Reference Manual, Release 2.4.2

The function creates a sequence that represents the specified slice of the input sequence. The new sequence either
shares the elements with the original sequence or has its own copy of the elements. So if one needs to process a part
of sequence but the processing function does not have a slice parameter, the required sub-sequence may be extracted
using this function.

SeqSort

Sorts sequence element using the specified comparison function.
C: void cvSeqSort (CvSeq* seq, CvCmpFunc func, void* userdata=NULL)
Parameters
seq — The sequence to sort

func — The comparison function that returns a negative, zero, or positive value depending
on the relationships among the elements (see the above declaration and the example below)
- a similar function is used by gsort from C runline except that in the latter, userdata is
not used

userdata — The user parameter passed to the comparison function; helps to avoid global
variables in some cases

/*a<b?-1:a>b7?721:0%*
typedef int (CV_CDECL* CvCmpFunc) (const void* a, const void* b, void* userdata);
The function sorts the sequence in-place using the specified criteria. Below is an example of using this function:

/* Sort 2d points in top-to-bottom left-to-right order x/
static int cmp_func(const void* _a, const void* _b, void* userdata)

{
CvPoint* a = (CvPointx)_a;
CvPoint* b = (CvPointx)_b;
int y_diff = a->y - b->y;
int x_diff = a->x - b->x;
return y_diff ? y_diff : x_diff;
}

CvMemStoragex storage = cvCreateMemStorage(0);
CvSeq+ seq = cvCreateSeq(CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), storage);
int i;

for(i =0; i < 10; i++)

{
CvPoint pt;
pt.x = rand()
pt.y = rand()
cvSeqPush(seq, &pt);
}

cvSeqSort(seq, cmp_func, 0 /* userdata is not used here */);

/* print out the sorted sequence x/

for(i = 0; i < seqg->total; i++)

{
CvPoint* pt = (CvPointx*)cvSeqElem(seq, i);
printf("(

106 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

}

cvReleaseMemStorage(&storage);

SetAdd

Occupies a node in the set.
C: int cvSetAdd (CvSet* set_header, CvSetElem* elem=NULL, CvSetElem** inserted_elem=NULL)
Parameters
set_header — Set

elem — Optional input argument, an inserted element. If not NULL, the function copies the
data to the allocated node (the MSB of the first integer field is cleared after copying).

inserted_elem — Optional output argument; the pointer to the allocated cell

The function allocates a new node, optionally copies input element data to it, and returns the pointer and the index
to the node. The index value is taken from the lower bits of the flags field of the node. The function has O(1)
complexity; however, there exists a faster function for allocating set nodes (see SetNew()).

SetNew

Adds an element to a set (fast variant).
C: CvSetElem* cvSetNew(CvSet* set_header)
Parameters
set_header — Set

The function is an inline lightweight variant of SetAdd () . It occupies a new node and returns a pointer to it rather
than an index.

SetRemove

Removes an element from a set.
C: void cvSetRemove (CvSet* set_header, int index)
Parameters
set_header — Set
index — Index of the removed element

The function removes an element with a specified index from the set. If the node at the specified location is not
occupied, the function does nothing. The function has O(1) complexity; however, SetRemoveByPtr () provides a
quicker way to remove a set element if it is located already.

SetRemoveByPtr

Removes a set element based on its pointer.

C: void cvSetRemoveByPtr(CvSet* set_header, void* elem)

2.3. Dynamic Structures 107

The OpenCV Reference Manual, Release 2.4.2

Parameters
set_header — Set
elem — Removed element

The function is an inline lightweight variant of SetRemove () that requires an element pointer. The function does not
check whether the node is occupied or not - the user should take care of that.

SetSeqBlockSize

Sets up sequence block size.
C: void cvSetSeqBlockSize (CvSeq* seq, int delta_elems)
Parameters
seq — Sequence
delta_elems — Desirable sequence block size for elements

The function affects memory allocation granularity. When the free space in the sequence buffers has run out, the
function allocates the space for delta_elems sequence elements. If this block immediately follows the one previously
allocated, the two blocks are concatenated; otherwise, a new sequence block is created. Therefore, the bigger the
parameter is, the lower the possible sequence fragmentation, but the more space in the storage block is wasted. When
the sequence is created, the parameter delta_elems is set to the default value of about 1K. The function can be called
any time after the sequence is created and affects future allocations. The function can modify the passed value of the
parameter to meet memory storage constraints.

SetSeqReaderPos

Moves the reader to the specified position.
C: void cvSetSeqReaderPos (CvSeqReader* reader, int index, int is_relative=0)
Parameters
reader — Reader state

index — The destination position. If the positioning mode is used (see the next parameter),
the actual position will be index mod reader->seq->total .

is_relative — If it is not zero, then index is a relative to the current position

The function moves the read position to an absolute position or relative to the current position.

StartAppendToSeq

Initializes the process of writing data to a sequence.
C: void cvStartAppendToSeq(CvSeq* seq, CvSeqWriter* writer)
Parameters
seq — Pointer to the sequence

writer — Writer state; initialized by the function

108 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

The function initializes the process of writing data to a sequence. Written elements are added to the end of the
sequence by using the CV_WRITE_SEQ_ELEM(written_elem, writer) macro. Note that during the writing pro-
cess, other operations on the sequence may yield an incorrect result or even corrupt the sequence (see description of
FlushSegWriter() , which helps to avoid some of these problems).

StartReadSeq

Initializes the process of sequential reading from a sequence.
C: void cvStartReadSeq (const CvSeq* seq, CvSeqReader* reader, int reverse=0)
Parameters
seq — Sequence
reader — Reader state; initialized by the function

reverse — Determines the direction of the sequence traversal. If reverse is 0, the reader is
positioned at the first sequence element; otherwise it is positioned at the last element.

The function initializes the reader state. After that, all the sequence elements from the first one down to the last
one can be read by subsequent calls of the macro CV_READ_SEQ_ELEM(read_elem, reader) in the case of for-
ward reading and by using CV_REV_READ_SEQ_ELEM(read_elem, reader) in the case of reverse reading. Both
macros put the sequence element to read_elem and move the reading pointer toward the next element. A circu-
lar structure of sequence blocks is used for the reading process, that is, after the last element has been read by
the macro CV_READ_SEQ_ELEM , the first element is read when the macro is called again. The same applies to
CV_REV_READ_SEQ_ELEM . There is no function to finish the reading process, since it neither changes the sequence nor
creates any temporary buffers. The reader field ptr points to the current element of the sequence that is to be read
next. The code below demonstrates how to use the sequence writer and reader.

CvMemStorage* storage = cvCreateMemStorage(0);

CvSeq+ seq = cvCreateSeq(CV_32SC1l, sizeof(CvSeq), sizeof(int), storage);
CvSegqWriter writer;

CvSeqReader reader;

int i;

cvStartAppendToSeq(seq, &writer);
for(i =0; i < 10; i++)

{
int val = rand()
CV_WRITE_SEQ_ELEM(val, writer);
printf("

}

cvEndWriteSeq(&writer);

cvStartReadSeq(seq, &reader, 0);
for(i = 0; i < seqg->total; i++)

{
int val;

#if 1
CV_READ_SEQ_ELEM(val, reader);
printf("

#else /* alternative way, that is prefferable if sequence elements are large,
or their size/type is unknown at compile time x/
printf("
CV_NEXT_SEQ_ELEM(seq->elem_size, reader);
#endif

}

2.3. Dynamic Structures 109

The OpenCV Reference Manual, Release 2.4.2

cvReleaseStorage(&storage);

StartWriteSeq

Creates a new sequence and initializes a writer for it.

C: void cvStartWriteSeq(int seq_flags, int header_size, int elem_size, CvMemStorage* storage, CvSe-
qWriter* writer)

Parameters

seq_flags — Flags of the created sequence. If the sequence is not passed to any function
working with a specific type of sequences, the sequence value may be equal to 0; otherwise
the appropriate type must be selected from the list of predefined sequence types.

header_size — Size of the sequence header. The parameter value may not be less than
sizeof (CvSeq) . If a certain type or extension is specified, it must fit within the base type
header.

elem_size — Size of the sequence elements in bytes; must be consistent with the sequence
type. For example, if a sequence of points is created (element type CV_SEQ_ELTYPE_POINT
), then the parameter elem_size must be equal to sizeof (CvPoint) .

storage — Sequence location
writer — Writer state; initialized by the function

The function is a combination of CreateSeq() and StartAppendToSeq() . The pointer to the created sequence is
stored at writer->seq and is also returned by the EndWriteSeq() function that should be called at the end.

TreeToNodeSeq

Gathers all node pointers to a single sequence.
C: CvSeq* cvTreeToNodeSeq (const void* first, int header_size, CvMemStorage* storage)
Parameters
first — The initial tree node

header_size — Header size of the created sequence (sizeof(CvSeq) is the most frequently
used value)

storage — Container for the sequence

The function puts pointers of all nodes reachable from first into a single sequence. The pointers are written sequen-
tially in the depth-first order.

2.4 Operations on Arrays

abs

Computes an absolute value of each matrix element.
C++: MatExpr abs (const Mat& m)
C++: MatExpr abs (const MatExpr& e)

110 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Parameters
m — Matrix.
e — Matrix expression.

abs is a meta-function that is expanded to one of absdiff () forms:

e C = abs(A-B) is equivalent to absdiff(A, B, C)
e C = abs(A) is equivalent to absdiff (A, Scalar::all(0), C)
e C = Mat_<Vec<uchar,n> >(abs(A*xalpha + beta)) is equivalent to convertScaleAbs (A, C, alpha, beta)

The output matrix has the same size and the same type as the input one except for the last case, where C is depth=CV_8U

See Also:

Matrix Expressions, absdiff ()

absdiff

Computes the per-element absolute difference between two arrays or between an array and a scalar.
C++: void absdiff (InputArray srcl, InputArray src2, OutputArray dst)
Python: cv2.absdiff (srcl, scm[, dst]) — dst
C: void cvAbsDiff (const CvArr* srel, const CvArr* src2, CvArr* dst)
C: void cvAbsDiffS (const CvArr* src, CvArr* dst, CvScalar value)
Python: cv.AbsDiff (srcl, src2, dst) — None
Python: cv.AbsDiffS (src, dst, value) — None
Parameters

srcl — First input array or a scalar.

src2 — Second input array or a scalar.

dst — Destination array that has the same size and type as srcl (or src2).
The function absdiff computes:

» Absolute difference between two arrays when they have the same size and type:

dst(I) = saturate(|src1(I) — src2(I)|)

» Absolute difference between an array and a scalar when the second array is constructed from Scalar or has as
many elements as the number of channels in srcl:

dst(I) = saturate(|srcl(I) — src2|)

» Absolute difference between a scalar and an array when the first array is constructed from Scalar or has as
many elements as the number of channels in src2:

dst(I) = saturate(|srcl — src2(I)|)

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is pro-
cessed independently.

2.4. Operations on Arrays 111

The OpenCV Reference Manual, Release 2.4.2

Note: Saturation is not applied when the arrays have the depth CV_32S. You may even get a negative value in the case
of overflow.

See Also:
abs ()

add

Computes the per-element sum of two arrays or an array and a scalar.

C++: void add (InputArray srcl, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-
1)

Python: cv2.add(srcl, scm[, dst[, mask[, dtype]]]) — dst
C: void cvAdd (const CvArr* srcl, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvAddS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.Add(srcl, src2, dst, mask=None) — None
Python: cv.AddsS (src, value, dst, mask=None) — None
Parameters
srcl — First source array or a scalar.
src2 — Second source array or a scalar.

dst — Destination array that has the same size and number of channels as the input array(s).
The depth is defined by dtype or srcl/src2.

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

dtype — Optional depth of the output array. See the discussion below.
The function add computes:

* Sum of two arrays when both input arrays have the same size and the same number of channels:

dst(I) = saturate(srcl(l) + src2(I)) if mask(I) #0

e Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of elements as
srcl.channels():

dst(I) = saturate(srcl(I) +src2) if mask(I) #0

* Sum of a scalar and an array when srcl is constructed from Scalar or has the same number of elements as
src2.channels():

dst(I) = saturate(srcl+src2(I)) if mask(I) #0

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is pro-
cessed independently.

The first function in the list above can be replaced with matrix expressions:

112 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

dst = srcl + src2;
dst += srcl; // equivalent to add(dst, srcl, dst);

The input arrays and the destination array can all have the same or different depths. For example, you can add a
16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output
array is determined by the dtype parameter. In the second and third cases above, as well as in the first case, when
srcl.depth() == src2.depth(), dtype can be set to the default -1. In this case, the output array will have the
same depth as the input array, be it srcl, src2 or both.

Note: Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect
sign in the case of overflow.

See Also:

subtract(), addWeighted(), scaleAdd(), Mat: :convertTo(), Matrix Expressions

addWeighted

Computes the weighted sum of two arrays.

C++: void addweighted (InputArray srel, double alpha, InputArray src2, double beta, double gamma, Out-
putArray dst, int dtype=-1)

Python: cv2.addWeighted (srcl, alpha, src2, beta, gamma[, dst[, dtype]]) — dst

C: void cvAddWeighted (const CvArr* srcl, double alpha, const CvArr* src2, double beta, double gamma,
CvArr* dst)

Python: cv.AddwWeighted (srcl, alpha, src2, beta, gamma, dst) — None
Parameters
srcl — First source array.
alpha — Weight for the first array elements.
src2 — Second source array of the same size and channel number as srcl .
beta — Weight for the second array elements.
dst — Destination array that has the same size and number of channels as the input arrays.
gamma — Scalar added to each sum.

dtype — Optional depth of the destination array. When both input arrays have the same
depth, dtype can be set to -1, which will be equivalent to srcl.depth().

The function addWeighted calculates the weighted sum of two arrays as follows:
dst(I) = saturate(srcl(I) x alpha + src2(I) * beta + gamma)

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed
independently.

The function can be replaced with a matrix expression:

dst = srcl+alpha + src2xbeta + gamma;

Note: Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect
sign in the case of overflow.

2.4. Operations on Arrays 113

The OpenCV Reference Manual, Release 2.4.2

See Also:

add(), subtract(), scaleAdd(),Mat::convertTo(), Matrix Expressions

bitwise_and

Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.
C++: void bitwise_and (InputArray srcl, InputArray src2, OutputArray dst, InputArray mask=noArray())
Python: cv2.bitwise_and(srcl, src:2[, dst[, mask]]) — dst
C: void cvAnd (const CvArr* srcl, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvAndS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.And(srcl, src2, dst, mask=None) — None
Python: cv.AndsS (src, value, dst, mask=None) — None
Parameters

srcl — First source array or a scalar.

src2 — Second source array or a scalar.

dst — Destination array that has the same size and type as the input array(s).

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

The function computes the per-element bit-wise logical conjunction for:

* Two arrays when srcl and src2 have the same size:
dst(I) = srcl(I) Asrc2(I) if mask(I) #0
* An array and a scalar when src2 is constructed from Scalar or has the same number of elements as
srcl.channels():
dst(I) = srcl(I) Asrc2 if mask(I) #0
e A scalar and an array when srcl is constructed from Scalar or has the same number of elements as
src2.channels():
dst(I) =srcl Asrc2(I) if mask(I) #0
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for

the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases
above, the scalar is first converted to the array type.

bitwise_not

Inverts every bit of an array.
C++: void bitwise_not (InputArray sre, OutputArray dst, InputArray mask=noArray())
Python: cv2.bitwise_not (src[, dst[, mask]]) — dst

114 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

C: void cvNot (const CvArr* sre, CvArr* dst)
Python: cv.Not(src, dst) — None
Parameters
src — Source array.
dst — Destination array that has the same size and type as the input array.

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

The function computes per-element bit-wise inversion of the source array:
dst(I) = —src(I)

In case of a floating-point source array, its machine-specific bit representation (usually IEEE754-compliant) is used
for the operation. In case of multi-channel arrays, each channel is processed independently.

bitwise_or

Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
C++: void bitwise_or (InputArray srcl, InputArray sre2, OutputArray dst, InputArray mask=noArray())
Python: cv2.bitwise_or(srcl, src2[, dst[, mask]]) — dst
C: void cvOr (const CvArr* srcl, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvOrS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.0r(srcl, src2, dst, mask=None) — None
Python: cv.0rS (src, value, dst, mask=None) — None
Parameters

srcl — First source array or a scalar.

src2 — Second source array or a scalar.

dst — Destination array that has the same size and type as the input array(s).

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

The function computes the per-element bit-wise logical disjunction for:

* Two arrays when srcl and src2 have the same size:

dst(I) = srcl(I) Vsrc2(I) if mask(I) #0

* An array and a scalar when src2 is constructed from Scalar or has the same number of elements as
srcl.channels():

dst(I) =srcl(I)Vsrc2 if mask(I) #0

* A scalar and an array when srcl is constructed from Scalar or has the same number of elements as
src2.channels():

2.4. Operations on Arrays 115

The OpenCV Reference Manual, Release 2.4.2

dst(I) =srclVsrc2(I) if mask(I) #0

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for
the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases
above, the scalar is first converted to the array type.

bitwise_xor

Calculates the per-element bit-wise “exclusive or’” operation on two arrays or an array and a scalar.
C++: void bitwise_xor (InputArray srcl, InputArray src2, OutputArray dst, InputArray mask=noArray())
Python: cv2.bitwise_xor (srcl, scm[, dst[, mask]]) — dst
C: void cvXor (const CvArr* srcl, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvXorsS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.Xor(srcl, src2, dst, mask=None) — None
Python: cv.XorsS (src, value, dst, mask=None) — None
Parameters

srcl — First source array or a scalar.

src2 — Second source array or a scalar.

dst — Destination array that has the same size and type as the input array(s).

mask — Optional operation mask, 8-bit single channel array, that specifies elements of the
destination array to be changed.

The function computes the per-element bit-wise logical “exclusive-or” operation for:

* Two arrays when srcl and src2 have the same size:

dst(I) = srcl(I) @ src2(I) if mask(I) #0

e An array and a scalar when src2 is constructed from Scalar or has the same number of elements as
srcl.channels():

dst(I) =srcl(l) @ src2 if mask(I) #0

e A scalar and an array when srcl is constructed from Scalar or has the same number of elements as
src2.channels():

dst(I) =srcl @ src2(I) if mask(I) #0

In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for
the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases
above, the scalar is first converted to the array type.

116 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

calcCovarMatrix

Calculates the covariance matrix of a set of vectors.

C++: void calcCovarMatrix(const Mat* samples, int nsamples, Mat& covar, Mat& mean, int flags, int
ctype=CV_64F)
C++: void calcCovarMatrix (InputArray samples, OutputArray covar, OutputArray mean, int flags, int
ctype=CV_64F)
Python: cv2.calcCovarMatrix(samples, ﬂags[, covar[, mean[, ctype]]]) — covar, mean
C: void cvCalcCovarMatrix (const CvArr** vects, int count, CvArr* cov_mat, CvArr* avg, int flags)
Python: cv.CalcCovarMatrix(vects, covMat, avg, flags) — None
Parameters
samples — Samples stored either as separate matrices or as rows/columns of a single matrix.
nsamples — Number of samples when they are stored separately.
covar — Qutput covariance matrix of the type ctype and square size.

mean — Input or output (depending on the flags) array as the average value of the input
vectors.

flags — Operation flags as a combination of the following values:

— CV_COVAR_SCRAMBLED The output covariance matrix is calculated as:

scale - [vects[0] — mean,vects[1] —mean,...]" - [vects[0] — mean, vects[1] — mean,...],

The covariance matrix will be nsamples x nsamples. Such an unusual covariance
matrix is used for fast PCA of a set of very large vectors (see, for example, the
EigenFaces technique for face recognition). Eigenvalues of this “scrambled” matrix
match the eigenvalues of the true covariance matrix. The “true” eigenvectors can be
easily calculated from the eigenvectors of the “scrambled” covariance matrix.

— CV_COVAR_NORMAL The output covariance matrix is calculated as:

scale - [vects[0] — mean,vects[1] —mean,...] - [vects[0] — mean, vects[l] —mean,...]",

covar will be a square matrix of the same size as the total number of elements in each
input vector. One and only one of CV_COVAR_SCRAMBLED and CV_COVAR_NORMAL
must be specified.

— CV_COVAR_USE_AVG If the flag is specified, the function does not calculate mean
from the input vectors but, instead, uses the passed mean vector. This is useful if mean
has been pre-computed or known in advance, or if the covariance matrix is calculated by
parts. In this case, mean is not a mean vector of the input sub-set of vectors but rather the
mean vector of the whole set.

— CV_COVAR_SCALE If the flag is specified, the covariance matrix is scaled. In the
“normal” mode, scale is 1./nsamples . In the “scrambled” mode, scale is the recip-
rocal of the total number of elements in each input vector. By default (if the flag is not
specified), the covariance matrix is not scaled (scale=1).

— CV_COVAR_ROWS [Only useful in the second variant of the function] If the flag is
specified, all the input vectors are stored as rows of the samples matrix. mean should be
a single-row vector in this case.

2.4. Operations on Arrays 117

The OpenCV Reference Manual, Release 2.4.2

— CV_COVAR_COLS [Only useful in the second variant of the function] If the flag is
specified, all the input vectors are stored as columns of the samples matrix. mean should
be a single-column vector in this case.

The functions calcCovarMatrix calculate the covariance matrix and, optionally, the mean vector of the set of input
vectors.

See Also:

PCA, mulTransposed (), Mahalanobis ()

cartToPolar

Calculates the magnitude and angle of 2D vectors.

C++: void cartToPolar (InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool an-
gleInDegrees=false)

Python: cv2.cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) — magnitude, angle

C: void cvCartToPolar (const CvArr* x, const CvArr* y, CvArr* magnitude, CvArr* angle=NULL, int an-
gle_in_degrees=0)

Python: cv.CartToPolar (x, y, magnitude, angle=None, angleInDegrees=0) — None
Parameters

X — Array of x-coordinates. This must be a single-precision or double-precision floating-
point array.

y — Array of y-coordinates that must have the same size and same type as x .
magnitude — Destination array of magnitudes of the same size and type as x .

angle — Destination array of angles that has the same size and type as x . The angles are
measured in radians (from 0 to 2*P1i) or in degrees (0 to 360 degrees).

angleInDegrees — Flag indicating whether the angles are measured in radians, which is the
default mode, or in degrees.

The function cartToPolar calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)):

magnitude(I) = v/x(I)2 + y(I)2,

angle(I) = atan2(y(I), x(I))[-180/7]
The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to O.

See Also:
Sobel(), Scharr()

checkRange

Checks every element of an input array for invalid values.

C++: bool checkRange (InputArray a, bool quiet=true, Point* pos=0, double minVal=-DBL._MAX, double
maxVal=DBL_MAX)

Python: cv2. checkRange(a[, quiet[, minVal[, maxVal]]]) — retval, pos
Parameters

a — Array to check.

118 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

quiet — Flag indicating whether the functions quietly return false when the array elements
are out of range or they throw an exception.

pos — Optional output parameter, where the position of the first outlier is stored. In the
second function pos , when not NULL, must be a pointer to array of src.dims elements.

minVal — Inclusive lower boundary of valid values range.
max Val — Exclusive upper boundary of valid values range.

The functions checkRange check that every array element is neither NaN nor infinite. When minVal < -DBL_MAX
and maxVal < DBL_MAX, the functions also check that each value is between minVal and maxVal . In case of multi-
channel arrays, each channel is processed independently. If some values are out of range, position of the first outlier is
stored in pos (when pos != NULL). Then, the functions either return false (when quiet=true) or throw an exception.

compare

Performs the per-element comparison of two arrays or an array and scalar value.
C++: void compare (InputArray srcl, InputArray src2, OutputArray dst, int cmpop)
Python: cv2.compare(srcl, src2, cmpop[, dst]) — dst
C: void cvCmp (const CvArr* srecl, const CvArr* sre2, CvArr* dst, int cmp_op)
Python: cv.Cmp(srcl, src2, dst, cmpOp) — None
C: void cvCmpS (const CvArr* src, double value, CvArr* dst, int cmp_op)
Python: cv.CmpS (src, value, dst, cmpOp) — None

Parameters

srcl — First source array or a scalar (in the case of cvCmp, cv.Cmp, cvCmpS, cv.CmpS it is
always an array). When it is array, it must have a single channel.

src2 — Second source array or a scalar (in the case of cvCmp and cv.Cmp it is always an
array; in the case of cvCmpS, cv.CmpS it is always a scalar). When it is array, it must have a
single channel.

dst — Destination array that has the same size as the input array(s) and type= CV_8UC1 .
cmpop — Flag specifying the relation between the elements to be checked.
— CMP_EQ srclequal to src2.
— CMP_GT srcl greater than src2.
— CMP_GE src1 greater than or equal to src2.
— CMP_LT srcl less than src2.
— CMP_LE srcl less than or equal to src2.
— CMP_NE srcl not equal to src2.
The function compares:

* Elements of two arrays when srcl and src2 have the same size:

dst(I) = src1(I) cmpop src2(I)

i

* Elements of srcl with a scalar src2‘ when ‘‘src2 is constructed from Scalar or has a single element:

dst(I) = src1(I) cmpop src2

2.4. Operations on Arrays 119

The OpenCV Reference Manual, Release 2.4.2

* srcl with elements of src2 when srcl is constructed from Scalar or has a single element:

dst(I) = srclcmpopsrc2(I)

When the comparison result is true, the corresponding element of destination array is set to 255. The comparison
operations can be replaced with the equivalent matrix expressions:

Mat dstl = srcl >= src2;
Mat dst2 srcl < 8;

See Also:

checkRange (), min(), max(), threshold (), Matrix Expressions

completeSymm

Copies the lower or the upper half of a square matrix to another half.
C++: void completeSymm(InputOutputArray mtx, bool lowerToUpper=false)
Python: cv2. completeSymm(mtx[, lowerToUpper]) — None
Parameters
mtx — Input-output floating-point square matrix.

lowerToUpper — Operation flag. If it is true, the lower half is copied to the upper half.
Otherwise, the upper half is copied to the lower half.

The function completeSymm copies the lower half of a square matrix to its another half. The matrix diagonal remains
unchanged:

* mtxi; = mtx;; for i > j if LowerToUpper=false
* mtxi; = mtx;; for i < jif LlowerToUpper=true
See Also:

flip(), transpose()

convertScaleAbs

Scales, computes absolute values, and converts the result to 8-bit.
C++: void convertScaleAbs (InputArray sre, OutputArray dst, double alpha=1, double beta=0)
Python: cv2. convertScaleAbs(src[, dst[, alpha[, beta]]]) — dst
C: void cvConvertScaleAbs (const CvArr* sre, CvArr* dst, double scale=1, double shift=0)
Python: cv.ConvertScaleAbs (src, dst, scale=1.0, shift=0.0) — None
Parameters

src — Source array.

dst — Destination array.

alpha — Optional scale factor.

beta — Optional delta added to the scaled values.

120 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

On each element of the input array, the function convertScaleAbs performs three operations sequentially: scaling,
taking an absolute value, conversion to an unsigned 8-bit type:

dst(I) = saturate_cast<uchar>(|src(I) * alpha + betal)

In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit,
the operation can be emulated by calling the Mat: : convertTo method (or by using matrix expressions) and then by
computing an absolute value of the result. For example:

Mat_<float> A(30,30);

randu(A, Scalar(-100), Scalar(100));

Mat_<float> B = A5 + 3;

B = abs(B);

// Mat_<float> B = abs(Ax5+3) will also do the job,
// but it will allocate a temporary matrix

See Also:

Mat::convertTo(), abs()

countNonZero

Counts non-zero array elements.

C++: int countNonZero (InputArray src)

Python: cv2.countNonZero(src) — retval

C: int cvCountNonZero (const CvArr* arr)

Python: cv.CountNonZero(arr) — int

Parameters
src — Single-channel array.
The function returns the number of non-zero elements in src :
> o1

I: src(I)#£0

See Also:

mean (), meanStdDev (), norm(), minMaxLoc(), calcCovarMatrix()

cvarrToMat

Converts CvMat, IplImage , or CvMatND to Mat.
C++: Mat cvarrToMat (const CvArr* arr, bool copyData=false, bool allowND=true, int coiMode=0)
Parameters
arr — Source CvMat, IplImage, or CvMatND .

copyData — When it is false (default value), no data is copied and only the new header
is created. In this case, the original array should not be deallocated while the new matrix
header is used. If the parameter is true, all the data is copied and you may deallocate the
original array right after the conversion.

2.4. Operations on Arrays 121

The OpenCV Reference Manual, Release 2.4.2

allowND — When it is true (default value), CvMatND is converted to 2-dimensional Mat, if it
is possible (see the discussion below). If it is not possible, or when the parameter is false,
the function will report an error.

coiMode — Parameter specifying how the Ipllmage COI (when set) is handled.
— If coiMode=0 and COl is set, the function reports an error.

— If coiMode=1 , the function never reports an error. Instead, it returns the header to
the whole original image and you will have to check and process COI manually. See
extractImageCOI() .

The function cvarrToMat converts CvMat, IplImage , or CvMatND header to Mat header, and optionally duplicates
the underlying data. The constructed header is returned by the function.

When copyData=false , the conversion is done really fast (in O(1) time) and the newly created matrix header will
have refcount=0 , which means that no reference counting is done for the matrix data. In this case, you have to
preserve the data until the new header is destructed. Otherwise, when copyData=true , the new buffer is allocated
and managed as if you created a new matrix from scratch and copied the data there. That is, cvarrToMat (arr, true)
is equivalent to cvarrToMat (arr, false).clone() (assuming that COlis not set). The function provides a uniform
way of supporting CvArr paradigm in the code that is migrated to use new-style data structures internally. The reverse
transformation, from Mat to CvMat or IplImage can be done by a simple assignment:

CvMatx A = cvCreateMat(10, 10, CV_32F);
cvSetIdentity(A);

IplImage Al; cvGetImage(A, &Al);

Mat B = cvarrToMat(A);

Mat Bl = cvarrToMat(&Al);

IplImage C = B;

CvMat C1 = BI1;

// now A, Al, B, B1, C and Cl1 are different headers
// for the same 10x10 floating-point array.

// note that you will need to use "&"

// to pass C & C1 to OpenCV functions, for example:
printf("%g\n", cvNorm(&Cl, 0, CV_L2));

Normally, the function is used to convert an old-style 2D array (CvMat or IplImage) to Mat . However, the function
can also take CvMatND as an input and create Mat () for it, if it is possible. And, for CvMatND A , it is possible if
and only if A.dim[i].sizexA.dim.step[i] == A.dim.step[i-1] for all or for all butone i, 0 < i < A.dims
. That is, the matrix data should be continuous or it should be representable as a sequence of continuous matrices. By
using this function in this way, you can process CvMatND using an arbitrary element-wise function.

The last parameter, coiMode , specifies how to deal with an image with COI set. By default, it is O and the function
reports an error when an image with COI comes in. And coiMode=1 means that no error is signalled. You have to check
COI presence and handle it manually. The modern structures, such as Mat and MatND do not support COI natively.
To process an individual channel of a new-style array, you need either to organize a loop over the array (for example,
using matrix iterators) where the channel of interest will be processed, or extract the COI using mixChannels () (for
new-style arrays) or extractImageCOI() (for old-style arrays), process this individual channel, and insert it back to
the destination array if needed (using mixChannels () or insertImageCO0I() , respectively).

See Also:

cvGetImage(), cvGetMat(), extractImageCOI(), insertImageCOI(), mixChannels()

dct

Performs a forward or inverse discrete Cosine transform of 1D or 2D array.

C++: void dct (InputArray sre, OutputArray dst, int flags=0)

122 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Python: cv2.dct (src[, dst[, ﬂags]]) — dst
C: void cvDCT (const CvArr* sre, CvArr* dst, int flags)
Python: cv.DCT (src, dst, flags) — None
Parameters
src — Source floating-point array.
dst — Destination array of the same size and type as src .
flags — Transformation flags as a combination of the following values:

— DCT_INVERSE performs an inverse 1D or 2D transform instead of the default forward
transform.

— DCT_ROWS performs a forward or inverse transform of every individual row of the
input matrix. This flag enables you to transform multiple vectors simultaneously and
can be used to decrease the overhead (which is sometimes several times larger than the
processing itself) to perform 3D and higher-dimensional transforms and so forth.

The function dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:

¢ Forward Cosine transform of a 1D vector of N elements:

Y=CcMN.X
where
(N) _ n(2k + 1)j
Cjk =1/ a;/Ncos <ZN
and

oo =1, 05 =2 forj > 0.

¢ Inverse Cosine transform of a 1D vector of N elements:
X = (C“\”>71 Y= (C(M)T Y

(since C™N) is an orthogonal matrix, C(N) . (C(N))T =1)

¢ Forward 2D Cosine transform of M x N matrix:

y=cN.x. (C(N’)T

¢ Inverse 2D Cosine transform of M x N matrix:

X — (C(N))T.X.C(N)

The function chooses the mode of operation by looking at the flags and size of the input array:

e If (flags & DCT_INVERSE) == 0, the function does a forward 1D or 2D transform. Otherwise, it is an inverse
1D or 2D transform.

e If (flags & DCT_ROWS) != 0, the function performs a 1D transform of each row.
* If the array is a single column or a single row, the function performs a 1D transform.

* If none of the above is true, the function performs a 2D transform.

2.4. Operations on Arrays 123

The OpenCV Reference Manual, Release 2.4.2

Note: Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the
array when necessary.

Also, the function performance depends very much, and not monotonically, on the array size (see
getOptimalDFTSize()). In the current implementation DCT of a vector of size N is computed via DFT of a vector
of size N/2 . Thus, the optimal DCT size N1 >= N can be computed as:

size t getOptimalDCTSize(size_t N) { return 2xgetOptimalDFTSize((N+1)/2); }
N1 = getOptimalDCTSize(N);

See Also:
dft(),getOptimalDFTSize() , idct()

dft

Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
C++: void dft (InputArray sre, OutputArray dst, int flags=0, int nonzeroRows=0)
Python: cv2.dft (src[, dst[, ﬂags[, nonzeroRows]]]) — dst
C: void cvDFT (const CvArr* sre, CvArr* dst, int flags, int nonzero_rows=0)
Python: cv.DFT (src, dst, flags, nonzeroRows=0) — None
Parameters

src — Source array that could be real or complex.

dst — Destination array whose size and type depends on the flags .

flags — Transformation flags representing a combination of the following values:

— DFT_INVERSE performs an inverse 1D or 2D transform instead of the default forward
transform.

— DFT_SCALE scales the result: divide it by the number of array elements. Normally, it
is combined with DFT_INVERSE .

— DFT_ROWS performs a forward or inverse transform of every individual row of the
input matrix. This flag enables you to transform multiple vectors simultaneously and
can be used to decrease the overhead (which is sometimes several times larger than the
processing itself) to perform 3D and higher-dimensional transforms and so forth.

— DFT_COMPLEX_OUTPUT performs a forward transformation of 1D or 2D real array.
The result, though being a complex array, has complex-conjugate symmetry (CCS, see
the function description below for details). Such an array can be packed into a real array
of the same size as input, which is the fastest option and which is what the function does
by default. However, you may wish to get a full complex array (for simpler spectrum
analysis, and so on). Pass the flag to enable the function to produce a full-size complex
output array.

— DFT_REAL_OUTPUT performs an inverse transformation of a 1D or 2D complex ar-
ray. The result is normally a complex array of the same size. However, if the source array
has conjugate-complex symmetry (for example, it is a result of forward transformation
with DFT_COMPLEX_OUTPUT flag), the output is a real array. While the function itself does
not check whether the input is symmetrical or not, you can pass the flag and then the
function will assume the symmetry and produce the real output array. Note that when the

124 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

input is packed into a real array and inverse transformation is executed, the function treats
the input as a packed complex-conjugate symmetrical array. So, the output will also be a
real array.

nonzeroRows — When the parameter is not zero, the function assumes that only the
first nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first
nonzeroRows of the output array (DFT_INVERSE is set) contain non-zeros. Thus, the func-
tion can handle the rest of the rows more efficiently and save some time. This technique is
very useful for computing array cross-correlation or convolution using DFT.

The function performs one of the following:

¢ Forward the Fourier transform of a 1D vector of N elements:

Y=FMN . X

where Fip) = exp(—2mijk/N) and i = v/~
¢ Inverse the Fourier transform of a 1D vector of N elements:
X' = (FN) Ty = (FN) Ly
X = (1/N)-X,

where F* = (Re(FIN)) — Im(F(N)))T

¢ Forward the 2D Fourier transform of aM x N matrix:

Y =FM X FN)

¢ Inverse the 2D Fourier transform of aM x N matrix:

X = (FIM)* .y (FIN))

X = iy - X
In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the
inverse Fourier transform can be represented in a packed format called CCS (complex-conjugate-symmetrical). It was
borrowed from IPL (Intel* Image Processing Library). Here is how 2D CCS spectrum looks:

ReYoyo RCYOJ ImYoJ ReYo‘z ImYoyz cee ReYo’N/2,1 ImYo)N/2,1 ReYO’N/z
ReY; 0 ReY; R ImY; R ReY; 2 ImY; 2 R€Y1 JN/2-1 ImY1 JN/2-1 R€Y1 N/2
ImY; ,0 RGYZJ ImYz)] R€Y272 ImYzyz ce ReYzyN/2_1 ImYz)N/2_1 ImY1 JN/2
ReYM/Zfl,O REYM,_?,’] ImYM,_g‘] ReYM,&N/Z,] ImYM,3’N/2,1 ReYM/Z,])N/Z
ImYM/2,1 0 ReYM,Z,] ImYM,zJ ReYMfz,N/271 ImYM,z’N/z,I ImYM/2,1 JN/2
L RGYM/Z‘O ReYm_1 1 ImYm_1 S ReYM,1 JN/2-1 ImYM,1 JN/2-1 ReYM/z)N/z]

In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
So, the function chooses an operation mode depending on the flags and size of the input array:

 If DFT_ROWS is set or the input array has a single row or single column, the function performs a 1D forward or
inverse transform of each row of a matrix when DFT_ROWS is set. Otherwise, it performs a 2D transform.

« If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or 2D transform:
— When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as input.

— When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as input. In case of 2D
transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the
first row of the matrix above. In case of multiple 1D transforms (when using the DCT_ROWS flag), each row
of the output matrix looks like the first row of the matrix above.

2.4. Operations on Arrays 125

The OpenCV Reference Manual, Release 2.4.2

e If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the output is a complex
array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole
input array or each row of the input array independently, depending on the flags DFT_INVERSE and DFT_ROWS.

e When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT is set, the output
is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole
input array or each individual row, depending on the flags DFT_INVERSE and DFT_ROWS.

If DFT_SCALE is set, the scaling is done after the transformation.

Unlike dct () , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose
sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an
efficient DFT size can be computed using the getOptimalDFTSize () method.

The sample below illustrates how to compute a DFT-based convolution of two 2D real arrays:

void convolveDFT(InputArray A, InputArray B, OutputArray C)

{
// reallocate the output array if needed
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
Size dftSize;
// compute the size of DFT transform
dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);

// allocate temporary buffers and initialize them with 0’s
Mat tempA(dftSize, A.type(), Scalar::all(0));
Mat tempB(dftSize, B.type(), Scalar::all(0));

// copy A and B to the top-left corners of tempA and tempB, respectively
Mat roiA(tempA, Rect(0,0,A.cols,A.rows));

A.copyTo(roiA);

Mat roiB(tempB, Rect(0,0,B.cols,B.rows));

B.copyTo(roiB);

// now transform the padded A & B in-place;

// use "nonzeroRows" hint for faster processing
dft(tempA, tempA, 0, A.rows);

dft(tempB, tempB, 0, B.rows);

// multiply the spectrums;
// the function handles packed spectrum representations well
mulSpectrums (tempA, tempB, tempA);

// transform the product back from the frequency domain.
// Even though all the result rows will be non-zero,

// you need only the first C.rows of them, and thus you
// pass nonzeroRows == C.rows

dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);

// now copy the result back to C.
tempA(Rect (0, 0, C.cols, C.rows)).copyTo(C);

// all the temporary buffers will be deallocated automatically
}

To optimize this sample, consider the following approaches:

 Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to the top-left
corners of tempA and tempB, respectively, it is not necessary to clear the whole tempA and tempB. It is only

126 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

necessary to clear the tempA.cols - A.cols (tempB.cols - B.cols) rightmost columns of the matrices.

» This DFT-based convolution does not have to be applied to the whole big arrays, especially if B is significantly
smaller than A or vice versa. Instead, you can compute convolution by parts. To do this, you need to split the
destination array C into multiple tiles. For each tile, estimate which parts of A and B are required to compute
convolution in this tile. If the tiles in C are too small, the speed will decrease a lot because of repeated work. In
the ultimate case, when each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and there is also a
slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.

« If different tiles in C can be computed in parallel and, thus, the convolution is done by parts, the loop can be
threaded.

All of the above improvements have been implemented in matchTemplate() and filter2D() . Therefore, by using
them, you can get the performance even better than with the above theoretically optimal implementation. Though,
those two functions actually compute cross-correlation, not convolution, so you need to “flip” the second convolution
operand B vertically and horizontally using flip() .

See Also:

dct() , getOptimalDFTSize() , mulSpectrums(), filter2D() , matchTemplate() , flip() , cartToPolar() ,
magnitude() , phase()

divide
Performs per-element division of two arrays or a scalar by an array.
C++: void divide (InputArray srcl, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
C++: void divide (double scale, InputArray src2, OutputArray dst, int dtype=-1)
Python: cv2.divide(srcl, src2[, dst[, scale[, dtype]]]) — dst
Python: cv2.divide(scale, scm[, dst[, dtype]]) — dst
C: void cvDiv (const CvArr* srcl, const CvArr* src2, CvArr* dst, double scale=1)
Python: cv.Div (srcl, src2, dst, scale=1) — None
Parameters

srcl — First source array.

src2 — Second source array of the same size and type as srcl.

scale — Scalar factor.

dst — Destination array of the same size and type as src2 .

dtype — Optional depth of the destination array. If it is -1, dst will have depth
src2.depth(). In case of an array-by-array division, you can only pass -1 when
srcl.depth()==src2.depth().

The functions divide divide one array by another:
dst(I) = saturate(srcl(I)=*scale/src2(I))
or a scalar by an array when there is no srcl:
dst(I) = saturate(scale/src2(I))

When src2(I) is zero, dst(I) will also be zero. Different channels of multi-channel arrays are processed indepen-
dently.

2.4. Operations on Arrays 127

The OpenCV Reference Manual, Release 2.4.2

Note: Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect
sign in the case of overflow.

See Also:
multiply(), add(), subtract(), Matrix Expressions

determinant

Returns the determinant of a square floating-point matrix.
C++: double determinant (InputArray mtx)
Python: cv2.determinant(mtx) — retval
C: double cvDet (const CvArr* mat)
Python: cv.Det(mat) — float
Parameters
mtx — Input matrix that must have CV_32FC1 or CV_64FC1 type and square size.

The function determinant computes and returns the determinant of the specified matrix. For small matrices (
mtx.cols=mtx.rows<=3), the direct method is used. For larger matrices, the function uses LU factorization with
partial pivoting.

For symmetric positively-determined matrices, it is also possible to use eigen () decomposition to compute the deter-
minant.

See Also:

trace(), invert(), solve(), eigen(), Matrix Expressions

eigen

Computes eigenvalues and eigenvectors of a symmetric matrix.
C++: bool eigen (InputArray sre, OutputArray eigenvalues, int lowindex=-1, int highindex=-1)

C++: bool eigen (InputArray src, OutputArray eigenvalues, OutputArray eigenvectors, int lowindex=-1, int
highindex=-1)

Python: cv2.eigen(src, computeEigenvectors[, eigenvalues[, eigenvectors]]) — retval, eigenvalues, eigen-
vectors

C: void cvEigenVV (CvArr* mat, CvArr* evects, CvArr* evals, double eps=0, int lowindex=-1, int highin-
dex=-1)

Python: cv.EigenVV(mat, evects, evals, eps, lowindex=-1, highindex=-1) — None
Parameters

src — Input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmet-
rical (src T == src).

eigenvalues — Output vector of eigenvalues of the same type as src . The eigenvalues are
stored in the descending order.

128 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

eigenvectors — Output matrix of eigenvectors. It has the same size and type as src . The
eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
eigenvalues.

lowindex — Optional index of largest eigenvalue/-vector to calculate. The parameter is ig-
nored in the current implementation.

highindex — Optional index of smallest eigenvalue/-vector to calculate. The parameter is
ignored in the current implementation.

The functions eigen compute just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix src :

srcxeigenvectors.row(i).t() = eigenvalues.at<srcType>(i)+eigenvectors.row(i).t()

Note: in the new and the old interfaces different ordering of eigenvalues and eigenvectors parameters is used.

See Also:
completeSymm() , PCA

exp

Calculates the exponent of every array element.
C++: void exp (InputArray src, OutputArray dst)
Python: cv2. exp(src[, dst]) — dst
C: void cvExp (const CvArr* src, CvArr* dst)
Python: cv.Exp(src, dst) — None
Parameters
src¢ — Source array.
dst — Destination array of the same size and type as src.

The function exp calculates the exponent of every element of the input array:
dst[I] = esme(D)

The maximum relative error is about 7e-6 for single-precision input and less than 1e-10 for double-precision input.
Currently, the function converts denormalized values to zeros on output. Special values (NaN, Inf) are not handled.

See Also:

log() , cartToPolar() , polarToCart() , phase() , pow() ,sqrt(),magnitude()

extractimageCOl

Extracts the selected image channel.
C++: void extractImageCOI (const CvArr* arr, OutputArray coiimg, int coi=-1)
Parameters
arr — Source array. It should be a pointer to CvMat or IplImage .

coiimg — Destination array with a single channel and the same size and depth as arr .

2.4. Operations on Arrays 129

The OpenCV Reference Manual, Release 2.4.2

coi — If the parameter is >=0 , it specifies the channel to extract. If it is <0 and arr is a
pointer to IplImage with a valid COI set, the selected COI is extracted.

The function extractImageCOI is used to extract an image COI from an old-style array and put the result to the
new-style C++ matrix. As usual, the destination matrix is reallocated using Mat: : create if needed.

To extract a channel from a new-style matrix, use mixChannels () or split() .
See Also:
mixChannels() , split() ,merge(), cvarrToMat() , cvSetImageCOI() , cvGetImageCOI()

insertimageCOl

Copies the selected image channel from a new-style C++ matrix to the old-style C array.
C++: void insertImageCOI (InputArray coiimg, CvArr* arr, int coi=-1)
Parameters
coiimg — Source array with a single channel and the same size and depth as arr.
arr — Destination array, it should be a pointer to CvMat or IplImage.

coi — If the parameter is >=0 , it specifies the channel to insert. If it is <0 and arr is a pointer
to IplImage with a valid COI set, the selected COI is extracted.

The function insertImageCOI is used to extract an image COI from a new-style C++ matrix and put the result to the
old-style array.

The sample below illustrates how to use the function:

Mat temp(240, 320, CV_8UCLl, Scalar(255));

IplImagex img = cvCreateImage(cvSize(320,240), IPL DEPTH_8U, 3);

insertImageCOI(temp, img, 1); //insert to the first channel

cvNamedWindow("window",1);

cvShowImage("window", img); //you should see green image, because channel number 1 is green (BGR)
cvWaitKey(0);

cvDestroyAllWindows () ;

cvReleaseImage(&img) ;

To insert a channel to a new-style matrix, use merge() .
See Also:

mixChannels() , split() ,merge() , cvarrToMat() , cvSetImageCOI() , cvGetImageCOI()

flip
Flips a 2D array around vertical, horizontal, or both axes.
C++: void flip (InputArray sre, OutputArray dst, int flipCode)
Python: cv2.flip(src, ﬂipCode[, dst]) — dst
C: void cvFlip (const CvArr* src, CvArr* dst=NULL, int flip_mode=0)
Python: cv.Flip(src, dst=None, flipMode=0) — None

Parameters

src — Source array.

130 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

dst — Destination array of the same size and type as src .

flipCode — Flag to specify how to flip the array. 0 means flipping around the x-axis. Positive
value (for example, 1) means flipping around y-axis. Negative value (for example, -1) means
flipping around both axes. See the discussion below for the formulas.

The function flip flips the array in one of three different ways (row and column indices are 0-based):
SFCsrc.rows—i—1,j if flipCode =0

dsty; = SrCisrc.cols—j—1 if flipCode > 0
SrCsrc.rows—i—1,src.cols—j—1 if flipCode < 0

The example scenarios of using the function are the following:

* Vertical flipping of the image (flipCode == 0) to switch between top-left and bottom-left image origin. This
is a typical operation in video processing on Microsoft Windows* OS.

* Horizontal flipping of the image with the subsequent horizontal shift and absolute difference calculation to check
for a vertical-axis symmetry (flipCode > 0).

» Simultaneous horizontal and vertical flipping of the image with the subsequent shift and absolute difference
calculation to check for a central symmetry (flipCode < 0).

* Reversing the order of point arrays (flipCode > 0 or flipCode == 0).
See Also:

transpose() , repeat() , completeSymm()

gemm

Performs generalized matrix multiplication.

C++: void gemm (InputArray srcl, InputArray src2, double alpha, InputArray sre3, double gamma, OutputAr-
ray dst, int flags=0)

Python: cv2.gemm(srcl, src2, alpha, src3, gamma[, dst[, ﬂags]]) — dst

C: void cvGEMM(const CvArr* srcl, const CvArr™* src2, double alpha, const CvArr* sre3, double beta, CvArr*
dst, int tABC=0)

Python: cv.GEMM(srcl, src2, alpha, src3, beta, dst, tABC=0) — None
Parameters

srcl — First multiplied input matrix that should have CV_32FC1, CV_64FC1, CV_32FC2, or
CV_64FC2 type.

src2 — Second multiplied input matrix of the same type as srcl .
alpha — Weight of the matrix product.

src3 — Third optional delta matrix added to the matrix product. It should have the same type
assrcland src2.

beta — Weight of src3.

dst — Destination matrix. It has the proper size and the same type as input matrices.
flags — Operation flags:

— GEMML_1_T transpose srcl

— GEMML_2_T transpose src2

2.4. Operations on Arrays 131

The OpenCV Reference Manual, Release 2.4.2

— GEMML_3_T transpose src3

The function performs generalized matrix multiplication similar to the gemm functions in BLAS level 3. For example,
gemm(srcl, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to

dst = alpha-srcl' -src2 +beta-src3’

The function can be replaced with a matrix expression. For example, the above call can be replaced with:

dst = alpha*srcl.t()*src2 + beta*xsrc3.t();

See Also:

mulTransposed() , transform() , Matrix Expressions

getConvertElem

Returns a conversion function for a single pixel.
C++: ConvertData getConvertElem(int fromType, int toType)
C++: ConvertScaleData getConvertScaleElem(int fromType, int toType)
Parameters
fromType — Source pixel type.
toType — Destination pixel type.
from — Callback parameter: pointer to the input pixel.
to — Callback parameter: pointer to the output pixel
cn — Callback parameter: the number of channels. It can be arbitrary, 1, 100, 100000, ...
alpha — ConvertScaleData callback optional parameter: the scale factor.
beta — ConvertScaleData callback optional parameter: the delta or offset.

The functions getConvertElem and getConvertScaleElem return pointers to the functions for converting individual
pixels from one type to another. While the main function purpose is to convert single pixels (actually, for converting
sparse matrices from one type to another), you can use them to convert the whole row of a dense matrix or the whole
matrix at once, by setting cn = matrix.cols*matrix.rows*matrix.channels () if the matrix data is continuous.

ConvertData and ConvertScaleData are defined as:

typedef void (xConvertData)(const void* from, void+ to, int cn)
typedef void (xConvertScaleData) (const void+ from, void* to,
int cn, double alpha, double beta)

See Also:

Mat::convertTo() , SparseMat::convertTo()

getOptimalDFTSize

Returns the optimal DFT size for a given vector size.
C++: int getOptimalDFTSize (int vecsize)
Python: cv2.getOptimalDFTSize(vecsize) — retval

C: int cvGetOptimalDFTSize (int size()

132 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Python: cv.GetOptimalDFTSize(size0) — int
Parameters
vecsize — Vector size.

DFT performance is not a monotonic function of a vector size. Therefore, when you compute convolution of two
arrays or perform the spectral analysis of an array, it usually makes sense to pad the input data with zeros to get a bit
larger array that can be transformed much faster than the original one. Arrays whose size is a power-of-two (2, 4, 8,
16, 32, ...) are the fastest to process. Though, the arrays whose size is a product of 2’s, 3’s, and 5’s (for example, 300
= 5*5%3%2%*2) are also processed quite efficiently.

The function getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize so that the
DFT of a vector of size N can be computed efficiently. In the current implementation N=2P * 39 * 5T for some integer

p,q, r.
The function returns a negative number if vecsize is too large (very close to INT_MAX).

While the function cannot be used directly to estimate the optimal vector size for DCT transform
(since the current DCT implementation supports only even-size vectors), it can be easily computed as
getOptimalDFTSize((vecsize+1)/2)*2.

See Also:
dft(),dct(),idft(), idct() ,mulSpectrums()

idct

Computes the inverse Discrete Cosine Transform of a 1D or 2D array.
C++: void idct (InputArray sre, OutputArray dst, int flags=0)
Python: cv2.idct (src[, dst[, ﬂags]]) — dst
Parameters

src — Source floating-point single-channel array.

dst — Destination array of the same size and type as src .

flags — Operation flags.
idct(src, dst, flags) isequivalent to dct(src, dst, flags | DCT_INVERSE).
See Also:
det(),dft(), idft(), getOptimalDFTSize()

idft

Computes the inverse Discrete Fourier Transform of a 1D or 2D array.
C++: void idft (InputArray sre, OutputArray dst, int flags=0, int nonzeroRows=0)
Python: cv2.idft (src[, dst[, ﬂags[, nonzeroRows]]]) — dst
Parameters
src — Source floating-point real or complex array.
dst — Destination array whose size and type depend on the flags .

flags — Operation flags. See dft () .

2.4. Operations on Arrays 133

The OpenCV Reference Manual, Release 2.4.2

nonzeroRows — Number of dst rows to compute. The rest of the rows have undefined
content. See the convolution sample in dft () description.

idft(src, dst, flags) is equivalentto dft(src, dst, flags | DFT_INVERSE) .
See dft () for details.

Note: None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of dft or idft
explicitly to make these transforms mutually inverse.

See Also:
dft(),dct(), idct(), mulSpectrums(), getOptimalDFTSize()

inRange

Checks if array elements lie between the elements of two other arrays.
C++: void inRange (InputArray srec, InputArray lowerb, InputArray upperb, OutputArray dst)
Python: cv2.inRange (src, lowerb, upperb[, dst]) — dst
C: void cvInRange (const CvArr* sre, const CvArr* lower, const CvArr* upper, CvArr* dst)
C: void cvInRangeS (const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst)
Python: cv.InRange src, lower, upper, dst) — None
Python: cv.InRangeS (src, lower, upper, dst) — None
Parameters

src — First source array.

lowerb — Inclusive lower boundary array or a scalar.

upperb — Inclusive upper boundary array or a scalar.

dst — Destination array of the same size as src and CV_8U type.
The function checks the range as follows:

* For every element of a single-channel input array:

dst(I) = lowerb(I)o < src(I)o < upperb(I)o

* For two-channel arrays:

dst(I) = lowerb(I)g < src(I)o < upperb(I)o A lowerb(I); < src(I); < upperb(I);

e and so forth.
That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the specified 1D, 2D, 3D, ... box and 0 otherwise.

When the lower and/or upper boundary parameters are scalars, the indexes (I) at lowerb and upperb in the above
formulas should be omitted.

134 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

invert

Finds the inverse or pseudo-inverse of a matrix.
C++: double invert (InputArray src, OutputArray dst, int flags=DECOMP_LU)
Python: cv2.invert(src[, dst[, ﬂags]]) — retval, dst
C: double cvInvert (const CvArr* sre, CvArr* dst, int method=CV_LU)
Python: cv.Invert (src, dst, method=CV_LU) — float
Parameters
src — Source floating-point M x N matrix.
dst — Destination matrix of N x M size and the same type as src .
flags — Inversion method :
— DECOMP_LU Gaussian elimination with the optimal pivot element chosen.
— DECOMP_SVD Singular value decomposition (SVD) method.

— DECOMP_CHOLESKY Cholesky decomposition. The matrix must be symmetrical
and positively defined.

The function invert inverts the matrix src and stores the result in dst . When the matrix src is singular or non-
square, the function computes the pseudo-inverse matrix (the dst matrix) so that norm(srcxdst - I) is minimal,
where I is an identity matrix.

In case of the DECOMP_LU method, the function returns non-zero value if the inverse has been successfully computed
and O if src is singular.

In case of the DECOMP_SVD method, the function returns the inverse condition number of src (the ratio of the smallest
singular value to the largest singular value) and O if src is singular. The SVD method calculates a pseudo-inverse
matrix if src is singular.

Similarly to DECOMP_LU , the method DECOMP_CHOLESKY works only with non-singular square matrices that should
also be symmetrical and positively defined. In this case, the function stores the inverted matrix in dst and returns
non-zero. Otherwise, it returns 0.

See Also:
solve(), SVD

log

Calculates the natural logarithm of every array element.
C++: void log (InputArray src, OutputArray dst)
Python: cv2.log (src[, dst]) — dst
C: void cvLog(const CvArr* src, CvArr* dst)
Python: cv.Log(src, dst) — None
Parameters
src — Source array.

dst — Destination array of the same size and type as src .

2.4. Operations on Arrays 135

The OpenCV Reference Manual, Release 2.4.2

The function log calculates the natural logarithm of the absolute value of every element of the input array:

_f logl|src(I)] ifsrc(I)#0
dst(I) = { C otherwise

where C is a large negative number (about -700 in the current implementation). The maximum relative error is about
7e-6 for single-precision input and less than le-10 for double-precision input. Special values (NaN, Inf) are not
handled.

See Also:

exp(), cartToPolar(), polarToCart(), phase(), pow(), sqrt(), magnitude()

LUT

Performs a look-up table transform of an array.
C++: void LUT (InputArray sre, InputArray lut, OutputArray dst, int interpolation=0)
Python: cv2.LUT (src, lut[, dst[, interpolation]]) — dst
C: void cvLUT (const CvArr* src, CvArr* dst, const CvArr* lut)
Python: cv.LUT (src, dst, lut) — None
Parameters
src — Source array of 8-bit elements.

lut — Look-up table of 256 elements. In case of multi-channel source array, the table should
either have a single channel (in this case the same table is used for all channels) or the same
number of channels as in the source array.

dst — Destination array of the same size and the same number of channels as src , and the
same depth as lut .

The function LUT fills the destination array with values from the look-up table. Indices of the entries are taken from
the source array. That is, the function processes each element of src as follows:

dst(I) « lut(src(I) + d)

where

d— 0 if src has depth Cv_8U
~ | 128 if src has depth CV_8S

See Also:

convertScaleAbs(),Mat::convertTo()

magnitude

Calculates the magnitude of 2D vectors.
C++: void magnitude (InputArray x, InputArray y, OutputArray magnitude)
Python: cv2.magnitude(x, y[, magnitude]) — magnitude

Parameters

x — Floating-point array of x-coordinates of the vectors.

136 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

y — Floating-point array of y-coordinates of the vectors. It must have the same size as X .
magnitude — Destination array of the same size and type as X .

The function magnitude calculates the magnitude of 2D vectors formed from the corresponding elements of x and y
arrays:

dst(I) = 4/x(1)2 + y(I)?

See Also:
cartToPolar(), polarToCart(), phase(), sqrt()

Mahalanobis

Calculates the Mahalanobis distance between two vectors.
C++: double Mahalanobis (InputArray v1, InputArray v2, InputArray icovar)
Python: cv2.Mahalanobis(vl, v2, icovar) — retval
C: double cvMahalanobis (const CvArr* vecl, const CvArr* vec2, const CvArr* mat)
Python: cv.Mahalonobis(vecl, vec2, mat) — None
Parameters

vecl — First 1D source vector.

vec2 — Second 1D source vector.

icovar — Inverse covariance matrix.

The function Mahalanobis calculates and returns the weighted distance between two vectors:

d(vecl,vec2) = Z icovar(i,j) - (vecl(I) —vec2(I)) - (vecl(j) —vec2(j))
i,j

The covariance matrix may be calculated using the calcCovarMatrix() function and then inverted using the
invert() function (preferably using the DECOMP_SVD method, as the most accurate).

max

Calculates per-element maximum of two arrays or an array and a scalar.
C++: MatExpr max (const Mat& a, const Mat& b)

C++: MatExpr max (const Mat& a, double s)

C++: MatExpr max (double s, const Mat& a)

C++: void max (InputArray srcl, InputArray src2, OutputArray dst)
C++: void max (const Mat& srecl, const Mat& src2, Mat& dst)

C++: void max (const Mat& srcl, double src2, Mat& dst)

Python: cv2.max(srcl, scm[, dst]) — dst

C: void cvMax (const CvArr* srel, const CvArr* src2, CvArr* dst)

C: void cvMaxS (const CvArr* src, double value, CvArr* dst)

2.4. Operations on Arrays 137

The OpenCV Reference Manual, Release 2.4.2

Python: cv.Max(srcl, src2, dst) — None
Python: cv.MaxS (src, value, dst) — None
Parameters
srcl — First source array.
src2 — Second source array of the same size and type as srcl.
value — Real scalar value.
dst — Destination array of the same size and type as srcl.

The functions max compute the per-element maximum of two arrays:
dst(I) = max(srcl(I),src2(I))
or array and a scalar:
dst(I) = max(srcl(I),value)

In the second variant, when the source array is multi-channel, each channel is compared with value independently.

The first 3 variants of the function listed above are actually a part of Matrix Expressions . They return an expression
object that can be further either transformed/ assigned to a matrix, or passed to a function, and so on.

See Also:

min(), compare(), inRange(), minMaxLoc (), Matrix Expressions

mean

Calculates an average (mean) of array elements.
C++: Scalar mean (InputArray sre, InputArray mask=noArray())
Python: cv2.mean(src[, mask]) — retval
C: CvScalar cvAvg(const CvArr* arr, const CvArr* mask=NULL)
Python: cv.Avg(arr, mask=None) — scalar

Parameters

src — Source array that should have from 1 to 4 channels so that the result can be stored in
Scalar_.

mask — Optional operation mask.

The function mean computes the mean value M of array elements, independently for each channel, and return it:

N = ZI: mask(1)#0 1
MC = (ZI: mask(1)#0 mtX(I)C) /N

When all the mask elements are Q’s, the functions return Scalar::all(0) .
See Also:

countNonZero(), meanStdDev (), norm(), minMaxLoc ()

138 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

meanStdDev

Calculates a mean and standard deviation of array elements.

C++: void meanStdDev (InputArray sre, OutputArray mean, OutputArray stddev, InputArray
mask=noArray())

Python: cv2. meanSthev(src[, mean[, stddev[, mask]]]) — mean, stddev
C: void cvAvgSdv (const CvArr* arr, CvScalar* mean, CvScalar* std_dev, const CvArr* mask=NULL)
Python: cv.AvgSdv (arr, mask=None) -> (mean, stdDev)

Parameters

src — Source array that should have from 1 to 4 channels so that the results can be stored in
Scalar_ ‘s.

mean — Output parameter: computed mean value.
stddev — Output parameter: computed standard deviation.
mask — Optional operation mask.

The function meanStdDev computes the mean and the standard deviation M of array elements independently for each
channel and returns it via the output parameters:

N = ZI,mask(I);ﬁO 1

I: mask(I)#0 SrC(I)C

mean, =

stddev, = \/ZI:mask(I]#O(S]\:C(I)C_meanC)z

When all the mask elements are 0’s, the functions return mean=stddev=Scalar::all(0) .

Note: The computed standard deviation is only the diagonal of the complete normalized covariance matrix. If the full
matrix is needed, you can reshape the multi-channel array M x N to the single-channel array MxN x mtx.channels()
(only possible when the matrix is continuous) and then pass the matrix to calcCovarMatrix() .

See Also:

countNonZero(), mean(), norm(), minMaxLoc(), calcCovarMatrix()

merge

Composes a multi-channel array from several single-channel arrays.
C++: void merge (const Mat* mv, size_t count, OutputArray dst)
C++: void merge (const vector<Mat>& myv, OutputArray dst)
Python: cv2.merge(mv[, dst]) — dst
C: void cvMerge (const CvArr* src0, const CvArr* srel, const CvArr* src2, const CvArr* sre3, CvArr* dst)
Python: cv.Merge (src0, srcl, src2, src3, dst) — None
Parameters

my — Source array or vector of matrices to be merged. All the matrices in mv must have the
same size and the same depth.

count — Number of source matrices when mv is a plain C array. It must be greater than zero.

2.4. Operations on Arrays 139

The OpenCV Reference Manual, Release 2.4.2

dst — Destination array of the same size and the same depth as mv[0] . The number of
channels will be the total number of channels in the matrix array.

The functions merge merge several arrays to make a single multi-channel array. That is, each element of the output
array will be a concatenation of the elements of the input arrays, where elements of i-th input array are treated as
mv[i].channels()-element vectors.

The function split () does the reverse operation. If you need to shuffle channels in some other advanced way, use
mixChannels() .

See Also:

mixChannels (), split(),Mat::reshape()

min
Calculates per-element minimum of two arrays or array and a scalar.
C++: MatExpr min(const Mat& a, const Mat& b)
C++: MatExpr min(const Mat& a, double s)
C++: MatExpr min (double s, const Mat& a)
C++: void min (InputArray srcl, InputArray src2, OutputArray dst)
C++: void min (const Mat& srcl, const Mat& src2, Mat& dst)
C++: void min (const Mat& srel, double sre2, Mat& dst)
Python: cv2.min(srcl, scm[, dst]) — dst
C: void cvMin (const CvArr* srel, const CvArr* src2, CvArr* dst)
C: void cvMinS (const CvArr* sre, double value, CvArr* dst)
Python: cv.Min(srcl, src2, dst) — None
Python: cv.MinS (src, value, dst) — None
Parameters
srcl — First source array.
src2 — Second source array of the same size and type as srcl.
value — Real scalar value.
dst — Destination array of the same size and type as srcl.

The functions min compute the per-element minimum of two arrays:
dst(I) = min(srcl(I),src2(I))
or array and a scalar:
dst(I) = min(srcl(I), value)

In the second variant, when the source array is multi-channel, each channel is compared with value independently.

The first three variants of the function listed above are actually a part of Matrix Expressions . They return the expression
object that can be further either transformed/assigned to a matrix, or passed to a function, and so on.

See Also:

max (), compare(), inRange(), minMaxLoc (), Matrix Expressions

140 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

minMaxIdx

Finds the global minimum and maximum in an array

C++: void minMaxIdx (InputArray sre, double* minVal, double* maxVal, int* minldx=0, int* maxIdx=0,

InputArray mask=noArray())

Parameters
sre¢ — Source single-channel array.
minVal — Pointer to the returned minimum value. NULL is used if not required.
maxVal — Pointer to the returned maximum value. NULL is used if not required.

minldx — Pointer to the returned minimum location (in nD case). NULL is used if not re-
quired. Otherwise, it must point to an array of src.dims elements. The coordinates of the
minimum element in each dimension are stored there sequentially.

Note: When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx),
even if src is a single-row or single-column matrix. In OpenCV (following MATLAB)
each array has at least 2 dimensions, i.e. single-column matrix is Mx1 matrix (and therefore
minIdx/maxIdx willbe (i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore
minIdx/maxIdx will be (0,j1)/(0,32)).

maxIdx — Pointer to the returned maximum location (in nD case). NULL is used if not
required.

The function minMaxIdx finds the minimum and maximum element values and their positions. The extremums
are searched across the whole array or, if mask is not an empty array, in the specified array region.

The function does not work with multi-channel arrays. If you need to find minimum or maximum elements
across all the channels, use Mat: : reshape () first to reinterpret the array as single-channel. Or you may extract
the particular channel using either extractImageCOI() , or mixChannels() ,or split() .

In case of a sparse matrix, the minimum is found among non-zero elements only.

minMaxLoc

Finds the global minimum and maximum in an array.

C++: void minMaxLoc (InputArray sre, double* minVal, double* maxVal=0, Point* minLoc=0, Point*

maxLoc=0, InputArray mask=noArray())

C++: void minMaxLoc (const SparseMat& a, double* minVal, double* maxVal, int* minldx=0, int*

maxIdx=0)

Python: cv2.minMaxLoc (src[, mask]) — minVal, maxVal, minLoc, maxLoc

C: void cvMinMaxLoc (const CvArr* arr, double* min_val, double* max_val, CvPoint* min_loc=NULL, Cv-

Point* max_loc=NULL, const CvArr* mask=NULL)

Python: cv.MinMaxLoc (arr, mask=None)-> (minVal, maxVal, minLoc, maxLoc)

Parameters
src — Source single-channel array.
minVal — Pointer to the returned minimum value. NULL is used if not required.

max Val — Pointer to the returned maximum value. NULL is used if not required.

24,

Operations on Arrays 141

The OpenCV Reference Manual, Release 2.4.2

minLoc — Pointer to the returned minimum location (in 2D case). NULL is used if not
required.

maxLoc — Pointer to the returned maximum location (in 2D case). NULL is used if not
required.

mask — Optional mask used to select a sub-array.

The functions minMaxLoc find the minimum and maximum element values and their positions. The extremums are
searched across the whole array or, if mask is not an empty array, in the specified array region.

The functions do not work with multi-channel arrays. If you need to find minimum or maximum elements across all
the channels, use Mat: : reshape () first to reinterpret the array as single-channel. Or you may extract the particular
channel using either extractImageCOI() , or mixChannels() ,or split() .

See Also:

max (), min(), compare(), inRange(), extractImageCOI(), mixChannels(), split(),Mat::reshape()

mixChannels

Copies specified channels from input arrays to the specified channels of output arrays.

C++: void mixChannels (const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size t
npairs)

C++: void mixChannels (const vector<Mat>& src, vector<Mat>& dst, const int* fromTo, size_t npairs)
Python: cv2.mixChannels (src, dst, fromTo) — None

C: void cvMixChannels (const CvArr** sre, int src_count, CvArr** dst, int dst_count, const int* from_to,
int pair_count)

Python: cv.MixChannels (src, dst, fromTo) — None
Parameters

src — Input array or vector of matrices. All the matrices must have the same size and the
same depth.

nsrcs — Number of matrices in src .

dst — Output array or vector of matrices. All the matrices must be allocated . Their size and
depth must be the same as in src[0] .

ndsts — Number of matrices in dst .

fromTo — Array of index pairs specifying which channels are copied and where.
fromTo[k+2] is a O-based index of the input channel in src . fromTo[k+2+1] is an
index of the output channel in dst . The continuous channel numbering is used: the
first input image channels are indexed from 0 to src[0].channels()-1 , the second
input image channels are indexed from src[0].channels() to src[0].channels() +
src[1].channels()-1, and so on. The same scheme is used for the output image chan-
nels. As a special case, when fromTo[kx*2] is negative, the corresponding output channel
is filled with zero .

npairs — Number of index pairs in fromTo.
The functions mixChannels provide an advanced mechanism for shuffling image channels.
split() and merge() and some forms of cvtColor () are partial cases of mixChannels .

In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B channels swapped)
and a separate alpha-channel image:

142 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Mat rgba(100, 100, CV_8UC4, Scalar(1,2,3,4));
Mat bgr(rgba.rows, rgba.cols, CV_8UC3);
Mat alpha(rgba.rows, rgba.cols, CV_8UC1l);

// forming an array of matrices is a quite efficient operation,
// because the matrix data is not copied, only the headers

Mat out[] = { bgr, alpha };

// rgbal@] -> bgr[2], rgbal[l] -> bgr[1],

// rgbal[2] -> bgr[0], rgbal[3] -> alphal[0]

int from_to[] = { 0,2, 1,1, 2,0, 3,3 };

mixChannels(&rgba, 1, out, 2, from_to, 4);

Note: Unlike many other new-style C++ functions in OpenCV (see the introduction section and Mat: :create()),
mixChannels requires the destination arrays to be pre-allocated before calling the function.

See Also:

split(), merge(), cvtColor()

mulSpectrums

Performs the per-element multiplication of two Fourier spectrums.
C++: void mulSpectrums (InputArray a, InputArray b, OutputArray c, int flags, bool conjB=false)
Python: cv2.mulSpectrums (a, b, flags[, c[, conjB]]) — ¢
C: void cvMulSpectrums (const CvArr* srcl, const CvArr* sre2, CvArr* dst, int flags)
Python: cv.MulSpectrums (srcl, src2, dst, flags) — None
Parameters

srcl — First source array.

src2 — Second source array of the same size and type as srcl.

dst — Destination array of the same size and type as srcl.

flags — Operation flags. Currently, the only supported flag is DFT_ROWS, which indicates that
each row of srcl and src2 is an independent 1D Fourier spectrum.

conjB — Optional flag that conjugates the second source array before the multiplication
(true) or not (false).

The function mulSpectrums performs the per-element multiplication of the two CCS-packed or complex matrices that
are results of a real or complex Fourier transform.

The function, together with dft() and idft() , may be used to calculate convolution (pass conjB=false) or cor-
relation (pass conjB=true) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per
element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be
CCS-packed (see dft () for details).

multiply

Calculates the per-element scaled product of two arrays.

C++: void multiply (InputArray srcl, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)

2.4. Operations on Arrays 143

The OpenCV Reference Manual, Release 2.4.2

Python: cv2.multiply(srcl, scm[, dst[, scale[, dtype]]]) — dst
C: void cvMul (const CvArr* srel, const CvArr* src2, CvArr* dst, double scale=1)
Python: cv.Mul(srcl, src2, dst, scale=1) — None
Parameters

srcl — First source array.

src2 — Second source array of the same size and the same type as srcl.

dst — Destination array of the same size and type as srcl.

scale — Optional scale factor.

The function multiply calculates the per-element product of two arrays:
dst(I) = saturate(scale - srcl(I) - src2(I))

There is also a Matrix Expressions -friendly variant of the first function. See Mat: :mul() .

For a not-per-element matrix product, see gemm() .

Note: Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect
sign in the case of overflow.

See Also:

add(), subtract(), divide(), Matrix Expressions, scaleAdd(), addWeighted(), accumulate(),
accumulateProduct(), accumulateSquare(),Mat::convertTo()

mulTransposed

Calculates the product of a matrix and its transposition.

C++: void mulTransposed (InputArray src, OutputArray dst, bool aTa, InputArray delta=noArray(), double
scale=1, int dtype=-1)

Python: cv2.mulTransposed src, aTa[, dst[, delta[, scale[, dtype]]]]) — dst

C: void cvMulTransposed (const CvArr* sre, CvArr* dst, int order, const CvArr* delta=NULL, double
scale=1.)

Python: cv.MulTransposed /src, dst, order, delta=None, scale=1.0) — None
Parameters

src — Source single-channel matrix. Note that unlike gemm (), the function can multiply not
only floating-point matrices.

dst — Destination square matrix.
aTa — Flag specifying the multiplication ordering. See the description below.

delta — Optional delta matrix subtracted from src before the multiplication. When the
matrix is empty (delta=noArray ()), itis assumed to be zero, that is, nothing is subtracted.
If it has the same size as src , it is simply subtracted. Otherwise, it is “repeated” (see
repeat()) to cover the full src and then subtracted. Type of the delta matrix, when it
is not empty, must be the same as the type of created destination matrix. See the dtype
parameter description below.

scale — Optional scale factor for the matrix product.

144 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

dtype — Optional type of the destination matrix. When it is negative, the destination matrix
will have the same type as src . Otherwise, it will be type=CV_MAT_DEPTH(dtype) that
should be either CV_32F or CV_64F .

The function mulTransposed calculates the product of src and its transposition:
dst = scale(src —delta)' (src — delta)

if aTa=true, and

dst = scale(src — delta)(src —delta)’

otherwise. The function is used to compute the covariance matrix. With zero delta, it can be used as a faster substitute
for general matrix product AxB when B=A"

See Also:

calcCovarMatrix(), gemm(), repeat(), reduce()

norm

Calculates an absolute array norm, an absolute difference norm, or a relative difference norm.
C++: double norm(InputArray srcl, int normType=NORM_L2, InputArray mask=noArray())

C++: double norm(InputArray srcl, InputArray src2, int normType=NORM_L2, InputArray
mask=noArray())

C++: double norm(const SparseMat& sre, int normType)
Python: cv2.norm(srcl [, normType[, mask]]) — retval
Python: cv2.norm(srcl, src2[, normType[, mask]]) — retval

C: double cvNorm(const CvArr* arrl, const CvArr* arr2=NULL, int norm_type=CV_L2, const CvArr*
mask=NULL)

Python: cv.Norm(arrl, arr2, normType=CV_L2, mask=None) — float
Parameters
srcl — First source array.
src2 — Second source array of the same size and the same type as srcl .
normType — Type of the norm. See the details below.
mask — Optional operation mask. It must have the same size as srcl and CV_8UC1 type.

The functions norm calculate an absolute norm of srcl (when there is no src2):

|lsrcl|r,, = maxy|srcl(I)] if normType = NORM_INF
norm =< |[[srclfy, =2 ;Isrcl(I) if normType = NORM_L1

srcl|l, = /Y ;srcl(I)? if normType = NORM_L2

or an absolute or relative difference norm if src2 is there:

|lsrcl —src2||,, = maxg|srcl(I) —src2(I)] if normType = NORM_INF
norm =< |srcl—src2|, =Y ;Isrcl(I) — src2(I)| if normType = NORM_L1
[srel—sre2||, = /Y ;(srcl(I) —src2(I))2 if normType = NORM_L2

2.4. Operations on Arrays 145

The OpenCV Reference Manual, Release 2.4.2

or
lerestlie if normType = NORM_RELATIVE_INF
norm = % if normType = NORM_RELATIVE_L1
1

llsred=sre2le; i o rmType = NORM_RELATIVE L2
Isre2]lt,
The functions norm return the calculated norm.

When the mask parameter is specified and it is not empty, the norm is computed only over the region specified by the
mask.

A multi-channel source arrays are treated as a single-channel, that is, the results for all channels are combined.

normalize

Normalizes the norm or value range of an array.

C++: void normalize(InputArray src, OutputArray dst, double alpha=1, double beta=0, int
norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray())

C++: void normalize (const SparseMat& sre, SparseMat& dst, double alpha, int normType)
Python: cv2. normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) — dst
Parameters
src¢ — Source array.
dst — Destination array of the same size as src .

alpha — Norm value to normalize to or the lower range boundary in case of the range nor-
malization.

beta — Upper range boundary in case of the range normalization. It is not used for the norm
normalization.

normType — Normalization type. See the details below.

dtype — When the parameter is negative, the destination array has the same type as src. Oth-
erwise, it has the same number of channels as src and the depth =CV_MAT_DEPTH (dtype)

mask — Optional operation mask.
The functions normalize scale and shift the source array elements so that
[dst||L, = alpha
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
mIin dst(I) = alpha, max dst(I) = beta
when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be normalized.
This means that the norm or min-n-max are computed over the sub-array, and then this sub-array is modified to be

normalized. If you want to only use the mask to compute the norm or min-max but modify the whole array, you can
use norm() and Mat: :convertTo().

In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transfor-
mation for sparse matrices is not allowed since it can shift the zero level.

See Also:

norm(),Mat::convertTo(), SparseMat::convertTo()

146 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

PCA

class PCA
Principal Component Analysis class.

The class is used to compute a special basis for a set of vectors. The basis will consist of eigenvectors of the co-
variance matrix computed from the input set of vectors. The class PCA can also transform vectors to/from the new
coordinate space defined by the basis. Usually, in this new coordinate system, each vector from the original set (and
any linear combination of such vectors) can be quite accurately approximated by taking its first few components,
corresponding to the eigenvectors of the largest eigenvalues of the covariance matrix. Geometrically it means that
you compute a projection of the vector to a subspace formed by a few eigenvectors corresponding to the dominant
eigenvalues of the covariance matrix. And usually such a projection is very close to the original vector. So, you can
represent the original vector from a high-dimensional space with a much shorter vector consisting of the projected
vector’s coordinates in the subspace. Such a transformation is also known as Karhunen-Loeve Transform, or KLT. See
http://en.wikipedia.org/wiki/Principal_component_analysis .

The sample below is the function that takes two matrices. The first function stores a set of vectors (a row per vector)
that is used to compute PCA. The second function stores another “test” set of vectors (a row per vector). First, these
vectors are compressed with PCA, then reconstructed back, and then the reconstruction error norm is computed and
printed for each vector.

PCA compressPCA(InputArray pcaset, int maxComponents,
const Mat& testset, OutputArray compressed)

{
PCA pca(pcaset, // pass the data
Mat(), // there is no pre-computed mean vector,
// so let the PCA engine to compute it
CV_PCA_DATA_AS_ROW, // indicate that the vectors
// are stored as matrix rows
// (use CV_PCA_DATA_AS_COL if the vectors are
// the matrix columns)
maxComponents // specify how many principal components to retain
)
// 1if there 1is no test data, just return the computed basis, ready-to-use
if(!testset.data)
return pca;
CV_Assert(testset.cols == pcaset.cols);
compressed.create(testset.rows, maxComponents, testset.type());
Mat reconstructed;
for(int 1 = 0; i < testset.rows; i++)
{
Mat vec = testset.row(i), coeffs = compressed.row(i);
// compress the vector, the result will be stored
// in the i-th row of the output matrix
pca.project(vec, coeffs);
// and then reconstruct it
pca.backProject(coeffs, reconstructed);
// and measure the error
printf("%sd. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
}
return pca;
}
See Also:

calcCovarMatrix(), mulTransposed(), SVD, dft(), dct()

2.4. Operations on Arrays 147

http://en.wikipedia.org/wiki/Principal_component_analysis

The OpenCV Reference Manual, Release 2.4.2

PCA::PCA

PCA constructors
C++: PCA::PCA()
C++: PCA::PCA(InputArray data, InputArray mean, int flags, int maxComponents=0)
Parameters
data — Input samples stored as matrix rows or matrix columns.

mean — Optional mean value. If the matrix is empty (noArray()), the mean is computed
from the data.

flags — Operation flags. Currently the parameter is only used to specify the data layout.
— CV_PCA_DATA_AS_ROW indicates that the input samples are stored as matrix rows.

— CV_PCA_DATA_AS_COL indicates that the input samples are stored as matrix
columns.

maxComponents — Maximum number of components that PCA should retain. By default,
all the components are retained.

The default constructor initializes an empty PCA structure. The second constructor initializes the structure and calls
PCA: :operator() .

PCA::operator ()

Performs Principal Component Analysis of the supplied dataset.
C++: PCA& PCA: :operator() (InputArray data, InputArray mean, int flags, int maxComponents=0)
Python: cv2. PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) — mean, eigenvectors
Parameters
data — Input samples stored as the matrix rows or as the matrix columns.

mean — Optional mean value. If the matrix is empty (noArray()), the mean is computed
from the data.

flags — Operation flags. Currently the parameter is only used to specify the data layout.
— CV_PCA_DATA_AS_ROW indicates that the input samples are stored as matrix rows.

— CV_PCA_DATA_AS_COL indicates that the input samples are stored as matrix
columns.

maxComponents — Maximum number of components that PCA should retain. By default,
all the components are retained.

The operator performs PCA of the supplied dataset. It is safe to reuse the same PCA structure for multiple datasets.
That is, if the structure has been previously used with another dataset, the existing internal data is reclaimed and the
new eigenvalues, eigenvectors , and mean are allocated and computed.

The computed eigenvalues are sorted from the largest to the smallest and the corresponding eigenvectors are stored as
PCA: :eigenvectors rows.

148 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

PCA::project

Projects vector(s) to the principal component subspace.

C++: Mat PCA: :project (InputArray vec) const

C++: void PCA: :project (InputArray vec, OutputArray result) const

Python: cv2.PCAProject(data, mean, eigenvectors[, result]) — result
Parameters

vec — Input vector(s). They must have the same dimensionality and the same layout as
the input data used at PCA phase. That is, if CV_PCA_DATA_AS_ROW are specified, then
vec.cols==data.cols (vector dimensionality) and vec. rows is the number of vectors to
project. The same is true for the CV_PCA_DATA_AS_COL case.

result — Output vectors. In case of CV_PCA_DATA_AS_COL , the output matrix has as many
columns as the number of input vectors. This means that result.cols==vec.cols and the
number of rows match the number of principal components (for example, maxComponents
parameter passed to the constructor).

The methods project one or more vectors to the principal component subspace, where each vector projection is repre-
sented by coefficients in the principal component basis. The first form of the method returns the matrix that the second
form writes to the result. So the first form can be used as a part of expression while the second form can be more
efficient in a processing loop.

PCA::backProject

Reconstructs vectors from their PC projections.

C++: Mat PCA: :backProject (InputArray vec) const

C++: void PCA: :backProject (InputArray vec, OutputArray result) const

Python: cv2.PCABackProject(data, mean, eigenvectors[, result]) — result
Parameters

vec — Coordinates of the vectors in the principal component subspace. The layout and size
are the same as of PCA: :project output vectors.

result — Reconstructed vectors. The layout and size are the same as of PCA: :project input
vectors.

The methods are inverse operations to PCA: :project() . They take PC coordinates of projected vectors and re-
construct the original vectors. Unless all the principal components have been retained, the reconstructed vectors are
different from the originals. But typically, the difference is small if the number of components is large enough (but
still much smaller than the original vector dimensionality). As a result, PCA is used.

perspectiveTransform

Performs the perspective matrix transformation of vectors.

C++: void perspectiveTransform(InputArray src, OutputArray dst, InputArray m)
Python: cv2.perspectiveTransform(src, m[, dst]) — dst

C: void cvPerspectiveTransform(const CvArr* sre, CvArr* dst, const CvMat* mat)

Python: cv.PerspectiveTransform(src, dst, mat) — None

2.4. Operations on Arrays 149

The OpenCV Reference Manual, Release 2.4.2

Parameters

src — Source two-channel or three-channel floating-point array. Each element is a 2D/3D
vector to be transformed.

dst — Destination array of the same size and type as src .
m — 3x3 or 4x4 floating-point transformation matrix.

The function perspectiveTransform transforms every element of src by treating it as a 2D or 3D vector, in the
following way:

(%, y,2) = (x"/w,y"/w,z"/w)
where
x,y,z/,w')=mat-[x y z 1]
and

/ s /
W:{w ifw’ #0

oo otherwise

Here a 3D vector transformation is shown. In case of a 2D vector transformation, the z component is omitted.

Note: The function transforms a sparse set of 2D or 3D vectors. If you want to transform an image us-
ing perspective transformation, use warpPerspective() . If you have an inverse problem, that is, you want to
compute the most probable perspective transformation out of several pairs of corresponding points, you can use
getPerspectiveTransform() or findHomography() .

See Also:

transform(),warpPerspective(), getPerspectiveTransform(), findHomography()

phase

Calculates the rotation angle of 2D vectors.
C++: void phase (InputArray x, InputArray y, OutputArray angle, bool angleInDegrees=false)
Python: cv2.phase(x, y[, angle[, angleInDegrees]]) — angle
Parameters
x — Source floating-point array of x-coordinates of 2D vectors.

y — Source array of y-coordinates of 2D vectors. It must have the same size and the same
type as X .

angle — Destination array of vector angles. It has the same size and same type as x .

angleInDegrees — When it is true, the function computes the angle in degrees. Otherwise,
they are measured in radians.

The function phase computes the rotation angle of each 2D vector that is formed from the corresponding elements of
xandy :

angle(I) = atan2(y(I), x(I))

The angle estimation accuracy is about 0.3 degrees. When x (I)=y(I)=0, the corresponding angle(I) is set to O.

150 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

polarToCart

Computes x and y coordinates of 2D vectors from their magnitude and angle.

C++: void polarToCart (InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool an-
gleInDegrees=false)

Python: cv2.polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) =X,y

C: void cvPolarToCart(const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int an-
gle_in_degrees=0)

Python: cv.PolarToCart(magnitude, angle, x, y, angleInDegrees=0) — None
Parameters

magnitude — Source floating-point array of magnitudes of 2D vectors. It can be an empty
matrix (=Mat ()). In this case, the function assumes that all the magnitudes are =1. If it is
not empty, it must have the same size and type as angle .

angle — Source floating-point array of angles of 2D vectors.
x — Destination array of x-coordinates of 2D vectors. It has the same size and type as angle.
y — Destination array of y-coordinates of 2D vectors. It has the same size and type as angle.

angleInDegrees — When it is true, the input angles are measured in degrees. Otherwise.
they are measured in radians.

The function polarToCart computes the Cartesian coordinates of each 2D vector represented by the corresponding
elements of magnitude and angle :

x(I) = magnitude(I) cos(angle(I))
y(I) = magnitude(I) sin(angle(I))
The relative accuracy of the estimated coordinates is about le-6.
See Also:
cartToPolar(), magnitude(), phase(), exp(), Log(), pow(), sqrt()

pow

Raises every array element to a power.
C++: void pow (InputArray sre, double power, OutputArray dst)
Python: cv2.pow(src, power[, dst]) — dst
C: void cvPow (const CvArr* sre, CvArr* dst, double power)
Python: cv.Pow(src, dst, power) — None
Parameters

src — Source array.

power — Exponent of power.

dst — Destination array of the same size and type as src .
The function pow raises every element of the input array to power :

src(I)Power if power is integer
|src(I)[Power otherwise

dst(I) :{

2.4. Operations on Arrays 151

The OpenCV Reference Manual, Release 2.4.2

So, for a non-integer power exponent, the absolute values of input array elements are used. However, it is possible to
get true values for negative values using some extra operations. In the example below, computing the 5th root of array
src shows:

Mat mask = src < 0;
pow(src, 1./5, dst);
subtract(Scalar::all(0), dst, dst, mask);

For some values of power , such as integer values, 0.5 and -0.5, specialized faster algorithms are used.
Special values (NaN, Inf) are not handled.

See Also:

sqrt(),exp(), log(), cartToPolar(), polarToCart()

RNG

class RNG

Random number generator. It encapsulates the state (currently, a 64-bit integer) and has methods to re-
turn scalar random values and to fill arrays with random values. Currently it supports uniform and Gaus-
sian (normal) distributions. The generator uses Multiply-With-Carry algorithm, introduced by G. Marsaglia (
http://en.wikipedia.org/wiki/Multiply-with-carry). Gaussian-distribution random numbers are generated using the
Ziggurat algorithm (http://en.wikipedia.org/wiki/Ziggurat_algorithm), introduced by G. Marsaglia and W. W. Tsang.

RNG::RNG

The constructors
C++: RNG::RNG()
C++: RNG: :RNG(uint64 state)
Parameters
state — 64-bit value used to initialize the RNG.

These are the RNG constructors. The first form sets the state to some pre-defined value, equal to 2**32-1 in the
current implementation. The second form sets the state to the specified value. If you passed state=0, the constructor
uses the above default value instead to avoid the singular random number sequence, consisting of all zeros.

RNG::next

Returns the next random number.
C++: unsigned int RNG: :next ()

The method updates the state using the MWC algorithm and returns the next 32-bit random number.

RNG::operator T

Returns the next random number of the specified type.
C++: RNG::operator uchar()

C++: RNG: :operator schar()

152 Chapter 2. core. The Core Functionality

http://en.wikipedia.org/wiki/Multiply-with-carry
http://en.wikipedia.org/wiki/Ziggurat_algorithm

The OpenCV Reference Manual, Release 2.4.2

C++: RNG: :operator ushort()
C++: RNG: :operator short int()
C++: RNG::operator int()

C++: RNG::operator unsigned int()
C++: RNG: :operator float()

C++: RNG::operator double()

Each of the methods updates the state using the MWC algorithm and returns the next random number of the specified
type. In case of integer types, the returned number is from the available value range for the specified type. In case of
floating-point types, the returned value is from [0, 1) range.

RNG::operator ()

Returns the next random number.
C++: unsigned int RNG: :operator() ()
C++: unsigned int RNG: :operator () (unsigned int N)
Parameters
N - Upper non-inclusive boundary of the returned random number.

The methods transform the state using the MWC algorithm and return the next random number. The first form is
equivalent to RNG: :next () . The second form returns the random number modulo N , which means that the result is
in the range [0, N) .

RNG::uniform

Returns the next random number sampled from the uniform distribution.
C++: int RNG: :uniform(int a, intb)
C++: float RNG: :uniform(float a, float b)
C++: double RNG: :uniform(double a, double b)
Parameters
a — Lower inclusive boundary of the returned random numbers.
b — Upper non-inclusive boundary of the returned random numbers.

The methods transform the state using the MWC algorithm and return the next uniformly-distributed random number
of the specified type, deduced from the input parameter type, from the range [a, b) . There is a nuance illustrated by
the following sample:

RNG rng;

// always produces 0
double a = rng.uniform(0, 1);

// produces double from [0, 1)
double al = rng.uniform((double)0O, (double)l);

// produces float from [0, 1)
double b = rng.uniform(0.f, 1.f);

2.4. Operations on Arrays 153

The OpenCV Reference Manual, Release 2.4.2

// produces double from [0, 1)
double ¢ = rng.uniform(0., 1.);

// may cause compiler error because of ambiguity:
// RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)®, 0.99999)?
double d = rng.uniform(0, 0.999999);

The compiler does not take into account the type of the variable to which you assign the result of RNG: :uniform .
The only thing that matters to the compiler is the type of a and b parameters. So, if you want a floating-point random
number, but the range boundaries are integer numbers, either put dots in the end, if they are constants, or use explicit
type cast operators, as in the al initialization above.

RNG::gaussian

Returns the next random number sampled from the Gaussian distribution.
C++: double RNG: : gaussian(double sigma)
Parameters
sigma — Standard deviation of the distribution.

The method transforms the state using the MWC algorithm and returns the next random number from the Gaussian
distribution N(0, sigma) . That is, the mean value of the returned random numbers is zero and the standard deviation
is the specified sigma .

RNG::fill

Fills arrays with random numbers.

C++: void RNG: : fill (InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturat-
eRange=false)

Parameters

mat — 2D or N-dimensional matrix. Currently matrices with more than 4 channels are not
supported by the methods. Use Mat: : reshape() as a possible workaround.

distType — Distribution type, RNG: : UNIFORM or RNG: : NORMAL .

a — First distribution parameter. In case of the uniform distribution, this is an inclusive lower
boundary. In case of the normal distribution, this is a mean value.

b — Second distribution parameter. In case of the uniform distribution, this is a non-inclusive
upper boundary. In case of the normal distribution, this is a standard deviation (diagonal of
the standard deviation matrix or the full standard deviation matrix).

saturateRange — Pre-saturation flag; for uniform distribution only. If it is true, the method
will first convert a and b to the acceptable value range (according to the mat datatype) and
then will generate uniformly distributed random numbers within the range [saturate(a),
saturate(b)). If saturateRange=false, the method will generate uniformly distributed
random numbers in the original range [a, b) and then will saturate them. It means, for ex-
ample, that theRNG() . fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX) will likely
produce array mostly filled with 0’s and 255’s, since the range (0, 255) is significantly
smaller than [-DBL_MAX, DBL_MAX).

Each of the methods fills the matrix with the random values from the specified distribution. As the new numbers
are generated, the RNG state is updated accordingly. In case of multiple-channel images, every channel is filled

154 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

independently, which means that RNG cannot generate samples from the multi-dimensional Gaussian distribution with
non-diagonal covariance matrix directly. To do that, the method generates samples from multi-dimensional standard
Gaussian distribution with zero mean and identity covariation matrix, and then transforms them using transform()
to get samples from the specified Gaussian distribution.

randu

Generates a single uniformly-distributed random number or an array of random numbers.
C++: template<typename _Tp> _Tp randu()
C++: void randu (InputOutputArray dst, InputArray low, InputArray high)
Python: cv2.randu(dst, low, high) — None
Parameters
dst — Output array of random numbers. The array must be pre-allocated.
low — Inclusive lower boundary of the generated random numbers.
high — Exclusive upper boundary of the generated random numbers.

The template functions randu generate and return the next uniformly-distributed random value of the specified type.
randu<int>() is an equivalent to (int)theRNG(); , and so on. See RNG description.

The second non-template variant of the function fills the matrix dst with uniformly-distributed random numbers from
the specified range:

low, < dst(I). < high,

See Also:
RNG, randn (), theRNG()

randn

Fills the array with normally distributed random numbers.
C++: void randn (InputOutputArray dst, InputArray mean, InputArray stddev)
Python: cv2.randn(dst, mean, stddev) — None

Parameters

dst — Output array of random numbers. The array must be pre-allocated and have 1 to 4
channels.

mean — Mean value (expectation) of the generated random numbers.

stddev — Standard deviation of the generated random numbers. It can be either a vector (in
which case a diagonal standard deviation matrix is assumed) or a square matrix.

The function randn fills the matrix dst with normally distributed random numbers with the specified mean vector
and the standard deviation matrix. The generated random numbers are clipped to fit the value range of the destination
array data type.

See Also:
RNG, randu()

2.4. Operations on Arrays 155

The OpenCV Reference Manual, Release 2.4.2

randShuffle

Shuffles the array elements randomly.
C++: void randShuffle (InputOutputArray dst, double iterFactor=1., RNG* rng=0)
Python: cv2. randShuffle(dst[, iterFactor]) — None
Parameters
dst — Input/output numerical 1D array.

iterFactor — Scale factor that determines the number of random swap operations. See the
details below.

rng — Optional random number generator used for shuffling. If it is zero, theRNG() () is
used instead.

The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and swapping
them. The number of such swap operations will be dst. rows*dst.cols*iterFactor.

See Also:
RNG, sort ()

reduce

Reduces a matrix to a vector.
C++: void reduce (InputArray src, OutputArray dst, int dim, int rtype, int dtype=-1)
Python: cv2.reduce(src, dim, rtype[, dst[, dtype]]) — dst
C: void cvReduce (const CvArr* sre, CvArr* dst, int dim=-1, int op=CV_REDUCE_SUM)
Python: cv.Reduce(src, dst, dim=-1, op=CV_REDUCE_SUM) — None
Parameters
src — Source 2D matrix.
dst — Destination vector. Its size and type is defined by dim and dtype parameters.

dim — Dimension index along which the matrix is reduced. O means that the matrix is
reduced to a single row. 1 means that the matrix is reduced to a single column.

rtype — Reduction operation that could be one of the following:
— CV_REDUCE_SUM The output is the sum of all rows/columns of the matrix.
— CV_REDUCE_AVG The output is the mean vector of all rows/columns of the matrix.

— CV_REDUCE_MAX The output is the maximum (column/row-wise) of all
rows/columns of the matrix.

— CV_REDUCE_MIN The output is the minimum (column/row-wise) of all rows/columns
of the matrix.

dtype — When it is negative, the destination vector will have the same type as the
source matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype),
src.channels()) .

The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and per-
forming the specified operation on the vectors until a single row/column is obtained. For example, the function can be
used to compute horizontal and vertical projections of a raster image. In case of CV_REDUCE_SUM and CV_REDUCE_AVG

156 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

, the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in
these two reduction modes.

See Also:

repeat()

repeat

Fills the destination array with repeated copies of the source array.
C++: void repeat (InputArray sre, int ny, int nx, OutputArray dst)
C++: Mat repeat (const Mat& src, int ny, int nx)
Python: cv2.repeat (src, ny, nx[, dst]) — dst
C: void cvRepeat (const CvArr* sre, CvArr* dst)
Python: cv.Repeat (src, dst) — None
Parameters
src — Source array to replicate.
dst — Destination array of the same type as src .
ny — Flag to specify how many times the src is repeated along the vertical axis.
nx — Flag to specify how many times the src is repeated along the horizontal axis.

The functions repeat () duplicate the source array one or more times along each of the two axes:

dStij = Sr¢i mod src.rows, j mod src.cols

The second variant of the function is more convenient to use with Matrix Expressions .
See Also:

reduce (), Matrix Expressions

scaleAdd

Calculates the sum of a scaled array and another array.
C++: void scaleAdd (InputArray srcl, double alpha, InputArray src2, OutputArray dst)
Python: cv2.scaleAdd (srcl, alpha, scm[, dst]) — dst
C: void cvScaleAdd (const CvArr* srcl, CvScalar scale, const CvArr* src2, CvArr* dst)
Python: cv.ScaleAdd(srcl, scale, src2, dst) — None
Parameters

srcl — First source array.

scale — Scale factor for the first array.

src2 — Second source array of the same size and type as srcl.

dst — Destination array of the same size and type as srcl.

2.4. Operations on Arrays 157

The OpenCV Reference Manual, Release 2.4.2

The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY or SAXPY in BLAS.
It calculates the sum of a scaled array and another array:

dst(I) = scale- srcl(I) + src2(I)

The function can also be emulated with a matrix expression, for example:

Mat A(3, 3, CV_64F);
A.row(0) = A.row(1)*2 + A.row(2);

See Also:

add (), addwWeighted(), subtract(),Mat::dot(),Mat::convertTo(), Matrix Expressions

setldentity

Initializes a scaled identity matrix.
C++: void setIdentity (InputOutputArray mtx, const Scalar& s=Scalar(1))
Python: cv2. setIdentity(mtx[, s]) — None
C: void cvSetIdentity (CvArr* mat, CvScalar value=cvRealScalar(1))
Python: cv.SetIdentity(mat, value=1) — None
Parameters
mtx — Matrix to initialize (not necessarily square).
value — Value to assign to diagonal elements.

The function setIdentity () initializes a scaled identity matrix:

.. [value ifi=j
mtx(i,j) = { 0 otherwise

The function can also be emulated using the matrix initializers and the matrix expressions:

Mat A = Mat::eye(4, 3, CV_32F)*5;
// A will be set to [[5, 0, 0], [0, 5, 0], [0, 6, 5], [0, 0, 0]]

See Also:

Mat::zeros(),Mat::ones(), Matrix Expressions, Mat: :setTo(),Mat: :operator=()

solve

Solves one or more linear systems or least-squares problems.
C++: bool solve(InputArray srecl, InputArray src2, OutputArray dst, int flags=DECOMP_LU)
Python: cv2.solve(srcl, src2[, dst[, ﬂags]]) — retval, dst
C: int cvSolve (const CvArr* srcl, const CvArr* src2, CvArr* dst, int method=CV_LU)
Python: cv.Solve(A, B, X, method=CV_LU) — None

Parameters

srcl — Input matrix on the left-hand side of the system.

158 Chapter 2. core. The Core Functionality

http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

The OpenCV Reference Manual, Release 2.4.2

src2 — Input matrix on the right-hand side of the system.

dst — Output solution.

flags — Solution (matrix inversion) method.

— DECOMP_LU Gaussian elimination with optimal pivot element chosen.

- DECOMP_CHOLESKY Cholesky LLT factorization. The matrix srcl must be sym-
metrical and positively defined.

— DECOMP_EIG Eigenvalue decomposition. The matrix srcl must be symmetrical.

— DECOMP_SVD Singular value decomposition (SVD) method. The system can be over-
defined and/or the matrix srcl can be singular.

— DECOMP_QR QR factorization. The system can be over-defined and/or the matrix srcl
can be singular.

— DECOMP_NORMAL While all the previous flags are mutually exclusive, this flag can
be used together with any of the previous. It means that the normal equations src1' -
srcl-dst = srcl'src2 are solved instead of the original system srcl-dst = src2.

The function solve solves a linear system or least-squares problem (the latter is possible with SVD or QR methods,
or by specifying the flag DECOMP_NORMAL):

dst :argn%}anrcLX— src2||

If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1 if srcl (or srcl'srcl) is non-singular.
Otherwise, it returns 0. In the latter case, dst is not valid. Other methods find a pseudo-solution in case of a singular
left-hand side part.

Note: If you want to find a unity-norm solution of an under-defined singular system srcl - dst = O, the function
solve will not do the work. Use SVD: :solveZ() instead.

See Also:

invert(), SVD, eigen()

solveCubic

Finds the real roots of a cubic equation.
C++: int solveCubic (InputArray coeffs, OutputArray roots)
Python: cv2.solveCubic (coeffs[, roots]) — retval, roots
C: int cvSolveCubic (const CvMat* coeffs, CvMat* roots)
Python: cv.SolveCubic (coeffs, roots) — None
Parameters
coeffs — Equation coefficients, an array of 3 or 4 elements.
roots — Destination array of real roots that has 1 or 3 elements.
The function solveCubic finds the real roots of a cubic equation:

¢ if coeffs is a 4-element vector:

coeffs[0lx® + coeffs[1]x? + coeffs[2]x + coeffs[3] =0

2.4. Operations on Arrays 159

The OpenCV Reference Manual, Release 2.4.2

¢ if coeffs is a 3-element vector:

x> + coeffs[0]x? + coeffs[1]x + coeffs[2] =0

The roots are stored in the roots array.

solvePoly

Finds the real or complex roots of a polynomial equation.
C++: double solvePoly (InputArray coeffs, OutputArray roots, int maxIters=300)
Python: cv2. solvePoly(coeffs[, roots[, maxlters]]) — retval, roots
Parameters
coeffs — Array of polynomial coefficients.
roots — Destination (complex) array of roots.
maxIters — Maximum number of iterations the algorithm does.

The function solvePoly finds real and complex roots of a polynomial equation:

coeffsm]x™ + coeffsn — 1Jx™ " + ... + coeffs[1]x + coeffs[0] = 0

sort

Sorts each row or each column of a matrix.
C++: void sort (InputArray src, OutputArray dst, int flags)
Python: cv2.sort(src, ﬂags[, dst]) — dst
Parameters
src — Source single-channel array.
dst — Destination array of the same size and type as src .
flags — Operation flags, a combination of the following values:
— CV_SORT_EVERY_ROW Each matrix row is sorted independently.

— CV_SORT_EVERY_COLUMN Each matrix column is sorted independently. This flag
and the previous one are mutually exclusive.

— CV_SORT_ASCENDING Each matrix row is sorted in the ascending order.

— CV_SORT_DESCENDING Each matrix row is sorted in the descending order. This flag
and the previous one are also mutually exclusive.

The function sort sorts each matrix row or each matrix column in ascending or descending order. So you should pass
two operation flags to get desired behaviour. If you want to sort matrix rows or columns lexicographically, you can
use STL std: :sort generic function with the proper comparison predicate.

See Also:
sortIdx(), randShuffle()

160 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

sortldx

Sorts each row or each column of a matrix.
C++: void sortIdx(InputArray src, OutputArray dst, int flags)
Python: cv2.sortIdx(src, ﬂags[, dst]) — dst
Parameters
sre¢ — Source single-channel array.
dst — Destination integer array of the same size as src .
flags — Operation flags that could be a combination of the following values:
— CV_SORT_EVERY_ROW Each matrix row is sorted independently.

— CV_SORT_EVERY_COLUMN Each matrix column is sorted independently. This flag
and the previous one are mutually exclusive.

— CV_SORT_ASCENDING Each matrix row is sorted in the ascending order.

— CV_SORT_DESCENDING Each matrix row is sorted in the descending order. This flag
and the previous one are also mutually exclusive.

The function sortIdx sorts each matrix row or each matrix column in the ascending or descending order. So you
should pass two operation flags to get desired behaviour. Instead of reordering the elements themselves, it stores the
indices of sorted elements in the destination array. For example:

Mat A = Mat::eye(3,3,CV_32F), B;

sortIdx(A, B, CV_SORT_EVERY_ROW + CV_SORT_ASCENDING);

// B will probably contain

// (because of equal elements in A some permutations are possible):
// [[1, 2, 0], [0, 2, 1], [0, 1, 2]]

See Also:
sort(), randShuffle()

split

Divides a multi-channel array into several single-channel arrays.
C++: void split(const Mat& src, Mat* mvbegin)
C++: void split(const Mat& m, vector<Mat>& mv)
Python: cv2.sp1it(m[, mv]) — mv
C: void cvSplit (const CvArr* sre, CvArr* dst0, CvArr* dstl, CvArr* dst2, CvArr* dst3)
Python: cv.Split (src, dst0, dstl, dst2, dst3) — None

Parameters

src — Source multi-channel array.

myv — Destination array or vector of arrays. In the first variant of the function the number of
arrays must match src.channels() . The arrays themselves are reallocated, if needed.

The functions split split a multi-channel array into separate single-channel arrays:

mv[c](I) = src(I),

2.4. Operations on Arrays 161

The OpenCV Reference Manual, Release 2.4.2

If you need to extract a single channel or do some other sophisticated channel permutation, use mixChannels () .
See Also:

merge (), mixChannels(), cvtColor()

sqrt

Calculates a square root of array elements.
C++: void sqrt (InputArray src, OutputArray dst)
Python: cv2.sqrt (src[, dst]) — dst
C: float cvSqrt (float value)
Python: cv.Sqrt(value) — float
Parameters
src — Source floating-point array.
dst — Destination array of the same size and type as src .

The functions sqrt calculate a square root of each source array element. In case of multi-channel arrays, each channel
is processed independently. The accuracy is approximately the same as of the built-in std: :sqrt .

See Also:

pow(), magnitude()

subtract

Calculates the per-element difference between two arrays or array and a scalar.

C++: void subtract (InputArray srcl, InputArray src2, OutputArray dst, InputArray mask=noArray(), int
dtype=-1)

Python: cv2.subtract(srcl, src2[, dst[, mask[, dtype]]]) — dst
C: void cvSub (const CvArr* srel, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
C: void cvSubRS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
C: void cvSubS (const CvArr* sre, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
Python: cv.Sub(srcl, src2, dst, mask=None) — None
Python: cv.SubRS (src, value, dst, mask=None) — None
Python: cv.SubS (src, value, dst, mask=None) — None
Parameters

srcl — First source array or a scalar.

src2 — Second source array or a scalar.

dst — Destination array of the same size and the same number of channels as the input array.

mask — Optional operation mask. This is an 8-bit single channel array that specifies ele-
ments of the destination array to be changed.

dtype — Optional depth of the output array. See the details below.

The function subtract computes:

162 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

« Difference between two arrays, when both input arrays have the same size and the same number of channels:

dst(I) = saturate(srcl(I) —src2(I)) if mask(I) #0

* Difference between an array and a scalar, when src2 is constructed from Scalar or has the same number of
elements as srcl.channels():

dst(I) = saturate(srcl(I) —src2) if mask(I) #0

* Difference between a scalar and an array, when srcl is constructed from Scalar or has the same number of
elements as src2.channels():

dst(I) = saturate(srcl —src2(I)) if mask(I) #0

 The reverse difference between a scalar and an array in the case of SubRS:

dst(I) = saturate(src2 —srcl(I)) if mask(I) #0

where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed
independently.

The first function in the list above can be replaced with matrix expressions:

dst = srcl - src2;
dst -= srcl; // equivalent to subtract(dst, srcl, dst);

The input arrays and the destination array can all have the same or different depths. For example, you can subtract to 8-
bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by dtype
parameter. In the second and third cases above, as well as in the first case, when srcl.depth() == src2.depth(),
dtype can be set to the default - 1. In this case the output array will have the same depth as the input array, be it srcl,
src2 or both.

Note: Saturation is not applied when the output array has the depth CV_32S. You may even get result of an incorrect
sign in the case of overflow.

See Also:
add(), addWeighted(), scaleAdd(), Mat::convertTo(), Matrix Expressions

SVD

class SVD

Class for computing Singular Value Decomposition of a floating-point matrix. The Singular Value Decomposition is
used to solve least-square problems, under-determined linear systems, invert matrices, compute condition numbers,
and so on.

For a faster operation, you can pass flags=SVD: :MODIFY_A|... to modify the decomposed matrix when it is not
necessary to preserve it. If you want to compute a condition number of a matrix or an absolute value of its determinant,
you do not need u and vt . You can pass flags=SVD::NO_UV|... . Another flag FULL_UV indicates that full-size u
and vt must be computed, which is not necessary most of the time.

See Also:

invert(), solve(), eigen(), determinant()

2.4. Operations on Arrays 163

The OpenCV Reference Manual, Release 2.4.2

SVD::SVD

The constructors.
C++: SVD::SVD()
C++: SVD::SVD(InputArray src, int flags=0)
Parameters
sr¢ — Decomposed matrix.
flags — Operation flags.

— SVD::MODIFY_A Use the algorithm to modify the decomposed matrix. It can save
space and speed up processing.

— SVD::NO_UY Indicate that only a vector of singular values w is to be computed, while u
and vt will be set to empty matrices.

— SVD::FULL_UV When the matrix is not square, by default the algorithm produces u
and vt matrices of sufficiently large size for the further A reconstruction. If, however,
FULL_UV flag is specified, u and vt will be full-size square orthogonal matrices.

The first constructor initializes an empty SVD structure. The second constructor initializes an empty SVD structure and
then calls SVD: :operator() .

SVD::operator ()

Performs SVD of a matrix.
C++: SVD& SVD: :operator() (InputArray sre, int flags=0)
Parameters
src — Decomposed matrix.
flags — Operation flags.

— SVD::MODIFY_A Use the algorithm to modify the decomposed matrix. It can save
space and speed up processing.

— SVD::NO_UYV Use only singular values. The algorithm does not compute u and vt
matrices.

— SVD::FULL_UV When the matrix is not square, by default the algorithm produces u
and vt matrices of sufficiently large size for the further A reconstruction. If, however, the
FULL_UV flag is specified, u and vt are full-size square orthogonal matrices.

The operator performs the singular value decomposition of the supplied matrix. The u,*“vt‘‘, and the vector of singular
values w are stored in the structure. The same SVD structure can be reused many times with different matrices. Each
time, if needed, the previous u,*‘vt*‘ , and w are reclaimed and the new matrices are created, which is all handled by
Mat::create() .

SVD::compute

Performs SVD of a matrix

C++: static void SVD: : compute (InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0
)
C++: static void SVD: : compute (InputArray src, OutputArray w, int flags=0)

164 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Python: cv2. SVDecomp(src[, w[, u[, Vt[, ﬂags]]]]) — W, u, vt
C: void cvSVD (CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0)
Python: cv.SVD(A, W, U=None, V=None, flags=0) — None
Parameters

src — Decomposed matrix

w — Computed singular values

u — Computed left singular vectors

V — Computed right singular vectors

vt — Transposed matrix of right singular values

flags — Operation flags - see SVD: :SVD().

The methods/functions perform SVD of matrix. Unlike SVD: : SVD constructor and SVD: :operator (), they store the
results to the user-provided matrices.

Mat A, w, u, vt;
SVD: :compute(A, w, u, vt);

SVD::solveZ

Solves an under-determined singular linear system.
C++: static void SVD: : solveZ (InputArray sre¢, OutputArray dst)
Parameters
src — Left-hand-side matrix.
dst — Found solution.

The method finds a unit-length solution x of a singular linear system Axx = 0. Depending on the rank of A, there can
be no solutions, a single solution or an infinite number of solutions. In general, the algorithm solves the following
problem:

dst =arg min |src-x||
x:lx||=1

SVD::backSubst

Performs a singular value back substitution.
C++: void SVD: :backSubst (InputArray rhs, OutputArray dst) const

C++: static void SVD: :backSubst (InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray
dst)

Python: cv2.SVBackSubst(w, u, vt, rhs[, dst]) — dst
C: void cvSVBkSb (const CvArr* W, const CvArr* U, const CvArr* V, const CvArr* B, CvArr* X, int flags)
Python: cv.SVBkSb(W, U, V, B, X, flags) — None
Parameters
w — Singular values

u — Left singular vectors

2.4. Operations on Arrays 165

The OpenCV Reference Manual, Release 2.4.2

V — Right singular vectors
vt — Transposed matrix of right singular vectors.

rhs — Right-hand side of a linear system (uxwxv’)*dst = rhs to be solved, where A has
been previously decomposed.

dst — Found solution of the system.
The method computes a back substitution for the specified right-hand side:
x=vt' - diag(w)"'-u'-rhs~A"".rhs

Using this technique you can either get a very accurate solution of the convenient linear system, or the best (in the
least-squares terms) pseudo-solution of an overdetermined linear system.

Note: Explicit SVD with the further back substitution only makes sense if you need to solve many linear systems
with the same left-hand side (for example, src). If all you need is to solve a single system (possibly with multiple
rhs immediately available), simply call solve() add pass DECOMP_SVD there. It does absolutely the same thing.

sum

Calculates the sum of array elements.
C++: Scalar sum(InputArray src)
Python: cv2.sumElems (src) — retval
C: CvScalar cvSum(const CvArr* arr)
Python: cv.Sum(arr) — scalar

Parameters

arr — Source array that must have from 1 to 4 channels.

The functions sum calculate and return the sum of array elements, independently for each channel.
See Also:

countNonZero(), mean(), meanStdDev (), norm(), minMaxLoc(), reduce()

theRNG

Returns the default random number generator.
C++: RNG& theRNG()

The function theRNG returns the default random number generator. For each thread, there is a separate random number
generator, so you can use the function safely in multi-thread environments. If you just need to get a single random
number using this generator or initialize an array, you can use randu() or randn() instead. But if you are going to
generate many random numbers inside a loop, it is much faster to use this function to retrieve the generator and then
use RNG: :operator _Tp() .

See Also:
RNG, randu(), randn()

166 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

trace

Returns the trace of a matrix.
C++: Scalar trace(InputArray mtx)
Python: cv2.trace(mtx) — retval
C: CvScalar cvTrace(const CvArr* mat)
Python: cv.Trace(mat) — scalar
Parameters
mat — Source matrix.

The function trace returns the sum of the diagonal elements of the matrix mtx .

tr(mtx) = Z mtx(i,1)

transform

Performs the matrix transformation of every array element.
C++: void transform(InputArray src, OutputArray dst, InputArray m)
Python: cv2.transform(src, m[, dst]) — dst

C: void cvTransform(const CvArr* src, CvArr* dst, const CvMat* transmat, const CvMat* shiftvec=NULL

)

Python: cv.Transform(src, dst, transmat, shiftvec=None) — None
Parameters
src — Source array that must have as many channels (1 to 4) as m.cols orm.cols-1.

dst — Destination array of the same size and depth as src . It has as many channels as
m. rows .

m — Transformation 2x2 or 2x3 floating-point matrix.
shiftvec — Optional translation vector (when m is 2x2)

The function transform performs the matrix transformation of every element of the array src and stores the results
indst:

dst(I) =m-src(I)
(when m.cols=src.channels()), or
dst(I) =m-[src(I);1]
(when m.cols=src.channels()+1)

Every element of the N -channel array src is interpreted as N -element vector that is transformed using the M x NorM
x (N+1) matrix m to M-element vector - the corresponding element of the destination array dst .

The function may be used for geometrical transformation of N -dimensional points, arbitrary linear color space trans-
formation (such as various kinds of RGB to YUV transforms), shuffling the image channels, and so forth.

See Also:

perspectiveTransform(), getAffineTransform(), estimateRigidTransform(), warpAffine(),
warpPerspective()

2.4. Operations on Arrays 167

The OpenCV Reference Manual, Release 2.4.2

transpose

Transposes a matrix.
C++: void transpose (InputArray src, OutputArray dst)
Python: cv2. transpose(src[, dst]) — dst
C: void cvTranspose (const CvArr* src, CvArr* dst)
Python: cv.Transpose(src, dst) — None
Parameters
src — Source array.
dst — Destination array of the same type as src .

The function transpose() transposes the matrix src :

dst(i,j) = src(j, i)

Note: No complex conjugation is done in case of a complex matrix. It it should be done separately if needed.

2.5 Drawing Functions

Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be rendered with
antialiasing (implemented only for 8-bit images for now). All the functions include the parameter color that uses
an RGB value (that may be constructed with CV_RGB or the Scalar_ constructor) for color images and brightness
for grayscale images. For color images, the channel ordering is normally Blue, Green, Red. This is what imshow(),
imread(), and imwrite() expect. So, if you form a color using the Scalar constructor, it should look like:

Scalar(blue_component, green_component, red_component[, alpha_component])

If you are using your own image rendering and I/O functions, you can use any channel ordering. The drawing functions
process each channel independently and do not depend on the channel order or even on the used color space. The whole
image can be converted from BGR to RGB or to a different color space using cvtColor() .

If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also, many drawing
functions can handle pixel coordinates specified with sub-pixel accuracy. This means that the coordinates can be
passed as fixed-point numbers encoded as integers. The number of fractional bits is specified by the shift parameter
and the real point coordinates are calculated as Point(x,y) — Point2f(x * 27 Shift y 5 27shift) This feature is
especially effective when rendering antialiased shapes.

Note: The functions do not support alpha-transparency when the target image is 4-channel. In this case, the color[3]
is simply copied to the repainted pixels. Thus, if you want to paint semi-transparent shapes, you can paint them in a
separate buffer and then blend it with the main image.

circle

Draws a circle.

C++: void circle(Mat& img, Point center, int radius, const Scalar& color, int thickness=1, int lineType=8,
int shift=0)

168 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Python: cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]]) — None

C: void cvCircle(CvArr* img, CvPoint center, int radius, CvScalar color, int thickness=1, int line_type=8,
int shift=0)

Python: cv.Circle(img, center, radius, color, thickness=1, lineType=8, shift=0) — None
Parameters
img — Image where the circle is drawn.
center — Center of the circle.
radius — Radius of the circle.
color — Circle color.

thickness — Thickness of the circle outline, if positive. Negative thickness means that a
filled circle is to be drawn.

lineType — Type of the circle boundary. See the line() description.
shift — Number of fractional bits in the coordinates of the center and in the radius value.

The function circle draws a simple or filled circle with a given center and radius.

clipLine

Clips the line against the image rectangle.

C++: bool clipLine(Size imgSize, Point& ptl, Point& pt2)

C++: bool clipLine(Rect imgRect, Point& ptl, Point& pt2)

Python: cv2.cliplLine(imgRect, ptl, pt2) — retval, ptl, pt2

C: int cvClipLine(CvSize img_size, CvPoint* ptl, CvPoint* pt2)

Python: cv.ClipLine(imgSize, ptl, pt2) -> (pointl, point2)
Parameters

imgSize — Image size. The image rectangle is Rect(0, 0, imgSize.width,
imgSize.height) .

imgRect — Image rectangle.
ptl — First line point.
pt2 — Second line point.

The functions clipLine calculate a part of the line segment that is entirely within the specified rectangle. They return
false if the line segment is completely outside the rectangle. Otherwise, they return true .

ellipse

Draws a simple or thick elliptic arc or fills an ellipse sector.

C++: void ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle,
const Scalar& color, int thickness=1, int lineType=8, int shift=0)

C++: void ellipse (Mat& img, const RotatedRect& box, const Scalar& color, int thickness=1, int line-
Type=28)

2.5. Drawing Functions 169

The OpenCV Reference Manual, Release 2.4.2

Python: cv2.ellipse(img, center, axes, angle, startAngle, endAngle, color[, thickness[, lineType[, shift]]
]) — None

Python: cv2.ellipse(img, box, color[, thickness[, lineType]]) — None

C: void cvEllipse (CvArr* img, CvPoint center, CvSize axes, double angle, double start_angle, double
end_angle, CvScalar color, int thickness=1, int line_type=8, int shift=0)

Python: cv.Ellipse(img, center, axes, angle, start_angle, end_angle, color, thickness=1, lineType=8,
shift=0) — None

C: void cvEllipseBox (CvArr* img, CvBox2D box, CvScalar color, int thickness=1, int line_type=8, int
shift=0)

Python: cv.EllipseBox(img, box, color, thickness=1, lineType=8, shift=0) — None
Parameters
img — Image.
center — Center of the ellipse.
axes — Length of the ellipse axes.
angle — Ellipse rotation angle in degrees.
startAngle — Starting angle of the elliptic arc in degrees.
endAngle — Ending angle of the elliptic arc in degrees.

box — Alternative ellipse representation via RotatedRect or CvBox2D. This means that the
function draws an ellipse inscribed in the rotated rectangle.

color — Ellipse color.

thickness — Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that a
filled ellipse sector is to be drawn.

lineType — Type of the ellipse boundary. See the line() description.
shift — Number of fractional bits in the coordinates of the center and values of axes.

The functions ellipse with less parameters draw an ellipse outline, a filled ellipse, an elliptic arc, or a filled ellipse
sector. A piecewise-linear curve is used to approximate the elliptic arc boundary. If you need more control of the
ellipse rendering, you can retrieve the curve using ellipse2Poly() and then render it with polylines() or fill it
with fillPoly() . If you use the first variant of the function and want to draw the whole ellipse, not an arc, pass
startAngle=0 and endAngle=360 . The figure below explains the meaning of the parameters.

Figure 1. Parameters of Elliptic Arc

170 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Startirg Sngle of the Arc

Eotaion e

ellipse2Poly

Approximates an elliptic arc with a polyline.

C++: void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vec-
tor<Point>& pts)

Python: cv2.ellipse2Poly (center, axes, angle, arcStart, arcEnd, delta) — pts
Parameters
center — Center of the arc.
axes — Half-sizes of the arc. See the ellipse() for details.
angle — Rotation angle of the ellipse in degrees. See the ellipse() for details.
arcStart — Starting angle of the elliptic arc in degrees.
arcEnd — Ending angle of the elliptic arc in degrees.

delta — Angle between the subsequent polyline vertices. It defines the approximation accu-
racy.

pts — Output vector of polyline vertices.

The function ellipse2Poly computes the vertices of a polyline that approximates the specified elliptic arc. It is used
by ellipse() .

fillConvexPoly

Fills a convex polygon.

C++: void fillConvexPoly (Mat& img, const Point* pts, int npts, const Scalar& color, int lineType=8, int
shift=0)

2.5. Drawing Functions 171

The OpenCV Reference Manual, Release 2.4.2

Python: cv2.fillConvexPoly (img, points, color[, lineType[, shift]]) — None

C: void cvFillConvexPoly (CvArr* img, const CvPoint* pts, int npts, CvScalar color, int line_type=8, int
shift=0)

Python: cv.FillConvexPoly (img, pn, color, lineType=_8, shift=0) — None
Parameters
img — Image.
pts — Polygon vertices.
npts — Number of polygon vertices.
color — Polygon color.
lineType — Type of the polygon boundaries. See the 1ine () description.
shift — Number of fractional bits in the vertex coordinates.

The function fillConvexPoly draws a filled convex polygon. This function is much faster than the function
fillPoly . It can fill not only convex polygons but any monotonic polygon without self-intersections, that is, a
polygon whose contour intersects every horizontal line (scan line) twice at the most (though, its top-most and/or the
bottom edge could be horizontal).

fillPoly

Fills the area bounded by one or more polygons.

C++: void fillPoly(Mat& img, const Point** pts, const int* npts, int ncontours, const Scalar& color, int
lineType=8, int shift=0, Point offset=Point())

Python: cv2.fillPoly (img, pts, color[, lineType[, shift[, offset]]]) — None

C: void cvFillPoly (CvArr* img, CvPoint** pts, const int* npts, int contours, CvScalar color, int
line_type=8, int shift=0)

Python: cv.FillPoly (img, polys, color, lineType=8, shift=0) — None
Parameters
img — Image.
pts — Array of polygons where each polygon is represented as an array of points.
npts — Array of polygon vertex counters.
ncontours — Number of contours that bind the filled region.
color — Polygon color.
lineType — Type of the polygon boundaries. See the line() description.
shift — Number of fractional bits in the vertex coordinates.
offset — Optional offset of all points of the contours.

The function fillPoly fills an area bounded by several polygonal contours. The function can fill complex areas, for
example, areas with holes, contours with self-intersections (some of their parts), and so forth.

172 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

getTextSize

Calculates the width and height of a text string.
C++: Size getTextSize (const string& text, int fontFace, double fontScale, int thickness, int* baseLine)
Python: cv2.getTextSize (text, fontFace, fontScale, thickness) — retval, baseLine
C: void cvGetTextSize (const char* text_string, const CvFont* font, CvSize* text_size, int* baseline)
Python: cv.GetTextSize (textString, font)-> (textSize, baseline)
Parameters

text — Input text string.

fontFace — Font to use. See the putText () for details.

fontScale — Font scale. See the putText () for details.

thickness — Thickness of lines used to render the text. See putText () for details.

baseLine — Output parameter - y-coordinate of the baseline relative to the bottom-most text
point.

The function getTextSize calculates and returns the size of a box that contains the specified text. That is, the
following code renders some text, the tight box surrounding it, and the baseline:

// Use "y" to show that the baseLine is about
string text = "Funny text inside the box";
int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
double fontScale = 2;

int thickness = 3;

Mat img(600, 800, CV_8UC3, Scalar::all(0));

int baseline=0;
Size textSize = getTextSize(text, fontFace,

fontScale, thickness, &baseline);
baseline += thickness;

// center the text
Point textOrg((img.cols - textSize.width)/2,
(img.rows + textSize.height)/2);

// draw the box
rectangle(img, textOrg + Point(0, baseline),
textOrg + Point(textSize.width, -textSize.height),
Scalar(0,0,255));
// ... and the baseline first
line(img, textOrg + Point(0, thickness),
textOrg + Point(textSize.width, thickness),
Scalar(0, 0, 255));

// then put the text itself
putText(img, text, textOrg, fontFace, fontScale,
Scalar::all(255), thickness, 8);

InitFont

Initializes font structure (OpenCV 1.x API).

2.5. Drawing Functions 173

The OpenCV Reference Manual, Release 2.4.2

C: void cvInitFont (CvFont* font, int font_face, double hscale, double vscale, double shear=0, int thick-
ness=1, int line_type=8)

Parameters
font — Pointer to the font structure initialized by the function

font_face — Font name identifier. Only a subset of Hershey fonts
http://sources.isc.org/utils/misc/hershey-font.txt are supported now:

— CV_FONT_HERSHEY_SIMPLEX normal size sans-serif font
— CV_FONT_HERSHEY_PLAIN small size sans-serif font

— CV_FONT_HERSHEY_DUPLEX normal size sans-serif font (more complex than
CV_FONT_HERSHEY_SIMPLEX)

— CV_FONT_HERSHEY_COMPLEX normal size serif font

— CV_FONT_HERSHEY_TRIPLEX normal size serif font (more complex than
CV_FONT_HERSHEY_COMPLEX)

— CV_FONT_HERSHEY_COMPLEX_SMALL smaller version of
CV_FONT_HERSHEY_COMPLEX

— CV_FONT_HERSHEY_SCRIPT_SIMPLEX hand-writing style font

— CV_FONT_HERSHEY_SCRIPT COMPLEX more complex variant of
CV_FONT_HERSHEY_SCRIPT_SIMPLEX

The parameter can be composited from one of the values above and an optional
CV_FONT_ITALIC flag, which indicates italic or oblique font.

hscale — Horizontal scale. If equal to 1.0 , the characters have the original width depending
on the font type. If equal to 0.5f , the characters are of half the original width.

vscale — Vertical scale. If equal to 1.0f , the characters have the original height depending
on the font type. If equal to 0.5f , the characters are of half the original height.

shear — Approximate tangent of the character slope relative to the vertical line. A zero value
means a non-italic font, 1.0f means about a 45 degree slope, etc.

thickness — Thickness of the text strokes

line_type — Type of the strokes, see line() description
The function initializes the font structure that can be passed to text rendering functions.
See Also:

PutText()

line

Draws a line segment connecting two points.

C++: void line(Mat& img, Point ptl, Point pt2, const Scalar& color, int thickness=1, int lineType=8, int
shift=0)

Python: cv2.line(img, ptl, pt2, color[, thickness[, lineType[, shift]]]) — None

C: void cvLine (CvArr* img, CvPoint ptl, CvPoint pt2, CvScalar color, int thickness=1, int line_type=8, int
shift=0)

Python: cv.Line(img, ptl, pt2, color, thickness=1, lineType=8, shift=0) — None

174 Chapter 2. core. The Core Functionality

http://sources.isc.org/utils/misc/hershey-font.txt

The OpenCV Reference Manual, Release 2.4.2

Parameters
img — Image.
ptl — First point of the line segment.
pt2 — Second point of the line segment.
color — Line color.
thickness — Line thickness.
lineType — Type of the line:
— 8 (or omitted) - 8-connected line.
— 4 - 4-connected line.

— CV_AA - antialiased line.

shift — Number of fractional bits in the point coordinates.

The function line draws the line segment between pt1 and pt2 points in the image. The line is clipped by the image

boundaries. For non-antialiased lines with integer coordinates,

the 8-connected or 4-connected Bresenham algorithm

is used. Thick lines are drawn with rounding endings. Antialiased lines are drawn using Gaussian filtering. To specify

the line color, you may use the macro CV_RGB(r, g, b).

Linelterator

class LineIterator
Class for iterating pixels on a raster line.

class LineIterator

{
public:
// creates iterators for the line connecting ptl and pt2
// the line will be clipped on the image boundaries
// the line is 8-connected or 4-connected
// If leftToRight=true, then the iteration is always done
// from the left-most point to the right most,
// not to depend on the ordering of ptl and pt2 parameters
LineIterator(const Mat& img, Point ptl, Point pt2,
int connectivity=8, bool leftToRight=false);
// returns pointer to the current line pixel
uchar* operator *();
// move the iterator to the next pixel
Linelterator& operator ++();
LineIterator operator ++(int);
// internal state of the iterator
uchar* ptr;
int err, count;
int minusDelta, plusDelta;
int minusStep, plusStep;
}

The class LineIterator is used to get each pixel of a raster line. It can be treated as versatile implementation of the

Bresenham algorithm where you can stop at each pixel and do

some extra processing, for example, grab pixel values

along the line or draw a line with an effect (for example, with XOR operation).

The number of pixels along the line is stored in LineIterator

p:count.

2.5. Drawing Functions

175

The OpenCV Reference Manual, Release 2.4.2

// grabs pixels along the line (ptl, pt2)
// from 8-bit 3-channel image to the buffer
LineIterator it(img, ptl, pt2, 8);
vector<Vec3b> buf(it.count);

for(int i = 0; i < it.count; i++, ++it)
buf[i] = *(const Vec3b)=xit;

rectangle

Draws a simple, thick, or filled up-right rectangle.

C++: void rectangle (Mat& img, Point ptl, Point pt2, const Scalar& color, int thickness=1, int lineType=8,
int shift=0)

C++: void rectangle(Mat& img, Rect rec, const Scalar& color, int thickness=1, int lineType=8, int shift=0
)

Python: cv2.rectangle(img, ptl, pt2, color[, thickness[, lineType[, shift]]]) — None

C: void cvRectangle (CvArr* img, CvPoint ptl, CvPoint pt2, CvScalar color, int thickness=1, int
line_type=8, int shift=0)

Python: cv.Rectangle(img, ptl, pt2, color, thickness=1, lineType=8, shift=0) — None
Parameters
img — Image.
ptl — Vertex of the rectangle.
pt2 — Vertex of the rectangle opposite to ptl.
rec — Alternative specification of the drawn rectangle.
color — Rectangle color or brightness (grayscale image).

thickness — Thickness of lines that make up the rectangle. Negative values, like CV_FILLED
, mean that the function has to draw a filled rectangle.

lineType — Type of the line. See the Line() description.
shift — Number of fractional bits in the point coordinates.

The function rectangle draws a rectangle outline or a filled rectangle whose two opposite corners are ptl and pt2,
orr.tl()and r.br()-Point(1,1).

polylines

Draws several polygonal curves.

C++: void polylines (Mat& img, const Point** pts, const int* npts, int ncontours, bool isClosed, const
Scalar& color, int thickness=1, int lineType=8, int shift=0)

Python: cv2.polylines(img, pts, isClosed, Color[, thickness[, lineType[, shift]]]) — None

C: void cvPolyLine(CvArr* img, CvPoint** pts, const int* npts, int contours, int is_closed, CvScalar color,
int thickness=1, int line_type=8, int shift=0)

Python: cv.PolyLine(img, polys, is_closed, color, thickness=1, lineType=8, shift=0) — None

Parameters

176 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

img — Image.

pts — Array of polygonal curves.

npts — Array of polygon vertex counters.
ncontours — Number of curves.

isClosed — Flag indicating whether the drawn polylines are closed or not. If they are closed,
the function draws a line from the last vertex of each curve to its first vertex.

color — Polyline color.

thickness — Thickness of the polyline edges.

lineType — Type of the line segments. See the line() description.
shift — Number of fractional bits in the vertex coordinates.

The function polylines draws one or more polygonal curves.

drawContours

Draws contours outlines or filled contours.

C++: void drawContours (InputOutputArray image, InputArrayOfArrays contours, int contourldx, const
Scalar& color, int thickness=1, int lineType==8, InputArray hierarchy=noArray(),
int maxLevel=INT_MAX, Point offset=Point())

Python: cv2.drawContours(image, contours, contourldx, color[, thickness[, lineType[, hierarchy[,
maxLevel[, offset]]]]]) — None

C: void cvDrawContours (CvArr* img, CvSeq* contour, CvScalar external_color, CvScalar hole_color, int
max_level, int thickness=1, int line_type=8, CvPoint offset=cvPoint(0,0))

Python: cv.DrawContours (img, contour, external_color, hole_color, max_level, thickness=1, lineType=S8,
offset=(0, 0)) — None

Parameters
image — Destination image.
contours — All the input contours. Each contour is stored as a point vector.

contourldx — Parameter indicating a contour to draw. If it is negative, all the contours are
drawn.

color — Color of the contours.

thickness — Thickness of lines the contours are drawn with. If it is negative (for example,
thickness=CV_FILLED), the contour interiors are drawn.

lineType — Line connectivity. See line() for details.

hierarchy — Optional information about hierarchy. It is only needed if you want to draw
only some of the contours (see maxLevel).

maxLevel — Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
If itis 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
draws the contours, all the nested contours, all the nested-to-nested contours, and so on.
This parameter is only taken into account when there is hierarchy available.

offset — Optional contour shift parameter. Shift all the drawn contours by the specified
offset = (dx, dy) .

contour — Pointer to the first contour.

2.5. Drawing Functions

177

The OpenCV Reference Manual, Release 2.4.2

external_color — Color of external contours.
hole_color — Color of internal contours (holes).

The function draws contour outlines in the image if thickness > O or fills the area bounded by the contours if
thickness < 0. The example below shows how to retrieve connected components from the binary image and label
them:

#include "cv.h"
#include "highgui.h"

using namespace cv;

int main(int argc, charxx argv)

{
Mat src;
// the first command-line parameter must be a filename of the binary
// (black-n-white) image
if(argc '= 2 || !(src=imread(argv[1l], 0)).data)
return -1;
Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
src = src > 1;
namedWindow("Source", 1);
imshow("Source", src);
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
findContours(src, contours, hierarchy,
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
// iterate through all the top-level contours,
// draw each connected component with its own random color
int idx = 0;
for(; idx >= 0; idx = hierarchy[idx][0])
{
Scalar color(rand()&255, rand()&255, rand()&255);
drawContours(dst, contours, idx, color, CV_FILLED, 8, hierarchy);
}
namedWindow("Components", 1);
imshow("Components", dst);
waitKey(0);
}
putText

Draws a text string.

C++: void putText (Mat& img, const string& text, Point org, int fontFace, double fontScale, Scalar color,
int thickness=1, int lineType=8, bool bottomLeftOrigin=false)

Python: cv2.putText(img, text, org, fontFace, fontScale, color[, thickness[, lineType[, bottomLeftOrigin]
) — None

C: void cvPutText (CvArr* img, const char* text, CvPoint org, const CvFont* font, CvScalar color)

178 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Python: cv.PutText (img, text, org, font, color) — None
Parameters
img — Image.
text — Text string to be drawn.
org — Bottom-left corner of the text string in the image.
font — CvFont structure initialized using InitFont().

fontFace — Font type. One of FONT_HERSHEY_SIMPLEX, FONT_HERSHEY_PLAIN,
FONT_HERSHEY_DUPLEX, FONT_HERSHEY_COMPLEX, FONT_HERSHEY_TRIPLEX,
FONT_HERSHEY_COMPLEX_SMALL, FONT_HERSHEY_SCRIPT_SIMPLEX, or
FONT_HERSHEY_SCRIPT_COMPLEX, where each of the font ID’s can be combined with
FONT_HERSHEY_ITALIC to get the slanted letters.

fontScale — Font scale factor that is multiplied by the font-specific base size.
color — Text color.

thickness — Thickness of the lines used to draw a text.

lineType — Line type. See the line for details.

bottomLeftOrigin — When true, the image data origin is at the bottom-left corner. Other-
wise, it is at the top-left corner.

The function putText renders the specified text string in the image. Symbols that cannot be rendered using the
specified font are replaced by question marks. See getTextSize() for a text rendering code example.

2.6 XML/YAML Persistence

XML/YAML file storages. Writing to a file storage.

You can store and then restore various OpenCV data structures to/from XML (http://www.w3c.org/XML) or YAML
(http://www.yaml.org) formats. Also, it is possible store and load arbitrarily complex data structures, which include
OpenCV data structures, as well as primitive data types (integer and floating-point numbers and text strings) as their
elements.

Use the following procedure to write something to XML or YAML:

1. Create new FileStorage and open it for writing. It can be done with a single call to
FileStorage::FileStorage() constructor that takes a filename, or you can use the default construc-
tor and then call FileStorage: :open(). Format of the file (XML or YAML) is determined from the
filename extension (”.xml” and ”.yml”/”.yaml”, respectively)

2. Write all the data you want using the streaming operator >>, just like in the case of STL streams.
3. Close the file using FileStorage: :release(). FileStorage destructor also closes the file.
Here is an example:

#include "opencv2/opencv.hpp"
#include <time.h>

using namespace cv;

int main(int, chars* argv)

{

2.6. XML/YAML Persistence 179

http://www.w3c.org/XML
http://www.yaml.org

The OpenCV Reference Manual, Release 2.4.2

FileStorage fs("test.yml", FileStorage::WRITE);

fs << "frameCount" << 5;

time_t rawtime; time(&rawtime);

fs << "calibrationDate" << asctime(localtime(&rawtime));

Mat cameraMatrix = (Mat_<double>(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1);
Mat distCoeffs = (Mat_<double>(5,1) << 0.1, 0.01, -0.001, 0, 0);

fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;

fs << "features" << "[";

for(int 1 = 0; 1 < 3; i++)

{
int x = rand() % 640;
int y = rand() % 480;
uchar lbp = rand() % 256;
fs << "{:" << "Xx" << x << "y" <<y << "lbp" << "[:";
for(int j = 0; j < 8; j++)

fs << ((lbp >> j) & 1);

fs << "]" << "}y,

}

fs << "]";

fs.release();

return 0;

}

The sample above stores to XML and integer, text string (calibration date), 2 matrices, and a custom structure “feature”,
which includes feature coordinates and LBP (local binary pattern) value. Here is output of the sample:

%YAML:1.0
frameCount: 5
calibrationDate: "Fri Jun 17 14:09:29 2011\n"

cameraMatrix: !!opencv-matrix

rows: 3

cols: 3

dt: d

data: [1000., 0., 320., 0., 1000., 240., 0., 0., 1.]
distCoeffs: !!opencv-matrix

rows: 5

cols: 1

dt: d

data: [1.0000000000000001e-01, 1.0000000000000000e-02,
-1.0000000000000000e-03, 0., 0.]
features:
- { x:167, y:49, lbp:[1, 06, 0, 1, 1, 0, 1, 171}
- { x:298, y:130, lbp:[0, 06, 0, 1, 06, 0, 1, 1] }
- { x:344, y:158, 1lbp:[1, 1, 6, 6, 0, 0, 1, 06 1 }

As an exercise, you can replace ”.yml” with ”.xml” in the sample above and see, how the corresponding XML file will
look like.

Several things can be noted by looking at the sample code and the output:

* The produced YAML (and XML) consists of heterogeneous collections that can be nested. There are 2
types of collections: named collections (mappings) and unnamed collections (sequences). In mappings
each element has a name and is accessed by name. This is similar to structures and std: :map in C/C++
and dictionaries in Python. In sequences elements do not have names, they are accessed by indices. This
is similar to arrays and std: :vector in C/C++ and lists, tuples in Python. “Heterogeneous” means that
elements of each single collection can have different types.

180 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Top-level collection in YAML/XML is a mapping. Each matrix is stored as a mapping, and the matrix
elements are stored as a sequence. Then, there is a sequence of features, where each feature is represented
a mapping, and lbp value in a nested sequence.

* When you write to a mapping (a structure), you write element name followed by its value. When you write

to a sequence, you simply write the elements one by one. OpenCV data structures (such as cv::Mat) are
written in absolutely the same way as simple C data structures - using ‘‘<<*¢ operator.

To write a mapping, you first write the special string “{* to the storage, then write the elements as pairs
(fs << <element_name> << <element_value>) and then write the closing “}”.

To write a sequence, you first write the special string ““[”’, then write the elements, then write the closing
“]’,'

In YAML (but not XML), mappings and sequences can be written in a compact Python-like inline form. In
the sample above matrix elements, as well as each feature, including its Ibp value, is stored in such inline

form. To store a mapping/sequence in a compact form, put ”:” after the opening character, e.g. use “{:”
instead of “{* and “[:” instead of “[”’. When the data is written to XML, those extra ”:” are ignored.

Reading data from a file storage.

To read the previously written XML or YAML file, do the following:

1. Open the file storage using FileStorage::FileStorage() constructor or FileStorage: :open() method.
In the current implementation the whole file is parsed and the whole representation of file storage is built in
memory as a hierarchy of file nodes (see FileNode)

2. Read the data you are interested in. Use FileStorage: :operator []1(), FileNode: :operator []() and/or
FileNodeIterator.

3. Close the storage using FileStorage::release().

Here is how to read the file created by the code sample above:

FileStorage fs2("test.yml", FileStorage::READ);

// first method: use (type) operator on FileNode.
int frameCount = (int)fs2["frameCount"];

std::string date;
// second method: use FileNode::operator >>
fs2["calibrationDate"] >> date;

Mat cameraMatrix2, distCoeffs2;
fs2["cameraMatrix"] >> cameraMatrix2;
fs2["distCoeffs"] >> distCoeffs2;

cout << "frameCount: " << frameCount << endl
<< "calibration date: " << date << endl
<< "camera matrix: " << cameraMatrix2 << endl

<< "distortion coeffs:

<< distCoeffs2 << endl;

FileNode features = fs2["features"];

FileNodeIterator it = features.begin(), it_end = features.end();
int idx = 0;

std::vector<uchar> lbpval;

// iterate through a sequence using FileNodelIterator

for(; it

= it_end; ++it, idx++)

2.6. XML/YAML Persistence 181

The OpenCV Reference Manual, Release 2.4.2

{
cout << "feature #" << idx << ": ";
cout << "x=" << (int) (#it)["x"] << ", y=" << (int) (*it)["y"] << ", lbp: (";
// you can also easily read numerical arrays using FileNode >> std::vector operator.
(xit)["lbp"] >> lbpval;
for(int i = 0; i < (int)lbpval.size(); i++)
cout << " " << (int)lbpvallil;
cout << ")" << endl;
}

fs.release();

FileStorage

class FileStorage

XML/YAML file storage class that encapsulates all the information necessary for writing or reading data to/from a
file.

FileStorage::FileStorage

The constructors.

C++: FileStorage::FileStorage()

C++: FileStorage::FileStorage(const string& source, int flags, const string& encoding=string())
Parameters

source — Name of the file to open or the text string to read the data from. Extension of
the file (.xml or .yml/.yaml) determines its format (XML or YAML respectively). Also
you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz.
If both FileStorage: :WRITE and FileStorage: :MEMORY flags are specified, source is
used just to specify the output file format (e.g. mydata.xml, .yml etc.).

flags — Mode of operation. Possible values are:

— FileStorage::READ Open the file for reading.

— FileStorage::WRITE Open the file for writing.

— FileStorage::APPEND Open the file for appending.

— FileStorage::MEMORY Read data from source or write data to the internal buffer
(which is returned by FileStorage: : release)

encoding — Encoding of the file. Note that UTF-16 XML encoding is not supported cur-
rently and you should use 8-bit encoding instead of it.

The full constructor opens the file. Alternatively you can use the default constructor and then call
FileStorage::open().

FileStorage::open

Opens a file.
C++: bool FileStorage: :open(const string& filename, int flags, const string& encoding=string())

See description of parameters in FileStorage::FileStorage(). The method calls FileStorage::release()
before opening the file.

182 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

FileStorage::isOpened

Checks whether the file is opened.
C++: bool FileStorage: :isOpened() const
Returns true if the object is associated with the current file and false otherwise.

It is a good practice to call this method after you tried to open a file.

FileStorage::release

Closes the file and releases all the memory buffers.
C++: void FileStorage::release()

Call this method after all I/O operations with the storage are finished.

FileStorage::releaseAndGetString

Closes the file and releases all the memory buffers.
C++: string FileStorage: :releaseAndGetString()

Call this method after all I/O operations with the storage are finished. If the storage was opened for writing data and
FileStorage: :WRITE was specified

FileStorage::getFirstTopLevelNode

Returns the first element of the top-level mapping.
C++: FileNode FileStorage: :getFirstTopLevelNode() const

Returns The first element of the top-level mapping.

FileStorage::root

Returns the top-level mapping
C++: FileNode FileStorage: : root (int streamidx=0) const
Parameters

streamidx — Zero-based index of the stream. In most cases there is only one stream in the
file. However, YAML supports multiple streams and so there can be several.

Returns The top-level mapping.

FileStorage::operator|]

Returns the specified element of the top-level mapping.
C++: FileNode FileStorage: :operator[] (const string& nodename) const
C++: FileNode FileStorage: :operator[] (const char* nodename) const

Parameters

2.6. XML/YAML Persistence 183

The OpenCV Reference Manual, Release 2.4.2

nodename — Name of the file node.

Returns Node with the given name.

FileStorage::operator*

Returns the obsolete C FileStorage structure.
C++: CvFileStorage* FileStorage: :operatorx()
C++: const CvFileStorage* FileStorage: :operator*() const

Returns Pointer to the underlying C FileStorage structure

FileStorage::writeRaw

Writes multiple numbers.

C++: void FileStorage: :writeRaw(const string& fmt, const uchar* vec, size_t len)

the following format

Parameters
fmt - Specification of each array element that has
([countI{'u’|'c’|'w"|'s"|"i"|"f"|'d"})... where the characters correspond

to fundamental C++ types:

u 8-bit unsigned number

¢ 8-bit signed number

w 16-bit unsigned number

s 16-bit signed number

i 32-bit signed number

f single precision floating-point number

— d double precision floating-point number

— r pointer, 32 lower bits of which are written as a signed integer. The type can be used to
store structures with links between the elements.

count is the optional counter of values of a given type. For example, 2if means that
each array element is a structure of 2 integers, followed by a single-precision floating-point
number. The equivalent notations of the above specification are * iif °, * 2ilf © and so
forth. Other examples: u means that the array consists of bytes, and 2d means the array
consists of pairs of doubles.

vec — Pointer to the written array.

len — Number of the uchar elements to write.

Writes one or more numbers of the specified format to the currently written structure. Usually it is more convenient to

use operator <<() instead of this method.

FileStorage::writeObj

Writes the registered C structure (CvMat, CvMatND, CvSeq).

C++: void FileStorage: :write0Obj (const string& name, const void* obj)

184 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Parameters
name — Name of the written object.
obj — Pointer to the object.

See Write() for details.

FileStorage::getDefaultObjectName

Returns the normalized object name for the specified name of a file.
C++: static string FileStorage: :getDefaultObjectName (const string& filename)
Parameters
filename — Name of a file

Returns The normalized object name.

operator <<

Writes data to a file storage.
C++: template<typename _Tp> FileStorage& operator<<(FileStorage& fs, const _Tp& value)
C++: template<typename _Tp> FileStorage& operator<<(FileStorage& fs, const vector<_Tp>& vec)
Parameters
fs — Opened file storage to write data.
value — Value to be written to the file storage.
vec — Vector of values to be written to the file storage.

It is the main function to write data to a file storage. See an example of its usage at the beginning of the section.

operator >>

Reads data from a file storage.
C++: template<typename _Tp> void operator>>(const FileNode& n, _Tp& value)
C++: template<typename _Tp> void operator>>(const FileNode& n, vector<_Tp>& vec)
C++: template<typename _Tp> FileNodelterator& operator>>(FileNodelterator& it, _Tp& value)
C++: template<typename _Tp> FileNodelterator& operator>>(FileNodelterator& it, vector<_Tp>& vec)
Parameters
n — Node from which data will be read.
it — Iterator from which data will be read.
value — Value to be read from the file storage.
vec — Vector of values to be read from the file storage.

It is the main function to read data from a file storage. See an example of its usage at the beginning of the section.

2.6. XML/YAML Persistence 185

The OpenCV Reference Manual, Release 2.4.2

FileNode

class FileNode

File Storage Node class. The node is used to store each and every element of the file storage opened for reading.
When XML/YAML file is read, it is first parsed and stored in the memory as a hierarchical collection of nodes. Each
node can be a “leaf” that is contain a single number or a string, or be a collection of other nodes. There can be
named collections (mappings) where each element has a name and it is accessed by a name, and ordered collections
(sequences) where elements do not have names but rather accessed by index. Type of the file node can be determined
using FileNode: :type() method.

Note that file nodes are only used for navigating file storages opened for reading. When a file storage is opened for
writing, no data is stored in memory after it is written.

FileNode::FileNode

The constructors.
C++: FileNode: :FileNode()
C++: FileNode: :FileNode (const CvFileStorage* fs, const CvFileNode* node)
C++: FileNode::FileNode (const FileNode& node)
Parameters
fs — Pointer to the obsolete file storage structure.
node — File node to be used as initialization for the created file node.

These constructors are used to create a default file node, construct it from obsolete structures or from the another file
node.

FileNode::operator|]

Returns element of a mapping node or a sequence node.
C++: FileNode FileNode: :operator[] (const string& nodename) const
C++: FileNode FileNode: :operator[] (const char* nodename) const
C++: FileNode FileNode: :operator[] (inti) const
Parameters
nodename — Name of an element in the mapping node.
i — Index of an element in the sequence node.

Returns Returns the element with the given identifier.

FileNode::type

Returns type of the node.
C++: int FileNode: :type() const
Returns

Type of the node. Possible values are:

186 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

* FileNode::NONE Empty node.
* FileNode::INT Integer.

* FileNode::REAL Floating-point number.

* FileNode::FLOAT Synonym or REAL.

¢ FileNode::STR Text string in UTF-8 encoding.
* FileNode::STRING Synonym for STR.

* FileNode::REF Integer of type size_t. Typically used for storing complex dynamic struc-
tures where some elements reference the others.

* FileNode::SEQ Sequence.
* FileNode::MAP Mapping.

* FileNode::FLOW Compact representation of a sequence or mapping. Used only by the

YAML writer.

* FileNode::USER Registered object (e.g. a matrix).
* FileNode::EMPTY Empty structure (sequence or mapping).
* FileNode::NAMED The node has a name (i.e. it is an element of a mapping).

FileNode::empty

Checks whether the node is empty.
C++: bool FileNode: :empty() const

Returns true if the node is empty.

FileNode::isNone

Checks whether the node is a “none” object

C++: bool FileNode: :isNone() const

Returns true if the node is a “none” object.

FileNode::isSeq

Checks whether the node is a sequence.
C++: bool FileNode::isSeq() const

Returns true if the node is a sequence.

FileNode::isMap

Checks whether the node is a mapping.
C++: bool FileNode::isMap() const

Returns true if the node is a mapping.

2.6. XML/YAML Persistence

187

The OpenCV Reference Manual, Release 2.4.2

FileNode::isInt

Checks whether the node is an integer.
C++: bool FileNode: :isInt() const

Returns true if the node is an integer.

FileNode::isReal

Checks whether the node is a floating-point number.
C++: bool FileNode: :isReal() const

Returns true if the node is a floating-point number.

FileNode::isString

Checks whether the node is a text string.
C++: bool FileNode: :isString() const

Returns true if the node is a text string.

FileNode::isNamed

Checks whether the node has a name.
C++: bool FileNode: :isNamed () const

Returns true if the node has a name.

FileNode::name

Returns the node name.
C++: string FileNode: :name() const

Returns The node name or an empty string if the node is nameless.

FileNode::size

Returns the number of elements in the node.
C++: size_t FileNode::size() const

Returns The number of elements in the node, if it is a sequence or mapping, or 1 otherwise.

FileNode::operator int

Returns the node content as an integer.
C++: FileNode: :operatorint() const

Returns The node content as an integer. If the node stores a floating-point number, it is rounded.

188 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

FileNode::operator float

Returns the node content as float.
C++: FileNode: :operator float() const

Returns The node content as float.

FileNode::operator double

Returns the node content as double.
C++: FileNode: :operator double() const

Returns The node content as double.

FileNode::operator string

Returns the node content as text string.
C++: FileNode: :operator string() const

Returns The node content as a text string.

FileNode::operator*

Returns pointer to the underlying obsolete file node structure.
C++: CvFileNode* FileNode: :operatorx()

Returns Pointer to the underlying obsolete file node structure.

FileNode::begin

Returns the iterator pointing to the first node element.
C++: FileNodelterator FileNode: :begin() const

Returns Iterator pointing to the first node element.

FileNode::end

Returns the iterator pointing to the element following the last node element.

C++: FileNodelterator FileNode: :end() const

Returns Iterator pointing to the element following the last node element.

FileNode::readRaw

Reads node elements to the buffer with the specified format.
C++: void FileNode: : readRaw (const string& fmt, uchar* vec, size_t len) const

Parameters

2.6. XML/YAML Persistence

189

The OpenCV Reference Manual, Release 2.4.2

fmt — Specification of each array element. It has the same format as in
FileStorage::writeRaw().

vec — Pointer to the destination array.

len — Number of elements to read. If it is greater than number of remaining elements then
all of them will be read.

Usually it is more convenient to use operator >>() instead of this method.

FileNode::readObj

Reads the registered object.
C++: void* FileNode::readObj() const
Returns Pointer to the read object.

See Read () for details.

FileNodelterator

class FileNodeIterator

The class FileNodeIterator is used to iterate through sequences and mappings. A standard STL notation, with
node.begin(), node.end() denoting the beginning and the end of a sequence, stored in node. See the data reading
sample in the beginning of the section.

FileNodelterator::FileNodelterator

The constructors.
C++: FileNodeIterator::FileNodeIterator()

C++: FileNodeIterator::FileNodeIterator(const CvFileStorage* fs, const CvFileNode* node, size_t
ofs=0)

C++: FileNodeIterator::FileNodeIterator(const FileNodelterator& it)
Parameters
fs — File storage for the iterator.
node — File node for the iterator.
ofs — Index of the element in the node. The created iterator will point to this element.
it — Iterator to be used as initialization for the created iterator.

These constructors are used to create a default iterator, set it to specific element in a file node or construct it from
another iterator.

FileNodelterator::operator*

Returns the currently observed element.
C++: FileNode FileNodeIterator: :operator*() const

Returns Currently observed element.

190 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

FileNodelterator::operator->

Accesses methods of the currently observed element.

C++: FileNode FileNodeIterator: :operator->() const

FileNodelterator::operator ++

Moves iterator to the next node.
C++: FileNodelterator& FileNodeIterator: :operator++()

C++: FileNodelterator FileNodeIterator: :operator++(int None)

FileNodelterator::operator —

Moves iterator to the previous node.
C++: FileNodelterator& FileNodeIterator::operator- ()

C++: FileNodelterator FileNodeIterator: :operator- (int None)

FileNodelterator::operator +=

Moves iterator forward by the specified offset.
C++: FileNodelterator& FileNodeIterator::operator+=(int ofs)
Parameters

ofs — Offset (possibly negative) to move the iterator.

FileNodelterator::operator -=

Moves iterator backward by the specified offset (possibly negative).
C++: FileNodelterator& FileNodeIterator: :operator-=(int ofs)
Parameters

ofs — Offset (possibly negative) to move the iterator.

FileNodelterator::readRaw

Reads node elements to the buffer with the specified format.

C++: FileNodelterator& FileNodeIterator::readRaw(const string& fmt, uchar* vee, size_t max-
Count=(size_t)INT_MAX)

Parameters

fmt - Specification of each array element. It has the same format as in
FileStorage::writeRaw().

vec — Pointer to the destination array.

maxCount — Number of elements to read. If it is greater than number of remaining elements
then all of them will be read.

2.6. XML/YAML Persistence 191

The OpenCV Reference Manual, Release 2.4.2

Usually it is more convenient to use operator >>() instead of this method.

2.7 XML/YAML Persistence (C API)

The section describes the OpenCV 1.x API for reading and writing data structures to/from XML or YAML files. It is
now recommended to use the new C++ interface for reading and writing data.

CvFileStorage

struct CvFileStorage

The structure CvFileStorage is a “black box” representation of the file storage associated with a file on disk. Several
functions that are described below take CvFileStoragex as inputs and allow the user to save or to load hierarchical
collections that consist of scalar values, standard CXCore objects (such as matrices, sequences, graphs), and user-
defined objects.

OpenCV can read and write data in XML (http://www.w3c.org/XML) or YAML (http://www.yaml.org) formats. Be-
low is an example of 3x3 floating-point identity matrix A, stored in XML and YAML files using CXCore functions:

XML.:

<?xml version="1.0">

<opencv_storage>

<A type_id="opencv-matrix">
<rows>3</rows>

<cols>3</cols>

<dt>f</dt>

<data>1l. 0. 0. 0. 1. 0. 0. 0. l.</data>

</opencv_storage>

YAML.:

%SYAML:1.0
A: !'opencv-matrix
rows: 3
cols: 3
dt: f
data: [1., 0., 0., 0., 1., 0., 0., 0., 1.]

As it can be seen from the examples, XML uses nested tags to represent hierarchy, while YAML uses indentation for
that purpose (similar to the Python programming language).

The same functions can read and write data in both formats; the particular format is determined by the extension of
the opened file, ”.xml” for XML files and ”.yml” or ”.yaml” for YAML.

CvFileNode

struct CvFileNode
File storage node. When XML/YAML file is read, it is first parsed and stored in the memory as a hierarchical
collection of nodes. Each node can be a “leaf”, that is, contain a single number or a string, or be a collection of
other nodes. Collections are also referenced to as “structures” in the data writing functions. There can be named
collections (mappings), where each element has a name and is accessed by a name, and ordered collections
(sequences), where elements do not have names, but rather accessed by index.

192 Chapter 2. core. The Core Functionality

http://www.w3c.org/XML
http://www.yaml.org

The OpenCV Reference Manual, Release 2.4.2

int tag

type of the file node:

* CV_NODE_NONE - empty node

¢ CV_NODE_INT - an integer
CV_NODE_REAL - a floating-point number
CV_NODE_STR - text string
CV_NODE_SEQ - a sequence
CV_NODE_MAP - a mapping

type of the node can be retrieved using CV_NODE_TYPE (node->tag) macro.

CvTypelnfo* info

optional pointer to the user type information. If you look at the matrix representation in XML and YAML,
shown above, you may notice type_id="opencv-matrix" or ! !opencv-matrix strings. They are used
to specify that the certain element of a file is a representation of a data structure of certain type (“opencv-
matrix” corresponds to CvMat). When a file is parsed, such type identifiers are passed to FindType() to
find type information and the pointer to it is stored in the file node. See CvTypeInfo for more details.

union data
the node data, declared as:

union
{
double f; /* scalar floating-point number x*/
int i; /* scalar integer number */
CvString str; /* text string */
CvSeqx seq; /* sequence (ordered collection of file nodes) */
struct CvMapx map; /* map (collection of named file nodes) x/
} data;

Primitive nodes are read using ReadInt(), ReadReal() and ReadString(). Sequences are read by
iterating through node->data.seq (see “Dynamic Data Structures” section). Mappings are read using
GetFileNodeByName (). Nodes with the specified type (so that node->info != NULL) can be read using

Read ().

CvAttrList

struct CvAttrList
List of attributes.

typedef struct CvAttrList

{
const charxx attr; /x NULL-terminated array of (attribute_name,attribute_value) pairs */
struct CvAttrList* next; /* pointer to next chunk of the attributes list */

}

CvAttrList;

/* initializes CvAttrList structure */
inline CvAttrList cvAttrList(const charsx attr=NULL, CvAttrListx next=NULL);

/* returns attribute value or O (NULL) if there is no such attribute x*/
const charx cvAttrValue(const CvAttrListx attr, const charx attr_name);

2.7. XML/YAML Persistence (C API)

193

The OpenCV Reference Manual, Release 2.4.2

In the current implementation, attributes are used to pass extra parameters when writing user objects (see Write()).
XML attributes inside tags are not supported, aside from the object type specification (type_id attribute).

CvTypelnfo

struct CvTypeInfo
Type information.

typedef int (CV_CDECL *CvIsInstanceFunc)(const void* structPtr);
typedef void (CV_CDECL *CvReleaseFunc)(voidx* structDblPtr);
typedef voidx (CV_CDECL *CvReadFunc)(CvFileStoragex storage, CvFileNodex node);
typedef void (CV_CDECL *CvWriteFunc)(CvFileStorage* storage,
const charx name,
const void* structPtr,
CvAttrList attributes);
typedef void+ (CV_CDECL *CvCloneFunc)(const void* structPtr);

typedef struct CvTypeInfo

{
int flags; /* not used */
int header_size; /* sizeof(CvTypeInfo) */
struct CvTypelInfox prev; /* previous registered type in the list x*/
struct CvTypeInfox next; /* next registered type in the list x/
const charx type_name; /* type name, written to file storage */

/* methods */

CvIsInstanceFunc is_instance; /* checks if the passed object belongs to the type x/
CvReleaseFunc release; /* releases object (memory etc.) */

CvReadFunc read; /* reads object from file storage x/

CvWriteFunc write; /* writes object to file storage =/

CvCloneFunc clone; /* creates a copy of the object */

}
CvTypelnfo;

The structure contains information about one of the standard or user-defined types. Instances of the type may or
may not contain a pointer to the corresponding CvTypeInfo structure. In any case, there is a way to find the type
info structure for a given object using the TypeOf () function. Alternatively, type info can be found by type name
using FindType (), which is used when an object is read from file storage. The user can register a new type with
RegisterType() that adds the type information structure into the beginning of the type list. Thus, it is possible to
create specialized types from generic standard types and override the basic methods.

Clone

Makes a clone of an object.
C: void* cvClone (const void* struct_ptr)
Parameters
struct_ptr — The object to clone

The function finds the type of a given object and calls clone with the passed object. Of course, if you know the object
type, for example, struct_ptris CvMatx, it is faster to call the specific function, like CloneMat ().

194 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

EndWriteStruct

Finishes writing to a file node collection.
C: void cvEndWriteStruct (CvFileStorage™ fs)
Parameters
fs — File storage
See Also:

StartWriteStruct().

FindType

Finds a type by its name.
C: CvTypelnfo* cvFindType (const char* type_name)
Parameters
type_name — Type name

The function finds a registered type by its name. It returns NULL if there is no type with the specified name.

FirstType

Returns the beginning of a type list.

C: CvTypelnfo* cvFirstType(void None)

The function returns the first type in the list of registered types. Navigation through the list can be done via the prev

and next fields of the CvTypeInfo structure.

GetFileNode

Finds a node in a map or file storage.

C: CvFileNode* cvGetFileNode (CvFileStorage* fs, CvFileNode* map, const CvStringHashNode* key, int
create_missing=0)

Parameters
fs — File storage

map — The parent map. If it is NULL, the function searches a top-level node. If both map
and key are NULLSs, the function returns the root file node - a map that contains top-level
nodes.

key — Unique pointer to the node name, retrieved with GetHashedKey ()

create_missing — Flag that specifies whether an absent node should be added to the map

The function finds a file node. It is a faster version of GetFileNodeByName() (see GetHashedKey () discussion).

Also, the function can insert a new node, if it is not in the map yet.

2.7. XML/YAML Persistence (C API)

195

The OpenCV Reference Manual, Release 2.4.2

GetFileNodeByName

Finds a node in a map or file storage.

C: CvFileNode* cvGetFileNodeByName (const CvFileStorage* fs, const CvFileNode* map, const char*
name)

Parameters
fs — File storage

map — The parent map. If it is NULL, the function searches in all the top-level nodes
(streams), starting with the first one.

name — The file node name

The function finds a file node by name. The node is searched either in map or, if the pointer is NULL, among the
top-level file storage nodes. Using this function for maps and GetSeqElem() (or sequence reader) for sequences, it
is possible to navigate through the file storage. To speed up multiple queries for a certain key (e.g., in the case of an
array of structures) one may use a combination of GetHashedKey () and GetFileNode().

GetFileNodeName

Returns the name of a file node.
C: const char* cvGetFileNodeName (const CvFileNode* node)
Parameters
node — File node

The function returns the name of a file node or NULL, if the file node does not have a name or if node is NULL.

GetHashedKey

Returns a unique pointer for a given name.

C: CvStringHashNode* cvGetHashedKey (CvFileStorage* fs, const char* name, int len=-1, int cre-
ate_missing=0)
Parameters
fs — File storage
name — Literal node name

len — Length of the name (if it is known apriori), or -1 if it needs to be calculated

create_missing — Flag that specifies, whether an absent key should be added into the hash
table

The function returns a unique pointer for each particular file node name. This pointer can be then passed to the
GetFileNode() function that is faster than GetFileNodeByName() because it compares text strings by comparing
pointers rather than the strings’ content.

Consider the following example where an array of points is encoded as a sequence of 2-entry maps:

points:
- { x: 10, y: 10 }
- { x: 20, y: 20 }
- { x: 30, y: 30 }
...

196 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Then, it is possible to get hashed “x” and “y” pointers to speed up decoding of the points.

#include "cxcore.h"

int main(int argc, charxx argv)

{
CvFileStoragex fs = cvOpenFileStorage("points.yml", 0, CV_STORAGE_READ);
CvStringHashNodex x_key = cvGetHashedNode(fs, "x", -1, 1);
CvStringHashNodex y_key = cvGetHashedNode(fs, "y", -1, 1);
CvFileNode* points = cvGetFileNodeByName(fs, 0, "points");

if(CV_NODE_IS_SEQ(points->tag))
{
CvSeq* seq = points->data.seq;
int i, total = seqg->total;
CvSeqReader reader;
cvStartReadSeq(seq, &reader, 0);
for(i = 0; i < total; i++)
{
CvFileNodex pt = (CvFileNodex)reader.ptr;
#if 1 /+ faster variant x/
CvFileNode* xnode = cvGetFileNode(fs, pt, x_key, 0);
CvFileNodex ynode = cvGetFileNode(fs, pt, y_key, 0);
assert(xnode && CV_NODE_IS_INT(xnode->tag) &&
ynode && CV_NODE_IS_INT(ynode->tag));
int x = xnode->data.i; // or x = cvReadInt(xnode, 0);
int y = ynode->data.i; // or y = cvReadInt(ynode, 0);
#elif 1 /* slower variant; does not use x_key & y_key */
CvFileNodex xnode = cvGetFileNodeByName(fs, pt, "x");
CvFileNode* ynode = cvGetFileNodeByName(fs, pt, "y");
assert(xnode && CV_NODE_IS_INT(xnode->tag) &&
ynode && CV_NODE_IS_INT(ynode->tag));
int x = xnode->data.i; // or x = cvReadInt(xnode,
int y = ynode->data.i; // or y = cvReadInt(ynode,
#else /* the slowest yet the easiest to use variant x/
int x = cvReadIntByName(fs, pt, "x", 0 /* default value %/);
int y = cvReadIntByName(fs, pt, "y", 0 /x default value %/);

o o
~ ~

#endif
CV_NEXT_SEQ_ELEM(seq->elem_size, reader);
printf("
}
}
cvReleaseFileStorage(&fs);
return 0;
}

Please note that whatever method of accessing a map you are using, it is still much slower than using plain sequences;
for example, in the above example, it is more efficient to encode the points as pairs of integers in a single numeric
sequence.

GetRootFileNode

Retrieves one of the top-level nodes of the file storage.
C: CvFileNode* cvGetRootFileNode (const CvFileStorage* fs, int stream_index=0)
Parameters

fs — File storage

2.7. XML/YAML Persistence (C API) 197

The OpenCV Reference Manual, Release 2.4.2

stream_index — Zero-based index of the stream. See StartNextStream() . In most cases,
there is only one stream in the file; however, there can be several.

The function returns one of the top-level file nodes. The top-level nodes do not have a name, they correspond to the
streams that are stored one after another in the file storage. If the index is out of range, the function returns a NULL
pointer, so all the top-level nodes can be iterated by subsequent calls to the function with stream_index=0,1, ...,
until the NULL pointer is returned. This function can be used as a base for recursive traversal of the file storage.

Load

Loads an object from a file.

C: void* cvLoad(const char* filename, CvMemStorage* memstorage=NULL, const char* name=NULL,
const char** real_name=NULL)

Python: cv.Load/(filename, storage=None, name=None) — generic
Parameters
filename — File name

memstorage — Memory storage for dynamic structures, such as CvSeq or CvGraph . It is
not used for matrices or images.

name — Optional object name. If it is NULL, the first top-level object in the storage will be
loaded.

real_name — Optional output parameter that will contain the name of the loaded object
(useful if name=NULL)

The function loads an object from a file. It basically reads the specified file, find the first top-level node and calls
Read () for that node. If the file node does not have type information or the type information can not be found by
the type name, the function returns NULL. After the object is loaded, the file storage is closed and all the temporary
buffers are deleted. Thus, to load a dynamic structure, such as a sequence, contour, or graph, one should pass a valid
memory storage destination to the function.

OpenFileStorage

Opens file storage for reading or writing data.

C: CvFileStorage* cvOpenFileStorage(const char* filename, CvMemStorage* memstorage, int flags,
const char* encoding=NULL)

Parameters
filename — Name of the file associated with the storage

memstorage — Memory storage used for temporary data and for storing dynamic structures,
such as CvSeq or CvGraph . If it is NULL, a temporary memory storage is created and used.

flags — Can be one of the following:
— CV_STORAGE_READ the storage is open for reading
— CV_STORAGE_WRITE the storage is open for writing

The function opens file storage for reading or writing data. In the latter case, a new file is created or an existing file
is rewritten. The type of the read or written file is determined by the filename extension: .xml for XML and .ym1l or
.yaml for YAML. The function returns a pointer to the CvFileStorage structure. If the file cannot be opened then the
function returns NULL.

198 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

Read

Decodes an object and returns a pointer to it.
C: void* cvRead (CvFileStorage* fs, CvFileNode* node, CvAttrList* attributes=NULL)
Parameters
fs — File storage
node — The root object node
attributes — Unused parameter

The function decodes a user object (creates an object in a native representation from the file storage subtree) and
returns it. The object to be decoded must be an instance of a registered type that supports the read method (see
CvTypeInfo). The type of the object is determined by the type name that is encoded in the file. If the object is a
dynamic structure, it is created either in memory storage and passed to OpenFileStorage() or, if a NULL pointer
was passed, in temporary memory storage, which is released when ReleaseFileStorage() is called. Otherwise, if
the object is not a dynamic structure, it is created in a heap and should be released with a specialized function or by
using the generic Release().

ReadByName

Finds an object by name and decodes it.

C: void* cvReadByName (CvFileStorage* fs, const CvFileNode* map, const char* name, CvAttrList* at-
tributes=NULL)

Parameters
fs — File storage
map — The parent map. If it is NULL, the function searches a top-level node.
name — The node name
attributes — Unused parameter

The function is a simple superposition of GetFileNodeByName () and Read ().

Readint

Retrieves an integer value from a file node.
C: int cvReadInt (const CvFileNode* node, int default_value=0)
Parameters
node — File node
default_value — The value that is returned if node is NULL

The function returns an integer that is represented by the file node. If the file node is NULL, the default_value is
returned (thus, it is convenient to call the function right after GetFileNode () without checking for a NULL pointer).
If the file node has type CV_NODE_INT, then node->data. i is returned. If the file node has type CV_NODE_REAL, then
node->data. f is converted to an integer and returned. Otherwise the error is reported.

2.7. XML/YAML Persistence (C API) 199

The OpenCV Reference Manual, Release 2.4.2

ReadIintByName

Finds a file node and returns its value.

C: int cvReadIntByName(const CvFileStorage* fs, const CvFileNode* map, const char* name, int de-
fault_value=0)

Parameters
fs — File storage
map — The parent map. If it is NULL, the function searches a top-level node.
name — The node name
default_value — The value that is returned if the file node is not found

The function is a simple superposition of GetFileNodeByName () and ReadInt ().

ReadRawData

Reads multiple numbers.
C: void cvReadRawData (const CvFileStorage™* fs, const CvFileNode* sre, void* dst, const char* dt)
Parameters
fs — File storage
src — The file node (a sequence) to read numbers from
dst — Pointer to the destination array
dt — Specification of each array element. It has the same format as in WriteRawData() .

The function reads elements from a file node that represents a sequence of scalars.

ReadRawDataSlice

Initializes file node sequence reader.

C: void cvReadRawDataSlice(const CvFileStorage* fs, CvSeqReader* reader, int count, void* dst, const
char* dt)

Parameters
fs — File storage
reader — The sequence reader. Initialize it with StartReadRawData() .
count — The number of elements to read
dst — Pointer to the destination array
dt — Specification of each array element. It has the same format as in WriteRawData() .

The function reads one or more elements from the file node, representing a sequence, to a user-specified array. The
total number of read sequence elements is a product of total and the number of components in each array element.
For example, if dt=21if, the function will read total*3 sequence elements. As with any sequence, some parts of the
file node sequence can be skipped or read repeatedly by repositioning the reader using SetSeqReaderPos ().

200 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

ReadReal

Retrieves a floating-point value from a file node.
C: double cvReadReal (const CvFileNode* node, double default_value=0.)
Parameters
node — File node
default_value — The value that is returned if node is NULL

The function returns a floating-point value that is represented by the file node. If the file node is NULL, the
default_value is returned (thus, it is convenient to call the function right after GetFileNode () without check-
ing for a NULL pointer). If the file node has type CV_NODE_REAL , then node->data. f is returned. If the file node has
type CV_NODE_INT , then node-:math: ‘>‘data. f is converted to floating-point and returned. Otherwise the result is
not determined.

ReadRealByName

Finds a file node and returns its value.

C: double cvReadRealByName (const CvFileStorage* fs, const CvFileNode* map, const char* name, double
default_value=0.)

Parameters
fs — File storage
map — The parent map. If it is NULL, the function searches a top-level node.
name — The node name
default_value — The value that is returned if the file node is not found

The function is a simple superposition of GetFileNodeByName () and ReadReal() .

ReadString

Retrieves a text string from a file node.
C: const char* cvReadString(const CvFileNode* node, const char* default_value=NULL)
Parameters
node — File node
default_value — The value that is returned if node is NULL

The function returns a text string that is represented by the file node. If the file node is NULL, the default_value is
returned (thus, it is convenient to call the function right after GetFileNode () without checking for a NULL pointer).
If the file node has type CV_NODE_STR , then node- :math: ‘>‘data.str.ptr is returned. Otherwise the result is not
determined.

ReadStringByName

Finds a file node by its name and returns its value.

C: const char* cvReadStringByName (const CvFileStorage* fs, const CvFileNode* map, const char* name,
const char* default_value=NULL)

2.7. XML/YAML Persistence (C API) 201

The OpenCV Reference Manual, Release 2.4.2

Parameters
fs — File storage
map — The parent map. If it is NULL, the function searches a top-level node.
name — The node name
default_value — The value that is returned if the file node is not found

The function is a simple superposition of GetFileNodeByName () and ReadString() .

RegisterType

Registers a new type.
C: void cvRegisterType(const CvTypelnfo* info)
Parameters
info — Type info structure

The function registers a new type, which is described by info . The function creates a copy of the structure, so the
user should delete it after calling the function.

Release

Releases an object.
C: void cvRelease (void** struct_ptr)
Parameters
struct_ptr — Double pointer to the object

The function finds the type of a given object and calls release with the double pointer.

ReleaseFileStorage

Releases file storage.
C: void cvReleaseFileStorage (CvFileStorage** fs)
Parameters
fs — Double pointer to the released file storage

The function closes the file associated with the storage and releases all the temporary structures. It must be called after
all I/O operations with the storage are finished.

Save

Saves an object to a file.

C: void cvSave (const char* filename, const void* struct_ptr, const char* name=NULL, const char* com-
ment=NULL, CvAttrList attributes=cvAttrList())

Python: cv.Save(filename, structPtr, name=None, comment=None) — None

Parameters

202 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

filename — File name

struct_ptr — Object to save

name — Optional object name. If it is NULL, the name will be formed from filename .
comment — Optional comment to put in the beginning of the file

attributes — Optional attributes passed to Write()

The function saves an object to a file. It provides a simple interface to Write() .

StartNextStream

Starts the next stream.
C: void cvStartNextStream(CvFileStorage* fs)
Parameters
fs — File storage

The function finishes the currently written stream and starts the next stream. In the case of XML the file with multiple
streams looks like this:

<opencv_storage>
<!-- stream #1 data -->
</opencv_storage>
<opencv_storage>
<!-- stream #2 data -->
</opencv_storage>

The YAML file will look like this:

%SYAML:1.0
stream #1 data

stream #2 data

This is useful for concatenating files or for resuming the writing process.

StartReadRawData

Initializes the file node sequence reader.
C: void cvStartReadRawData (const CvFileStorage* fs, const CvFileNode* src, CvSeqReader* reader)
Parameters
fs — File storage
src — The file node (a sequence) to read numbers from
reader — Pointer to the sequence reader

The function initializes the sequence reader to read data from a file node. The initialized reader can be then passed to
ReadRawDataSlice().

2.7. XML/YAML Persistence (C API) 203

The OpenCV Reference Manual, Release 2.4.2

StartWriteStruct

Starts writing a new structure.

C: void cvStartWriteStruct(CvFileStorage* fs, const char* name, int struct_flags, const char*
type_name=NULL, CvAttrList attributes=cvAttrList())

Parameters
fs — File storage

name — Name of the written structure. The structure can be accessed by this name when the
storage is read.

struct_flags — A combination one of the following values:

— CV_NODE_SEQ the written structure is a sequence (see discussion of CvFileStorage
), that is, its elements do not have a name.

— CV_NODE_MAP the written structure is a map (see discussion of CvFileStorage),
that is, all its elements have names.

One and only one of the two above flags must be specified

— CV_NODE_FLOW the optional flag that makes sense only for YAML streams. It means
that the structure is written as a flow (not as a block), which is more compact. It is
recommended to use this flag for structures or arrays whose elements are all scalars.

type_name — Optional parameter - the object type name. In case of XML it is written as a
type_id attribute of the structure opening tag. In the case of YAML it is written after a colon
following the structure name (see the example in CvFileStorage description). Mainly it is
used with user objects. When the storage is read, the encoded type name is used to determine
the object type (see CvTypeInfo and FindType()).

attributes — This parameter is not used in the current implementation

The function starts writing a compound structure (collection) that can be a sequence or a map. After all the structure
fields, which can be scalars or structures, are written, EndWriteStruct () should be called. The function can be used
to group some objects or to implement the write function for a some user object (see CvTypeInfo).

TypeOf

Returns the type of an object.
C: CvTypelnfo* cvTypeOf (const void* struct_ptr)
Parameters
struct_ptr — The object pointer

The function finds the type of a given object. It iterates through the list of registered types and calls the is_instance
function/method for every type info structure with that object until one of them returns non-zero or until the whole list
has been traversed. In the latter case, the function returns NULL.

UnregisterType

Unregisters the type.
C: void cvUnregisterType(const char* type_name)

Parameters

204 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

type_name — Name of an unregistered type

The function unregisters a type with a specified name. If the name is unknown, it is possible to locate the type info
by an instance of the type using TypeOf () or by iterating the type list, starting from FirstType(), and then calling
cvUnregisterType(info->typeName).

Write

Writes an object to file storage.
C: void cvWrite (CvFileStorage* fs, const char* name, const void* ptr, CvAttrList attributes=cvAttrList())
Parameters
fs — File storage

name — Name of the written object. Should be NULL if and only if the parent structure is a
sequence.

ptr — Pointer to the object

attributes — The attributes of the object. They are specific for each particular type (see the
discussion below).

The function writes an object to file storage. First, the appropriate type info is found using TypeOf (). Then, the write
method associated with the type info is called.

Attributes are used to customize the writing procedure. The standard types support the following attributes (all the dt
attributes have the same format as in WriteRawData()):

1. CvSeq

* header_dt description of user fields of the sequence header that follow CvSeq, or CvChain (if the sequence
is a Freeman chain) or CvContour (if the sequence is a contour or point sequence)

* dt description of the sequence elements.

* recursive if the attribute is present and is not equal to “0” or “false”, the whole tree of sequences (contours)
is stored.

2. CvGraph
* header_dt description of user fields of the graph header that follows CvGraph;
* vertex_dt description of user fields of graph vertices

* edge_dt description of user fields of graph edges (note that the edge weight is always written, so there is
no need to specify it explicitly)

Below is the code that creates the YAML file shown in the CvFileStorage description:

#include "cxcore.h"

int main(int argc, charxx argv)
{
CvMat* mat = cvCreateMat(3, 3, CV_32F);
CvFileStorage* fs = cvOpenFileStorage("example.yml", 0, CV_STORAGE_WRITE);

cvSetIdentity(mat);
cvWrite(fs, "A", mat, cvAttrList(0,0));

cvReleaseFileStorage(&fs);
cvReleaseMat(&mat);

2.7. XML/YAML Persistence (C API) 205

The OpenCV Reference Manual, Release 2.4.2

return 0;

WriteComment

Writes a comment.
C: void cvWriteComment (CvFileStorage* fs, const char* comment, int eol_comment)
Parameters
fs — File storage
comment — The written comment, single-line or multi-line

eol_comment — If non-zero, the function tries to put the comment at the end of current line.
If the flag is zero, if the comment is multi-line, or if it does not fit at the end of the current
line, the comment starts a new line.

The function writes a comment into file storage. The comments are skipped when the storage is read.

WriteFileNode

Writes a file node to another file storage.

C: void cvWriteFileNode (CvFileStorage* fs, const char* new_node_name, const CvFileNode* node, int
embed)

Parameters
fs — Destination file storage

new_node_name — New name of the file node in the destination file storage. To keep the
existing name, use cvGetFileNodeName ()

node — The written node

embed — If the written node is a collection and this parameter is not zero, no extra level of
hierarchy is created. Instead, all the elements of node are written into the currently written
structure. Of course, map elements can only be embedded into another map, and sequence
elements can only be embedded into another sequence.

The function writes a copy of a file node to file storage. Possible applications of the function are merging several file
storages into one and conversion between XML and YAML formats.

Writelnt

Writes an integer value.
C: void cvWriteInt (CvFileStorage* fs, const char* name, int value)
Parameters
fs — File storage

name — Name of the written value. Should be NULL if and only if the parent structure is a
sequence.

value — The written value

The function writes a single integer value (with or without a name) to the file storage.

206 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

WriteRawData

Writes multiple numbers.
C: void cvWriteRawData (CvFileStorage* fs, const void* sre, int len, const char* dt)
Parameters
fs — File storage
src¢ — Pointer to the written array
len — Number of the array elements to write

dt — Specification of each array element that has the following format
([count]{'u’|’'c"|'w"|'s"|"i"|"f"|'d"})... where the characters correspond
to fundamental C types:

— u 8-bit unsigned number

¢ 8-bit signed number

w 16-bit unsigned number

s 16-bit signed number

i 32-bit signed number

f single precision floating-point number
— d double precision floating-point number

— r pointer, 32 lower bits of which are written as a signed integer. The type can be used to store structures w
example, 2if means that each array element is a structure of 2 integers, followed
by a single-precision floating-point number. The equivalent notations of the above
specification are “ iif *, 2i1f ‘ and so forth. Other examples: u means that the array
consists of bytes, and 2d means the array consists of pairs of doubles.

The function writes an array, whose elements consist of single or multiple numbers. The function call can be replaced
with a loop containing a few WriteInt () and WriteReal () calls, but a single call is more efficient. Note that because
none of the elements have a name, they should be written to a sequence rather than a map.

WriteReal

Writes a floating-point value.
C: void cvWriteReal (CvFileStorage* fs, const char* name, double value)
Parameters
fs — File storage

name — Name of the written value. Should be NULL if and only if the parent structure is a
sequence.

value — The written value

The function writes a single floating-point value (with or without a name) to file storage. Special values are encoded
as follows: NaN (Not A Number) as .NaN, infinity as +.Inf or -.Inf.

The following example shows how to use the low-level writing functions to store custom structures, such as termination
criteria, without registering a new type.

2.7. XML/YAML Persistence (C API) 207

The OpenCV Reference Manual, Release 2.4.2

void write_termcriteria(CvFileStoragex fs, const charx struct_name,
CvTermCriteriax termcrit)

{
cvStartWriteStruct(fs, struct_name, CV_NODE_MAP, NULL, cvAttrList(0,0));
cvWriteComment(fs, "termination criteria", 1); // just a description
if(termcrit->type & CV_TERMCRIT_ITER)
cvWriteInteger(fs, "max_iterations", termcrit->max_iter);
if(termcrit->type & CV_TERMCRIT_EPS)
cvWriteReal(fs, "accuracy", termcrit->epsilon);
cvEndWriteStruct(fs);
}
WriteString

Writes a text string.
C: void cvWriteString (CvFileStorage* fs, const char* name, const char* str, int quote=0)
Parameters
fs — File storage

name — Name of the written string . Should be NULL if and only if the parent structure is a
sequence.

str — The written text string

quote — If non-zero, the written string is put in quotes, regardless of whether they are re-
quired. Otherwise, if the flag is zero, quotes are used only when they are required (e.g. when
the string starts with a digit or contains spaces).

The function writes a text string to file storage.

2.8 Clustering

kmeans

Finds centers of clusters and groups input samples around the clusters.

C++: double kmeans (InputArray data, int K, InputOutputArray bestLabels, TermCriteria criteria, int at-
tempts, int flags, OutputArray centers=noArray())

Python: cv2.kmeans (data, K, criteria, attempts, ﬂags[, bestLabels[, centers]]) — retval, bestLabels, centers

C: int cvKMeans2 (const CvArr* samples, int cluster_count, CvArr* labels, CvTermCriteria termecrit, int
attempts=1, CVRNG* rng=0, int flags=0, CvArr* _centers=0, double* compactness=0)

Python: cv.KMeans2 (samples, nclusters, labels, termcrit, attempts=1, flags=0, centers=None) — float
Parameters
samples — Floating-point matrix of input samples, one row per sample.
cluster_count — Number of clusters to split the set by.

labels — Input/output integer array that stores the cluster indices for every sample.

208 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

criteria — The algorithm termination criteria, that is, the maximum number of iterations
and/or the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as
each of the cluster centers moves by less than criteria.epsilon on some iteration, the
algorithm stops.

attempts — Flag to specify the number of times the algorithm is executed using different
initial labellings. The algorithm returns the labels that yield the best compactness (see the
last function parameter).

rng — CvRNG state initialized by RNG().
flags — Flag that can take the following values:
— KMEANS_RANDOM_CENTERS Select random initial centers in each attempt.

— KMEANS_PP_CENTERS Use kmeans++ center initialization by Arthur and Vassilvit-
skii [Arthur2007].

— KMEANS_USE_INITIAL_LABELS During the first (and possibly the only) attempt,
use the user-supplied labels instead of computing them from the initial centers. For
the second and further attempts, use the random or semi-random centers. Use one of
KMEANS_x*_CENTERS flag to specify the exact method.

centers — Output matrix of the cluster centers, one row per each cluster center.
compactness — The returned value that is described below.

The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters and groups
the input samples around the clusters. As an output, labels; contains a 0-based cluster index for the sample stored in
the ith row of the samples matrix.

The function returns the compactness measure that is computed as

Z |samples; — centersiapets, ||*
i

after every attempt. The best (minimum) value is chosen and the corresponding labels and the compactness value are
returned by the function. Basically, you can use only the core of the function, set the number of attempts to 1, initialize
labels each time using a custom algorithm, pass them with the (flags = KMEANS_USE_INITIAL LABELS) flag, and
then choose the best (most-compact) clustering.

partition

Splits an element set into equivalency classes.

C++: template<typename _Tp, class _EqPredicate> int partition(const vector<_Tp>& vec, vec-
tor<int>& labels, _EqPredicate predi-
cate=_EqPredicate())

Parameters
vec — Set of elements stored as a vector.

labels — Output vector of labels. It contains as many elements as vec. Each label labels[1i]
is a 0-based cluster index of vec[i] .

predicate — Equivalence predicate (pointer to a boolean function of two arguments or an
instance of the class that has the method bool operator()(const _Tp& a, const _Tp&
b)). The predicate returns true when the elements are certainly in the same class, and
returns false if they may or may not be in the same class.

2.8. Clustering 209

The OpenCV Reference Manual, Release 2.4.2

The generic function partition implements an O(N?) algorithm for splitting a set of N elements into one or more
equivalency classes, as described in http://en.wikipedia.org/wiki/Disjoint-set_data_structure . The function returns the
number of equivalency classes.

2.9 Utility and System Functions and Macros

alignPtr

Aligns a pointer to the specified number of bytes.
C++: template<typename _Tp> _Tp* alignPtr(_Tp* ptr, int n=sizeof(_Tp))
Parameters
ptr — Aligned pointer.
n — Alignment size that must be a power of two.

The function returns the aligned pointer of the same type as the input pointer:

(_Tp*)(((size_t)ptr + n-1) & -n)

alignSize

Aligns a buffer size to the specified number of bytes.
C++: size_t alignSize(size_t sz, int n)
Parameters
sz — Buffer size to align.
n — Alignment size that must be a power of two.

The function returns the minimum number that is greater or equal to sz and is divisible by n :

(sz + n-1) & -n

allocate

Allocates an array of elements.
C++: template<typename _Tp> _Tp* allocate(size_tn)
Parameters
n — Number of elements to allocate.

The generic function allocate allocates a buffer for the specified number of elements. For each element, the default
constructor is called.

deallocate

Deallocates an array of elements.
C++: template<typename _Tp> void deallocate(_Tp* ptr, size_tn)

Parameters

210 Chapter 2. core. The Core Functionality

http://en.wikipedia.org/wiki/Disjoint-set_data_structure

The OpenCV Reference Manual, Release 2.4.2

ptr — Pointer to the deallocated buffer.
n — Number of elements in the buffer.

The generic function deallocate deallocates the buffer allocated with allocate() . The number of elements must
match the number passed to allocate() .

fastAtan2

Calculates the angle of a 2D vector in degrees.
C++: float fastAtan2(floaty, float x)
Python: cv2.fastAtan2(y, x) — retval
C: float cvFastArctan(floaty, float x)
Python: cv.FastArctan(y, x) — float
Parameters
x — x-coordinate of the vector.
y — y-coordinate of the vector.

The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured in degrees and
varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.

cubeRoot

Computes the cube root of an argument.
C++: float cubeRoot (float val)
Python: cv2.cubeRoot(val) — retval
C: float cvCbrt (float value)
Python: cv.Cbrt(value) — float
Parameters
val — A function argument.

The function cubeRoot computes v/val. Negative arguments are handled correctly. NaN and Inf are not handled.
The accuracy approaches the maximum possible accuracy for single-precision data.

Ceil

Rounds floating-point number to the nearest integer not smaller than the original.
C: int cvCeil(double value)
Python: cv.Ceil(value) — int

Parameters

value — floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
result is not defined.

The function computes an integer i such that:

i—T<value<i

2.9. Utility and System Functions and Macros 211

The OpenCV Reference Manual, Release 2.4.2

Floor

Rounds floating-point number to the nearest integer not larger than the original.
C: int cvFloor (double value)
Python: cv.Floor(value) — int

Parameters

value — floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
result is not defined.

The function computes an integer i such that:

i<value<i+1

Round

Rounds floating-point number to the nearest integer
C: int cvRound (double value)
Python: cv.Round(value) — int

Parameters

value — floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
result is not defined.

Isinf

Determines if the argument is Infinity.
C: int cvIsInf (double value)
Python: cv.IsInf(value) — int
Parameters
value — The input floating-point value

The function returns 1 if the argument is a plus or minus infinity (as defined by IEEE754 standard) and O otherwise.

IsNaN

Determines if the argument is Not A Number.
C: int cvIsNaN(double value)
Python: cv.IsNaN(value) — int
Parameters
value — The input floating-point value

The function returns 1 if the argument is Not A Number (as defined by IEEE754 standard), O otherwise.

212 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

CV_Assert

Checks a condition at runtime and throws exception if it fails
C++: CV_Assert (expr None)

The macros CV_Assert (and CV_DbgAssert) evaluate the specified expression. If it is 0, the macros raise an er-
ror (see error()). The macro CV_Assert checks the condition in both Debug and Release configurations while
CV_DbgAssert is only retained in the Debug configuration.

error

Signals an error and raises an exception.
C++: void error (const Exception& exc)
C: void cvError (int status, const char* func_name, const char* err_msg, const char* file_name, int line)
Parameters
exc — Exception to throw.

status — Error code. Normally, it is a negative value. The list of pre-defined error codes can
be found in cxerror.h.

err_msg — Text of the error message.
args — printf -like formatted error message in parentheses.
The function and the helper macros CV_Error and CV_Error_:

#define CV_Error(code, msg) error(...)
#define CV_Error_(code, args) error(...)

call the error handler. Currently, the error handler prints the error code (exc.code), the context (
exc.file, ‘exc.line‘’), and the error message exc.err to the standard error stream stderr . In the Debug configu-
ration, it then provokes memory access violation, so that the execution stack and all the parameters can be analyzed
by the debugger. In the Release configuration, the exception exc is thrown.

The macro CV_Error_ can be used to construct an error message on-fly to include some dynamic information, for
example:

// note the extra parentheses around the formatted text message
CV_Error_(CV_StsOutOfRange,

("the matrix element (

i, j, mtx.at<float>(i,j)))

Exception

class Exception : public std: :exception
Exception class passed to an error.

class Exception
{
public:
// various constructors and the copy operation
Exception() { code = 0; line = 0; }
Exception(int _code, const string& _err,
const string& _func, const string& _file, int _line);

2.9. Utility and System Functions and Macros 213

The OpenCV Reference Manual, Release 2.4.2

Exception(const Exception& exc);
Exception& operator = (const Exception& exc);

// the error code

int code;

// the error text message

string err;

// function name where the error happened

string func;

// the source file name where the error happened
string file;

// the source file line where the error happened
int line;

}

The class Exception encapsulates all or almost all necessary information about the error happened in the program.
The exception is usually constructed and thrown implicitly via CV_Error and CV_Error_ macros. See error() .

fastMalloc

Allocates an aligned memory buffer.
C++: void* fastMalloc (size_t bufSize)
C: void* cvAlloc (size_t size)
Parameters
size — Allocated buffer size.

The function allocates the buffer of the specified size and returns it. When the buffer size is 16 bytes or more, the
returned buffer is aligned to 16 bytes.

fastFree

Deallocates a memory buffer.
C++: void fastFree(void* ptr)
C: void cvFree(void** pptr)
Parameters
ptr — Pointer to the allocated buffer.
pptr — Double pointer to the allocated buffer

The function deallocates the buffer allocated with fastMalloc() . If NULL pointer is passed, the function does
nothing. C version of the function clears the pointer *pptr to avoid problems with double memory deallocation.

format

Returns a text string formatted using the printf-like expression.
C++: string format (const char* fmt, ...)
Parameters

fmt — printf -compatible formatting specifiers.

214 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

The function acts like sprintf but forms and returns an STL string. It can be used to form an error message in the
Exception constructor.

checkHardwareSupport

Returns true if the specified feature is supported by the host hardware.
C++: bool checkHardwareSupport (int feature)
C: int cvCheckHardwareSupport (int feature)
Python: cv2.checkHardwareSupport (feature) — retval
Parameters
feature — The feature of interest, one of:
— CV_CPU_MMX - MMX
— CV_CPU_SSE - SSE
— CV_CPU_SSE2 - SSE 2
— CV_CPU_SSE3-SSE 3
— CV_CPU_SSSE3 - SSSE 3
— CV_CPU_SSE4_1-SSE4.1
— CV_CPU_SSE4_2 - SSE 4.2
— CV_CPU_POPCNT - POPCOUNT
— CV_CPU_AVX - AVX

The function returns true if the host hardware supports the specified feature. When user calls
setUseOptimized(false), the subsequent calls to checkHardwareSupport() will return false until
setUseOptimized(true) is called. This way user can dynamically switch on and off the optimized code in OpenCV.

getNumThreads

Returns the number of threads used by OpenCV.

C++: int getNumThreads ()

The function returns the number of threads that is used by OpenCV.
See Also:

setNumThreads (), getThreadNum()

getThreadNum

Returns the index of the currently executed thread.
C++: int getThreadNum()

The function returns a 0-based index of the currently executed thread. The function is only valid inside a parallel
OpenMP region. When OpenCV is built without OpenMP support, the function always returns 0.

See Also:

setNumThreads (), getNumThreads() .

2.9. Utility and System Functions and Macros 215

The OpenCV Reference Manual, Release 2.4.2

getTickCount

Returns the number of ticks.
C++: int64 getTickCount()
Python: cv2.getTickCount() — retval

The function returns the number of ticks after the certain event (for example, when the machine was turned on). It
can be used to initialize RNG () or to measure a function execution time by reading the tick count before and after the
function call. See also the tick frequency.

getTickFrequency

Returns the number of ticks per second.
C++: double getTickFrequency ()
Python: cv2.getTickFrequency() — retval

The function returns the number of ticks per second. That is, the following code computes the execution time in
seconds:

double t = (double)getTickCount();
// do something ...
t = ((double)getTickCount() - t)/getTickFrequency();

getCPUTickCount

Returns the number of CPU ticks.
C++: int64 getCPUTickCount()
Python: cv2.getCPUTickCount() — retval

The function returns the current number of CPU ticks on some architectures (such as x86, x64, PowerPC). On other
platforms the function is equivalent to getTickCount. It can also be used for very accurate time measurements, as
well as for RNG initialization. Note that in case of multi-CPU systems a thread, from which getCPUTickCount is
called, can be suspended and resumed at another CPU with its own counter. So, theoretically (and practically) the
subsequent calls to the function do not necessary return the monotonously increasing values. Also, since a modern
CPU varies the CPU frequency depending on the load, the number of CPU clocks spent in some code cannot be
directly converted to time units. Therefore, getTickCount is generally a preferable solution for measuring execution
time.

saturate_cast

Template function for accurate conversion from one primitive type to another.
C++: template<...> _Tp saturate_cast(_Tp2 v)
Parameters
v — Function parameter.

The functions saturate_cast resemble the standard C++ cast operations, such as static_cast<T>() and others.
They perform an efficient and accurate conversion from one primitive type to another (see the introduction chapter).
saturate in the name means that when the input value v is out of the range of the target type, the result is not formed
just by taking low bits of the input, but instead the value is clipped. For example:

216 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.2

saturate_cast<uchar>(-100); // a = 0 (UCHAR_MIN)
saturate_cast<short>(33333.33333); // b = 32767 (SHRT_MAX)

uchar a
short b

Such clipping is done when the target type is unsigned char, signed char,unsigned short or signed short.
For 32-bit integers, no clipping is done.

When the parameter is a floating-point value and the target type is an integer (8-, 16- or 32-bit), the floating-point
value is first rounded to the nearest integer and then clipped if needed (when the target type is 8- or 16-bit).

This operation is used in the simplest or most complex image processing functions in OpenCV.
See Also:
add(), subtract(), multiply(), divide(),Mat::convertTo()

setNumThreads

Sets the number of threads used by OpenCV.
C++: void setNumThreads (int nthreads)
Parameters
nthreads — Number of threads used by OpenCV.

The function sets the number of threads used by OpenCYV in parallel OpenMP regions. If nthreads=0 , the function
uses the default number of threads that is usually equal to the number of the processing cores.

See Also:
getNumThreads (), getThreadNum()

setUseOptimized

Enables or disables the optimized code.
C++: int cvUseOptimized (int on_off)
Python: cv2.setUseOptimized (onoff) — None
C: int cvUseOptimized (int on_off)
Parameters

on_off — The boolean flag specifying whether the optimized code should be used
(on_off=true) or not (on_off=false).

The function can be used to dynamically turn on and off optimized code (code that uses SSE2, AVX, and other
instructions on the platforms that support it). It sets a global flag that is further checked by OpenCV functions. Since
the flag is not checked in the inner OpenCV loops, it is only safe to call the function on the very top level in your
application where you can be sure that no other OpenCV function is currently executed.

By default, the optimized code is enabled unless you disable it in CMake. The current status can be retrieved using
useOptimized.

useOptimized

Returns the status of optimized code usage.

C++: bool useOptimized()

2.9. Utility and System Functions and Macros 217

The OpenCV Reference Manual, Release 2.4.2

Python: cv2.useOptimized() — retval

The function returns true if the optimized code is enabled. Otherwise, it returns false.

218 Chapter 2. core. The Core Functionality

CHAPTER
THREE

IMGPROC. IMAGE PROCESSING

3.1 Image Filtering

Functions and classes described in this section are used to perform various linear or non-linear filtering operations
on 2D images (represented as Mat () ‘s). It means that for each pixel location (x,y) in the source image (normally,
rectangular), its neighborhood is considered and used to compute the response. In case of a linear filter, it is a weighted
sum of pixel values. In case of morphological operations, it is the minimum or maximum values, and so on. The
computed response is stored in the destination image at the same location (x,y) . It means that the output image will
be of the same size as the input image. Normally, the functions support multi-channel arrays, in which case every
channel is processed independently. Therefore, the output image will also have the same number of channels as the
input one.

Another common feature of the functions and classes described in this section is that, unlike simple arithmetic func-
tions, they need to extrapolate values of some non-existing pixels. For example, if you want to smooth an image using
a Gaussian 3 x 3 filter, then, when processing the left-most pixels in each row, you need pixels to the left of them, that
is, outside of the image. You can let these pixels be the same as the left-most image pixels (“replicated border” extrap-
olation method), or assume that all the non-existing pixels are zeros (“constant border” extrapolation method), and so
on. OpenCV enables you to specify the extrapolation method. For details, see the function borderInterpolate()
and discussion of the borderType parameter in the section and various functions below.

/ *
Various border types, image boundaries are denoted with ’|

’

* BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh

* BORDER_REFLECT: fedcba|abcdefgh|hgfedch

* BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba

* BORDER_WRAP: cdefgh|abcdefgh|abcdefg

* BORDER_CONSTANT : iiiiii|abcdefgh|iiiiiii with some specified 'i’
*/

BaseColumnFilter

class BaseColumnFilter
Base class for filters with single-column kernels.

class BaseColumnFilter

{
public:
virtual ~BaseColumnFilter();

// To be overriden by the user.

219

The OpenCV Reference Manual, Release 2.4.2

//

// runs a filtering operation on the set of rows,

// "“dstcount + ksize - 1" rows on input,

// "“dstcount" rows on output,

// each input and output row has "width" elements

// the filtered rows are written into "dst" buffer.

virtual void operator()(const uchar*x src, ucharx dst, int dststep,
int dstcount, int width) = 0;

// resets the filter state (may be needed for IIR filters)

virtual void reset();

int ksize; // the aperture size
int anchor; // position of the anchor point,
// normally not used during the processing

};

The class BaseColumnFilter is a base class for filtering data using single-column kernels. Filtering does not have to
be a linear operation. In general, it could be written as follows:

dst(x,y) = F(srclyl(x), srcly + 1](x), ..., srcly + ksize — 1](x)

where F is a filtering function but, as it is represented as a class, it can produce any side effects, memorize previously
processed data, and so on. The class only defines an interface and is not used directly. Instead, there are several
functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific
filtering operations. Those pointers are then passed to the FilterEngine constructor. While the filtering operation
interface uses the uchar type, a particular implementation is not limited to 8-bit data.

See Also:

BaseRowFilter, BaseFilter, FilterEngine, getColumnSumFilter(), getLinearColumnFilter(),
getMorphologyColumnFilter()

BasefFilter

class BaseFilter
Base class for 2D image filters.

class BaseFilter

{
public:
virtual ~BaseFilter();
// To be overriden by the user.
//
// runs a filtering operation on the set of rows,
// "dstcount + ksize.height - 1" rows on input,
// "“dstcount" rows on output,
// each input row has "(width + ksize.width-1)*cn" elements
// each output row has "widthxcn" elements.
// the filtered rows are written into "dst" buffer.
virtual void operator()(const uchar+x src, ucharx dst, int dststep,
int dstcount, int width, int cn) = 0;
// resets the filter state (may be needed for IIR filters)
virtual void reset();
Size ksize;
Point anchor;
b

220 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

The class BaseFilter is a base class for filtering data using 2D kernels. Filtering does not have to be a linear
operation. In general, it could be written as follows:

(src yl(x), srclyl(x+1), ..., srclyl(x + ksize.width — 1),
, srcly+1(x+1), ..., srcly + 1](x + ksize.width — 1),
srcly + ksize.height-1](x),

srcly + ksize.height-1](x + 1),

...srcly + ksize.height-1](x + ksize.width — 1))

dst(y)
srcly + 1]

_/‘\'1

where F is a filtering function. The class only defines an interface and is not used directly. Instead, there are several
functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific filtering
operations. Those pointers are then passed to the FilterEngine constructor. While the filtering operation interface
uses the uchar type, a particular implementation is not limited to 8-bit data.

See Also:

BaseColumnFilter, BaseRowFilter, FilterEngine, getLinearFilter(), getMorphologyFilter()

BaseRowFilter

class BaseRowFilter
Base class for filters with single-row kernels.

class BaseRowFilter

{

public:
virtual ~BaseRowFilter();
// To be overriden by the user.
//
// runs filtering operation on the single input row
// of "width" element, each element is has "cn" channels.
// the filtered row is written into "dst" buffer.
virtual void operator()(const uchar* src, ucharx dst,

int width, int cn) = 0;

int ksize, anchor;

b

The class BaseRowFilter is a base class for filtering data using single-row kernels. Filtering does not have to be a
linear operation. In general, it could be written as follows:

dst(x,y) = F(srclyl(x), srclyl(x+ 1), ..., srclyl(x + ksize.width — 1))

where F is a filtering function. The class only defines an interface and is not used directly. Instead, there are several
functions in OpenCV (and you can add more) that return pointers to the derived classes that implement specific filtering
operations. Those pointers are then passed to the FilterEngine constructor. While the filtering operation interface
uses the uchar type, a particular implementation is not limited to 8-bit data.

See Also:

BaseColumnFilter, BaseFilter, FilterEngine, getlLinearRowFilter(), getMorphologyRowFilter(),
getRowSumFilter()

FilterEngine

class FilterEngine

3.1. Image Filtering 221

The OpenCV Reference Manual, Release 2.4.2

Generic image filtering class.

class FilterEngine

{

public:

// empty constructor

FilterEngine();

// builds a 2D non-separable filter (!_filter2D.empty()) or

// a separable filter (!_rowFilter.empty() && !_columnFilter.empty())

// the input data type will be "srcType", the output data type will be "dstType",

// the intermediate data type is "bufType".
// _rowBorderType and _columnBorderType determine how the image
// will be extrapolated beyond the image boundaries.
// _borderValue is only used when _rowBorderType and/or _columnBorderType
// == BORDER_CONSTANT
FilterEngine(const Ptr<BaseFilter>& _filter2D,
const Ptr<BaseRowFilter>& _rowFilter,
const Ptr<BaseColumnFilter>& _columnFilter,
int srcType, int dstType, int bufType,
int _rowBorderType=BORDER_REPLICATE,
int _columnBorderType=-1, // use _rowBorderType by default
const Scalar& _borderValue=Scalar());
virtual ~FilterEngine();
// separate function for the engine initialization
void init(const Ptr<BaseFilter>& _filter2D,
const Ptr<BaseRowFilter>& _rowFilter,
const Ptr<BaseColumnFilter>& _columnFilter,
int srcType, int dstType, int bufType,
int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1,
const Scalar& _borderValue=Scalar());
// starts filtering of the ROI in an image of size "wholeSize".
// returns the starting y-position in the source image.
virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1);
// alternative form of start that takes the image
// itself instead of "wholeSize". Set isolated to true to pretend that
// there are no real pixels outside of the ROI
// (so that the pixels are extrapolated using the specified border modes)
virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1),
bool isolated=false, int maxBufRows=-1);
// processes the next portion of the source image,
// "“srcCount" rows starting from "src" and
// stores the results in "dst".
// returns the number of produced rows
virtual int proceed(const uchar* src, int srcStep, int srcCount,
ucharx dst, int dstStep);
// higher-level function that processes the whole
// ROI or the whole image with a single call
virtual void apply(const Mat& src, Mat& dst,
const Rect& srcRoi=Rect(0,0,-1,-1),
Point dstO0fs=Point(0,0),
bool isolated=false);
bool isSeparable() const { return filter2D.empty(); }
// how many rows from the input image are not yet processed
int remainingInputRows() const;
// how many output rows are not yet produced
int remainingOutputRows() const;

// the starting and the ending rows in the source image
int startY, endY;

222

Chapter 3. imgproc

. Image Processing

The OpenCV Reference Manual, Release 2.4.2

// pointers to the filters
Ptr<BaseFilter> filter2D;
Ptr<BaseRowFilter> rowFilter;
Ptr<BaseColumnFilter> columnFilter;

}

The class FilterEngine can be used to apply an arbitrary filtering operation to an image. It contains all the necessary
intermediate buffers, computes extrapolated values of the “virtual” pixels outside of the image, and so on. Pointers to
the initialized FilterEngine instances are returned by various createxFilter functions (see below) and they are
used inside high-level functions such as filter2D(), erode(), dilate(), and others. Thus, the class plays a key
role in many of OpenCV filtering functions.

This class makes it easier to combine filtering operations with other operations, such as color space conversions,
thresholding, arithmetic operations, and others. By combining several operations together you can get much better
performance because your data will stay in cache. For example, see below the implementation of the Laplace operator
for floating-point images, which is a simplified implementation of Laplacian() :

void laplace_f(const Mat& src, Mat& dst)
{
CV_Assert(src.type() == CV_32F);
dst.create(src.size(), src.type());

// get the derivative and smooth kernels for d2I/dx2.

// for d2I/dy2 consider using the same kernels, just swapped
Mat kd, ks;

getSobelKernels(kd, ks, 2, 0, ksize, false, ktype);

// process 10 source rows at once
int DELTA = std::min(10, src.rows);
Ptr<FilterEngine> Fxx = createSeparablelLinearFilter(src.type(),
dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar());
Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar());

int y = Fxx->start(src), dsty = 0, dy = 0;
Fyy->start(src);
const ucharx sptr = src.data + y*src.step;

// allocate the buffers for the spatial image derivatives;

// the buffers need to have more than DELTA rows, because at the
// last iteration the output may take max(kd.rows-1,ks.rows-1)
// rows more than the input.

Mat Ixx(DELTA + kd.rows - 1, src.cols, dst.type());

Mat Iyy(DELTA + kd.rows - 1, src.cols, dst.type());

// inside the loop always pass DELTA rows to the filter

// (note that the "proceed" method takes care of possibe overflow, since
// it was given the actual image height in the "start" method)

// on output you can get:

// * < DELTA rows (initial buffer accumulation stage)

// * = DELTA rows (settled state in the middle)

// * > DELTA rows (when the input image is over, generate

// "virtual" rows using the border mode and filter them)
// this variable number of output rows 1Is dy.

// dsty is the current output row.

// sptr is the pointer to the first input row in the portion to process
for(; dsty < dst.rows; sptr += DELTAxsrc.step, dsty += dy)

{

3.1. Image Filtering 223

The OpenCV Reference Manual, Release 2.4.2

}

Fxx->proceed(sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step);
dy = Fyy->proceed(sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step);
if(dy > 0)
{
Mat dstripe = dst.rowRange(dsty, dsty + dy);
add (Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);

If you do not need that much control of the filtering process, you can simply use the FilterEngine
The method is implemented as follows:

void FilterEngine::apply(const Mat& src, Mat& dst,

}

const Rect& srcRoi, Point dstOfs, bool isolated)

// check matrix types
CV_Assert(src.type() == srcType && dst.type() == dstType);

// handle the "whole image" case
Rect _srcRoi = srcRoi;
if(_srcRoi == Rect(0,0,-1,-1))
_srcRoi = Rect(0,0,src.cols,src.rows);

// check if the destination ROI is inside dst.
// and FilterEngine::start will check if the source ROI is inside src.
CV_Assert(dstOfs.x >= 0 && dstOfs.y >= 0 &&

dstO0fs.x + _srcRoi.width <= dst.cols &&

dstOfs.y + _srcRoi.height <= dst.rows);

// start filtering
int y = start(src, _srcRoi, isolated);

// process the whole ROI. Note that "endY - startY" is the total number
// of the source rows to process
// (including the possible rows outside of srcRoi but inside the source image)
proceed(src.data + yxsrc.step,
(int)src.step, endY - starty,
dst.data + dstOfs.y*dst.step +
dstOfs.x*dst.elemSize(), (int)dst.step);

: :apply method.

Unlike the earlier versions of OpenCV, now the filtering operations fully support the notion of image ROI, that is,
pixels outside of the ROI but inside the image can be used in the filtering operations. For example, you can take a ROI
of a single pixel and filter it. This will be a filter response at that particular pixel. However, it is possible to emulate
the old behavior by passing isolated=false to FilterEngine::start or FilterEngine: :apply . You can pass
the ROI explicitly to FilterEngine: :apply or construct new matrix headers:

// compute dI/dx derivative at src(x,y)

// method 1:

// form a matrix header for a single value
float vall = 0;

Mat dstl(1,1,CV_32F,&vall);

Ptr<FilterEngine> Fx = createDerivFilter(CV_32F, CV_32F,

1, 0, 3, BORDER_REFLECT_101);

Fx->apply(src, Rect(x,y,1,1), Point(), dstl);

224

Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

// method 2:

// form a matrix header for a single value
float val2 = 0;

Mat dst2(1,1,CV_32F,&val2);

Mat pix_roi(src, Rect(x,y,1,1));
Sobel(pix_roi, dst2, dst2.type(), 1, 0, 3, 1, 0, BORDER_REFLECT_101);

printf("methodl =

Explore the data types. As it was mentioned in the BaseFilter description, the specific filters can process data of any
type, despite that BasexFilter: :operator() only takes uchar pointers and no information about the actual types.
To make it all work, the following rules are used:

* In case of separable filtering, FilterEngine: : rowFilter is applied first. It transforms the input image data (of
type srcType) to the intermediate results stored in the internal buffers (of type bufType). Then, these interme-
diate results are processed as single-channel data with FilterEngine: :columnFilter and stored in the output
image (of type dstType). Thus, the input type for rowFilter is srcType and the output type is bufType . The
input type for columnFilter is CV_MAT_DEPTH(bufType) and the output type is CV_MAT_DEPTH(dstType) .

* In case of non-separable filtering, bufType must be the same as srcType . The source data is copied to the
temporary buffer, if needed, and then just passed to FilterEngine::filter2D . That is, the input type for
filter2D is srcType (= bufType) and the output type is dstType .

See Also:
BaseColumnFilter, BaseFilter, BaseRowFilter, createBoxFilter(), createDerivFilter(),
createGaussianFilter(), createlLinearFilter(), createMorphologyFilter(),

createSeparableLinearFilter()

bilateralFilter

Applies the bilateral filter to an image.

C++: void bilateralFilter (InputArray sre, OutputArray dst, int d, double sigmaColor, double sigmaS-
pace, int borderType=BORDER_DEFAULT)

Python: cv2.bilateralFilter (src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) — dst
Parameters
src — Source 8-bit or floating-point, 1-channel or 3-channel image.
dst — Destination image of the same size and type as src .

d — Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, it
is computed from sigmaSpace .

sigmaColor — Filter sigma in the color space. A larger value of the parameter means that
farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together,
resulting in larger areas of semi-equal color.

sigmaSpace — Filter sigma in the coordinate space. A larger value of the parameter means
that farther pixels will influence each other as long as their colors are close enough (see
sigmaColor). When d>0 , it specifies the neighborhood size regardless of sigmaSpace .
Otherwise, d is proportional to sigmaSpace .

The function applies bilateral filtering to the input image, as described in
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI 1/Bilateral_Filtering.html bilateralFilter

3.1. Image Filtering 225

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

The OpenCV Reference Manual, Release 2.4.2

can reduce unwanted noise very well while keeping edges fairly sharp. However, it is very slow compared to most
filters.

Sigma values: For simplicity, you can set the 2 sigma values to be the same. If they are small (< 10), the filter will
not have much effect, whereas if they are large (> 150), they will have a very strong effect, making the image look
“cartoonish”.

Filter size: Large filters (d > 5) are very slow, so it is recommended to use d=5 for real-time applications, and perhaps
d=9 for offline applications that need heavy noise filtering.

This filter does not work inplace.

blur

Smoothes an image using the normalized box filter.

C++: void blur (InputArray src, OutputArray dst, Size ksize, Point anchor=Point(-1,-1), int border-
Type=BORDER_DEFAULT)

Python: cv2.blur (src, ksize[, dst[, anchor[, borderType]]]) — dst
Parameters

src¢ — Source image. The image can have any number of channels, which are processed
independently. The depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

dst — Destination image of the same size and type as src .
ksize — Smoothing kernel size.

anchor — Anchor point. The default value Point (-1, -1) means that the anchor is at the
kernel center.

borderType — Border mode used to extrapolate pixels outside of the image.

The function smoothes an image using the kernel:

1

" ksize.widthxksize.height | = «eeennn-.
T 11 o 11

The call blur(src, dst, ksize, anchor, borderType) is equivalent to boxFilter(src, dst, src.type(),
anchor, true, borderType) .

See Also:

boxFilter(), bilateralFilter(), GaussianBlur(), medianBlur()

borderinterpolate

Computes the source location of an extrapolated pixel.
C++: int borderInterpolate (int p, int len, int borderType)
Python: cv2.borderInterpolate(p, len, borderType) — retval
Parameters
p — 0-based coordinate of the extrapolated pixel along one of the axes, likely <0 or >= len .

len — Length of the array along the corresponding axis.

226 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

borderType — Border type, one of the BORDER_x* , except for BORDER_TRANSPARENT and
BORDER_ISOLATED . When borderType==BORDER_CONSTANT , the function always returns
-1, regardless of p and len .

The function computes and returns the coordinate of a donor pixel corresponding to the specified extrapolated pixel
when using the specified extrapolation border mode. For example, if you use BORDER_WRAP mode in the horizontal
direction, BORDER_REFLECT_101 in the vertical direction and want to compute value of the “virtual” pixel Point (-5,
100) in a floating-point image img , it looks like:

float val = img.at<float>(borderInterpolate(100, img.rows, BORDER_REFLECT_101),
borderInterpolate(-5, img.cols, BORDER_WRAP));

Normally, the function is not called directly. It is used inside FilterEngine and copyMakeBorder() to compute
tables for quick extrapolation.
See Also:

FilterEngine, copyMakeBorder()

boxFilter

Smoothes an image using the box filter.

C++: void boxFilter (InputArray src, OutputArray dst, int ddepth, Size ksize, Point anchor=Point(-1,-1),
bool normalize=true, int borderType=BORDER_DEFAULT)

Python: cv2.boxFilter (src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]]) — dst
Parameters
src — Source image.
dst — Destination image of the same size and type as src .
ksize — Smoothing kernel size.

anchor — Anchor point. The default value Point(-1,-1) means that the anchor is at the
kernel center.

normalize — Flag specifying whether the kernel is normalized by its area or not.
borderType — Border mode used to extrapolate pixels outside of the image.

The function smoothes an image using the kernel:

K=o
1 1 1 1 1
where
1 : —
x = ksize.widthxksize.height when normalize=true
1 otherwise

Unnormalized box filter is useful for computing various integral characteristics over each pixel neighborhood, such as
covariance matrices of image derivatives (used in dense optical flow algorithms, and so on). If you need to compute
pixel sums over variable-size windows, use integral() .

See Also:

blur(), bilateralFilter(), GaussianBlur(), medianBlur(), integral()

3.1. Image Filtering 227

The OpenCV Reference Manual, Release 2.4.2

buildPyramid

Constructs the Gaussian pyramid for an image.

C++: void buildPyramid (InputArray src, OutputArrayOfArrays dst, int maxlevel, int border-
Type=BORDER_DEFAULT)

Parameters
src — Source image. Check pyrDown () for the list of supported types.

dst — Destination vector of maxlevel+1 images of the same type as src . dst[0] will be
the same as src . dst[1] is the next pyramid layer, a smoothed and down-sized src , and
SO on.

maxlevel — 0-based index of the last (the smallest) pyramid layer. It must be non-negative.

The function constructs a vector of images and builds the Gaussian pyramid by recursively applying pyrDown () to the
previously built pyramid layers, starting from dst[0]==src .

copyMakeBorder

Forms a border around an image.

C++: void copyMakeBorder (InputArray sre, OutputArray dst, int top, int bottom, int left, int right, int bor-
derType, const Scalar& value=Scalar())

Python: cv2.copyMakeBorder (src, top, bottom, left, right, borderType[, dst[, Value]]) — dst

C: void cvCopyMakeBorder (const CvArr* src, CvArr* dst, CvPoint offset, int bordertype, CvScalar
value=cvScalarAll(0))

Python: cv.CopyMakeBorder (src, dst, offset, bordertype, value=(0, 0, 0, 0)) — None
Parameters
src — Source image.

dst — Destination image of the same type as src and the size
Size(src.cols+left+right, src.rows+top+bottom) .

top —
bottom —
left —

right — Parameter specifying how many pixels in each direction from the source image
rectangle to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that
1 pixel-wide border needs to be built.

borderType — Border type. See borderInterpolate() for details.
value — Border value if borderType==BORDER_CONSTANT .

The function copies the source image into the middle of the destination image. The areas to the left, to the right, above
and below the copied source image will be filled with extrapolated pixels. This is not what FilterEngine or filtering
functions based on it do (they extrapolate pixels on-fly), but what other more complex functions, including your own,
may do to simplify image boundary handling.

The function supports the mode when src is already in the middle of dst . In this case, the function does not copy
src itself but simply constructs the border, for example:

228 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

// let border be the same in all directions
int border=2;
// constructs a larger image to fit both the image and the border
Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
// select the middle part of it w/o copying data
Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
// convert image from RGB to grayscale
cvtColor(rgb, gray, CV_RGB2GRAY);
// form a border in-place
copyMakeBorder(gray, gray_buf, border, border,
border, border, BORDER_REPLICATE);
// now do some custom filtering ...

Note: When the source image is a part (ROI) of a bigger image, the function will try to use the pixels outside of the
ROI to form a border. To disable this feature and always do extrapolation, as if src was not a ROI, use borderType
| BORDER_ISOLATED.

See Also:

borderInterpolate()

createBoxFilter

Returns a box filter engine.

C++: Ptr<FilterEngine> createBoxFilter (int srcType, int dstType, Size ksize, Point anchor=Point(-1,-1),
bool normalize=true, int borderType=BORDER_DEFAULT)

C++: Ptr<BaseRowFilter> getRowSumFilter (int srcType, int sumType, int ksize, int anchor=-1)

C++: Ptr<BaseColumnFilter> getColumnSumFilter (int sumType, int dstType, int ksize, int anchor=-1,
double scale=1)

Parameters
srcType — Source image type.

sumType — Intermediate horizontal sum type that must have as many channels as srcType

dstType — Destination image type that must have as many channels as srcType .
ksize — Aperture size.

anchor — Anchor position with the kernel. Negative values mean that the anchor is at the
kernel center.

normalize — Flag specifying whether the sums are normalized or not. See boxFilter () for
details.

scale — Another way to specify normalization in lower-level getColumnSumFilter .
borderType — Border type to use. See borderInterpolate() .

The function is a convenience function that retrieves the horizontal sum primitive filter with getRowSumFilter() ,
vertical sum filter with getColumnSumFilter() , constructs new FilterEngine , and passes both of the primitive
filters there. The constructed filter engine can be used for image filtering with normalized or unnormalized box filter.

The function itself is used by blur() and boxFilter() .

3.1. Image Filtering 229

The OpenCV Reference Manual, Release 2.4.2

See Also:

FilterEngine, blur(), boxFilter()

createDerivFilter

Returns an engine for computing image derivatives.

C++: Ptr<FilterEngine> createDerivFilter (int srcType, int dstType, int dx, int dy, int ksize, int border-
Type=BORDER_DEFAULT)

Parameters
srcType — Source image type.
dstType — Destination image type that must have as many channels as srcType .
dx — Derivative order in respect of x.
dy — Derivative order in respect of y.
ksize — Aperture size See getDerivKernels() .
borderType — Border type to use. See borderInterpolate() .

The function createDerivFilter() is a small convenience function that retrieves linear filter coefficients
for computing image derivatives using getDerivKernels() and then creates a separable linear filter with
createSeparableLinearFilter() . The function is used by Sobel() and Scharr() .

See Also:

createSeparableLinearFilter(), getDerivKernels(), Scharr(), Sobel()

createGaussianFilter

Returns an engine for smoothing images with the Gaussian filter.

C++: Pu<FilterEngine> createGaussianFilter (int type, Size ksize, double sigmal, double sigma2=0, int
borderType=BORDER_DEFAULT)

Parameters
type — Source and destination image type.
ksize — Aperture size. See getGaussianKernel() .
sigmal — Gaussian sigma in the horizontal direction. See getGaussianKernel() .
sigma?2 — Gaussian sigma in the vertical direction. If 0, then sigma2 < sigmal.
borderType — Border type to use. See borderInterpolate() .

The function createGaussianFilter() computes Gaussian kernel coefficients and then returns a separable lin-
ear filter for that kernel. The function is used by GaussianBlur() . Note that while the function takes just
one data type, both for input and output, you can pass this limitation by calling getGaussianKernel() and then
createSeparableLinearFilter() directly.

See Also:

createSeparableLinearFilter(), getGaussianKernel(), GaussianBlur()

230 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

createLinearFilter

Creates a non-separable linear filter engine.

C++: Ptr<FilterEngine> createLinearFilter (int srcType, int dstType, InputArray kernel, Point
_anchor=Point(-1,-1), double delta=0, int rowBorder-
Type=BORDER_DEFAULT, int columnBorderType=-1,
const Scalar& border Value=Scalar())

C++: Ptr<BaseFilter> getLinearFilter (int srcType, int dstType, InputArray kernel, Point anchor=Point(-
1,-1), double delta=0, int bits=0)

Parameters
srcType — Source image type.
dstType — Destination image type that must have as many channels as srcType .
kernel — 2D array of filter coefficients.

anchor — Anchor point within the kernel. Special value Point(-1,-1) means that the
anchor is at the kernel center.

delta — Value added to the filtered results before storing them.

bits — Number of the fractional bits. The parameter is used when the kernel is an integer
matrix representing fixed-point filter coefficients.

rowBorderType — Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate().

columnBorderType — Pixel extrapolation method in the horizontal direction.
borderValue — Border value used in case of a constant border.

The function returns a pointer to a 2D linear filter for the specified kernel, the source array type, and the destination
array type. The function is a higher-level function that calls getLinearFilter and passes the retrieved 2D filter to
the FilterEngine constructor.

See Also:
createSeparableLinearFilter(), FilterEngine, filter2D()

createMorphologyFilter

Creates an engine for non-separable morphological operations.

C++: Pu<FilterEngine> createMorphologyFilter(int op, int type, InputArray kernel,
Point anchor=Point(-1,-1), int rowBorder-
Type=BORDER_CONSTANT, int column-
BorderType=-1, const Scalar& border-

Value=morphologyDefaultBorderValue())

C++: Ptr<BaseFilter> getMorphologyFilter (int op, int type, InputArray kernel, Point anchor=Point(-1,-1)
)
C++: Ptr<BaseRowFilter> getMorphologyRowFilter (int op, int type, int ksize, int anchor=-1)

C++: Ptr<BaseColumnFilter> getMorphologyColumnFilter (int op, int type, int ksize, int anchor=-1)
C++: Scalar morphologyDefaultBorderValue()
Parameters

op — Morphology operation ID, MORPH_ERODE or MORPH_DILATE .

3.1. Image Filtering 231

The OpenCV Reference Manual, Release 2.4.2

type — Input/output image type. The number of channels can be arbitrary. The depth should
be one of CV_8U, CV_16U, CV_16S, CV_32F‘ or ‘‘CV_064F.

kernel — 2D 8-bit structuring element for a morphological operation. Non-zero elements
indicate the pixels that belong to the element.

ksize — Horizontal or vertical structuring element size for separable morphological opera-
tions.

anchor — Anchor position within the structuring element. Negative values mean that the
anchor is at the kernel center.

rowBorderType — Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate().

columnBorderType — Pixel extrapolation method in the horizontal direction.

borderValue — Border value in case of a constant border. The default value,
morphologyDefaultBorderValue , has a special meaning. It is transformed + inf for
the erosion and to —inf for the dilation, which means that the minimum (maximum) is
effectively computed only over the pixels that are inside the image.

The functions construct primitive morphological filtering operations or a filter engine based on them. Normally it is
enough to use createMorphologyFilter() or even higher-level erode(), dilate() , or morphologyEx() . Note
that createMorphologyFilter() analyzes the structuring element shape and builds a separable morphological filter
engine when the structuring element is square.

See Also:

erode(), dilate(), morphologyEx(), FilterEngine

createSeparableLinearFilter

Creates an engine for a separable linear filter.

C++: Ptr<FilterEngine> createSeparableLinearFilter (int srcType, int dstType, InputArray rowK-
ernel, InputArray columnKernel, Point
anchor=Point(-1,-1), double delta=0, int
rowBorderType=BORDER_DEFAULT, int
columnBorderType=-1, const Scalar& border-
Value=Scalar())

C++: Ptr<BaseColumnFilter> getLinearColumnFilter (int bufType, int dstType, InputArray kernel, int
anchor, int symmetryType, double delta=0, int
bits=0)

C++: Ptr<BaseRowFilter> getLinearRowFilter (int srcType, int bufType, InputArray Kernel, int anchor,
int symmetryType)

Parameters
srcType — Source array type.
dstType — Destination image type that must have as many channels as srcType .
bufType — Intermediate buffer type that must have as many channels as srcType .
rowKernel — Coefficients for filtering each row.
columnKernel — Coefficients for filtering each column.

anchor — Anchor position within the kernel. Negative values mean that anchor is positioned
at the aperture center.

232 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

delta — Value added to the filtered results before storing them.

bits — Number of the fractional bits. The parameter is used when the kernel is an integer
matrix representing fixed-point filter coefficients.

rowBorderType — Pixel extrapolation method in the vertical direction. For details, see
borderInterpolate().

columnBorderType — Pixel extrapolation method in the horizontal direction.
borderValue — Border value used in case of a constant border.

symmetryType — Type of each row and column kernel. See getKernelType() .

The functions construct primitive separable linear filtering operations or a filter engine based on them. Nor-
mally it is enough to use createSeparablelLinearFilter() or even higher-level sepFilter2D() . The function
createMorphologyFilter() is smart enough to figure out the symmetryType for each of the two kernels, the inter-
mediate bufType and, if filtering can be done in integer arithmetics, the number of bits to encode the filter coeffi-
cients. If it does not work for you, it is possible to call getLinearColumnFilter,‘getLinearRowFilter‘ directly and

then pass them to the FilterEngine constructor.
See Also:
sepFilter2D(), createlLinearFilter(), FilterEngine, getKernelType()

dilate

Dilates an image by using a specific structuring element.

C++: void dilate(InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1),
int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& border-
Value=morphologyDefaultBorderValue())

Python: cv2.dilate(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) — dst
C: void cvDilate(const CvArr* sre, CvArr* dst, IplConvKernel* element=NULL, int iterations=1)
Python: cv.Dilate(src, dst, element=None, iterations=1) — None

Parameters

src — Source image. The number of channels can be arbitrary. The depth should be one of

CV_8U, CV_16U, CV_16S, CV_32F‘ or ‘‘CV_64F.
dst — Destination image of the same size and type as src .

element — Structuring element used for dilation. If element=Mat() , a 3 x 3 rectangular
structuring element is used.

anchor — Position of the anchor within the element. The default value (-1, -1) means that
the anchor is at the element center.

iterations — Number of times dilation is applied.
borderType — Pixel extrapolation method. See borderInterpolate() for details.

borderValue — Border value in case of a constant border. The default value has a special
meaning. See createMorphologyFilter() for details.

The function dilates the source image using the specified structuring element that determines the shape of a pixel

neighborhood over which the maximum is taken:

dst(x,y) = max src(x +x',y+y’)
(x’,y’):element(x’,y’)#0

3.1. Image Filtering

233

The OpenCV Reference Manual, Release 2.4.2

The function supports the in-place mode. Dilation can be applied several (iterations) times. In case of multi-
channel images, each channel is processed independently.

See Also:
erode(), morphologyEx(), createMorphologyFilter()

erode

Erodes an image by using a specific structuring element.

C++: void erode (InputArray src, OutputArray dst, InputArray kernel, Point anchor=Point(-1,-1),
int iterations=1, int borderType=BORDER_CONSTANT, const Scalar& border-
Value=morphologyDefaultBorderValue())

Python: cv2.erode(src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]]) — dst
C: void cvErode (const CvArr* src, CvArr* dst, IplConvKernel* element=NULL, int iterations=1)
Python: cv.Erode (src, dst, element=None, iterations=1) — None

Parameters

src — Source image. The number of channels can be arbitrary. The depth should be one of
Cv_8u, CV_16U, CV_16S, CV_32F‘ or ‘‘CV_64F.

dst — Destination image of the same size and type as src.

element — Structuring element used for erosion. If element=Mat() , a 3 x 3 rectangular
structuring element is used.

anchor — Position of the anchor within the element. The default value (-1, -1) means that
the anchor is at the element center.

iterations — Number of times erosion is applied.
borderType — Pixel extrapolation method. See borderInterpolate() for details.

borderValue — Border value in case of a constant border. The default value has a special
meaning. See createMorphologyFilter() for details.

The function erodes the source image using the specified structuring element that determines the shape of a pixel
neighborhood over which the minimum is taken:

dst(x,y) = min src(x +x',y+vy’
()U) (x’,y’):element(x’,y’)#0 ('Y Y)

The function supports the in-place mode. Erosion can be applied several (iterations) times. In case of multi-
channel images, each channel is processed independently.

See Also:
dilate(), morphologyEx(), createMorphologyFilter()

filter2D

Convolves an image with the kernel.

C++: void filter2D (InputArray sre, OutputArray dst, int ddepth, InputArray kernel, Point anchor=Point(-
1,-1), double delta=0, int borderType=BORDER_DEFAULT)

Python: cv2.filter2D (src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) — dst

234 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

C: void cvFilter2D (const CvArr* src, CvArr* dst, const CvMat* kernel, CvPoint anchor=cvPoint(-1,-1))
Python: cv.Filter2D(src, dst, kernel, anchor=(-1, -1)) — None
Parameters
src — Source image.
dst — Destination image of the same size and the same number of channels as src .
ddepth —

Desired depth of the destination image. If it is negative, it will be the same as src.depth() . The following c

— src.depth() =CV_8U, ddepth =-1/CV_165/CV_32F/CV_64F
— src.depth() = CV_16U/CV_16S, ddepth =-1/CV_32F/CV_64F
— src.depth() = CV_32F, ddepth =-1/CV_32F/CV_64F
— src.depth() = CV_64F, ddepth = -1/CV_64F
when ddepth=-1, the destination image will have the same depth as the source.

kernel — Convolution kernel (or rather a correlation kernel), a single-channel floating point
matrix. If you want to apply different kernels to different channels, split the image into
separate color planes using split () and process them individually.

anchor — Anchor of the kernel that indicates the relative position of a filtered point within
the kernel. The anchor should lie within the kernel. The special default value (-1,-1) means
that the anchor is at the kernel center.

delta — Optional value added to the filtered pixels before storing them in dst .
borderType — Pixel extrapolation method. See borderInterpolate() for details.

The function applies an arbitrary linear filter to an image. In-place operation is supported. When the aperture is
partially outside the image, the function interpolates outlier pixel values according to the specified border mode.

The function does actually compute correlation, not the convolution:

dst(x,y) = Z kernel(x’,y’) * src(x +x" —anchor.x,y +y’ — anchor.y)

0<x’<kernel.cols,
0<y’<kernel. rows

That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip the kernel using flip ()
and set the new anchor to (kernel.cols - anchor.x - 1, kernel.rows - anchor.y - 1).

The function uses the DFT-based algorithm in case of sufficiently large kernels (~*“11 x 11°‘ or larger) and the direct
algorithm (that uses the engine retrieved by createlLinearFilter()) for small kernels.

See Also:

sepFilter2D(), createlLinearFilter(), dft(), matchTemplate()

GaussianBlur

Smoothes an image using a Gaussian filter.

C++: void GaussianBlur (InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY=0,
int borderType=BORDER_DEFAULT)

Python: cv2.GaussianBlur (src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) — dst

3.1. Image Filtering 235

The OpenCV Reference Manual, Release 2.4.2

Parameters

src — Source image. The image can have any number of channels, which are processed
independently. The depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.

dst — Destination image of the same size and type as src .

ksize — Gaussian kernel size. ksize.width and ksize.height can differ but they both
must be positive and odd. Or, they can be zero’s and then they are computed from sigmax .

sigmaX — Gaussian kernel standard deviation in X direction.

sigmaY — Gaussian kernel standard deviation in Y direction. If sigmaY is zero, it is set to
be equal to sigmaX . If both sigmas are zeros, they are computed from ksize.width and
ksize.height , respectively. See getGaussianKernel() for details. To fully control the
result regardless of possible future modifications of all this semantics, it is recommended to
specify all of ksize, sigmaX, and sigmaY .

borderType — Pixel extrapolation method. See borderInterpolate() for details.
The function convolves the source image with the specified Gaussian kernel. In-place filtering is supported.
See Also:
sepFilter2D(), filter2D(), blur(), boxFilter(), bilateralFilter(), medianBlur()

getDerivKernels

Returns filter coefficients for computing spatial image derivatives.

C++: void getDerivKernels (OutputArray kx, OutputArray Ky, int dx, int dy, int ksize, bool normal-
ize=false, int ktype=CV_32F)

Python: cv2.getDerivKernels (dx, dy, ksize[, kx[, ky[, normalize[, ktype]]]]) — kx, ky
Parameters
kx — Output matrix of row filter coefficients. It has the type ktype .
ky — Output matrix of column filter coefficients. It has the type ktype .
dx — Derivative order in respect of x.
dy — Derivative order in respect of y.
ksize — Aperture size. It can be CV_SCHARR, 1, 3, 5, or 7.

normalize — Flag indicating whether to normalize (scale down) the filter coefficients or not.
Theoretically, the coefficients should have the denominator = 2ksize*2—dx—dy—=2 f yoy
are going to filter floating-point images, you are likely to use the normalized kernels. But if
you compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to
preserve all the fractional bits, you may want to set normalize=false .

ktype — Type of filter coefficients. It can be CV_32f or CV_64F .

The function computes and returns the filter coefficients for spatial image derivatives. When ksize=CV_SCHARR , the
Scharr 3 x 3 kernels are generated (see Scharr()). Otherwise, Sobel kernels are generated (see Sobel ()). The filters
are normally passed to sepFilter2D() or to createSeparablelLinearFilter() .

236 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

getGaussianKernel

Returns Gaussian filter coefficients.
C++: Mat getGaussianKernel (int ksize, double sigma, int ktype=CV_64F)
Python: cv2.getGaussianKernel (ksize, sigma[, ktype]) — retval
Parameters
ksize — Aperture size. It should be odd (ksize mod 2 = 1) and positive.

sigma — Gaussian standard deviation. If it is non-positive, it is computed from ksize as
sigma = 0.3*x((ksize-1)*0.5 - 1) + 0.8.

ktype — Type of filter coefficients. It can be CV_32f or CV_64F .
The function computes and returns the ksize x 1 matrix of Gaussian filter coefficients:

Gi = ax e*(if(ksizefl)/2)2/(2*sigma)2)

where i = 0..ksize — 1 and o is the scale factor chosen so that), Gy = 1.

Two of such generated kernels can be passed to sepFilter2D() or to createSeparableLinearFilter(). Those
functions automatically recognize smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle
them accordingly. You may also use the higher-level GaussianBlur().

See Also:

sepFilter2D(), createSeparableLinearFilter(), getDerivKernels(), getStructuringElement(),
GaussianBlur()

getKernelType

Returns the kernel type.
C++: int getKernelType (InputArray kernel, Point anchor)
Parameters
kernel — 1D array of the kernel coefficients to analyze.
anchor — Anchor position within the kernel.
The function analyzes the kernel coefficients and returns the corresponding kernel type:

* KERNEL_GENERAL The kernel is generic. It is used when there is no any type of symmetry or other
properties.

¢ KERNEL_SYMMETRICAL The kernel is symmetrical: kernel; == kernelygize—i—1 , and the anchor is
at the center.

KERNEL_ASYMMETRICAL The kernel is asymmetrical: kernel; == —kernelysize—i—1 , and the anchor
is at the center.

¢ KERNEL_SMOOTH All the kernel elements are non-negative and summed to 1. For example, the
Gaussian kernel is both smooth kernel and symmetrical, so the function returns KERNEL_SMOOTH |
KERNEL_SYMMETRICAL .

« KERNEL_INTEGER All the kernel coefficients are integer numbers. This flag can be combined with
KERNEL_SYMMETRICAL or KERNEL_ASYMMETRICAL .

3.1. Image Filtering 237

The OpenCV Reference Manual, Release 2.4.2

getStructuringElement

Returns a structuring element of the specified size and shape for morphological operations.

C++: Mat getStructuringElement (int shape, Size ksize, Point anchor=Point(-1,-1))

Python: cv2.getStructuringElement (shape, ksize[, anchor]) — retval

C: IplConvKernel* cvCreateStructuringElementEx (int cols, int rows, int anchor_x, int anchor_y, int

shape, int* values=NULL)

Python: cv.CreateStructuringElementEx (cols, rows, anchorX, anchorY, shape, values=None) — kernel

Parameters

The function

shape — Element shape that could be one of the following:

— MORPH_RECT - a rectangular structuring element:
F—ij =1
— MORPH_ELLIPSE - an elliptic structuring element, that is, a filled ellipse inscribed

into the rectangle Rect (0, 0, esize.width, 0.esize.height)

— MORPH_CROSS - a cross-shaped structuring element:
By — { (1) if i=anchor..y or j=anchor.x
otherwise
— CV_SHAPE_CUSTOM - custom structuring element (OpenCV 1.x API)
ksize — Size of the structuring element.
cols — Width of the structuring element
rows — Height of the structuring element

anchor — Anchor position within the element. The default value (—1,—1) means that the
anchor is at the center. Note that only the shape of a cross-shaped element depends on
the anchor position. In other cases the anchor just regulates how much the result of the
morphological operation is shifted.

anchor_x — x-coordinate of the anchor
anchor_y — y-coordinate of the anchor

values — integer array of cols’ ‘*‘‘rows elements that specifies the custom shape of the
structuring element, when shape=CV_SHAPE_CUSTOM.

constructs and returns the structuring element that can be further passed
createMorphologyFilter(), erode(), dilate() or morphologyEx() .

trary binary mask yourself and use it as the structuring element.

to

But you can also construct an arbi-

Note: When using OpenCV 1.x C API, the created structuring element IplConvKernel* element must be released
in the end using cvReleaseStructuringElement (&element).

medianBlur

Smoothes an image using the median filter.

C++: void medianBlur (InputArray srec, OutputArray dst, int ksize)

238

Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

Python: cv2.medianBlur (src, ksize[, dst]) — dst
Parameters

src — Source 1-, 3-, or 4-channel image. When ksize is 3 or 5, the image depth should be
Cv_8U, CV_16U, or CV_32F . For larger aperture sizes, it can only be CV_8U .

dst — Destination array of the same size and type as src .
ksize — Aperture linear size. It must be odd and greater than 1, for example: 3,5, 7 ...

The function smoothes an image using the median filter with the ksize x ksize aperture. Each channel of a multi-
channel image is processed independently. In-place operation is supported.

See Also:

bilateralFilter(), blur(), boxFilter(), GaussianBlur()

morphologyEx

Performs advanced morphological transformations.

C++: void morphologyEx (InputArray sre, OutputArray dst, int op, InputArray kernel, Point anchor=Point(-
1,-1), int iterations=1, int borderType=BORDER_CONSTANT, const Scalar&
borderValue=morphologyDefaultBorderValue())

Python: cv2.morphologyEx (src, op, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]])
— dst

C: void cvMorphologyEx (const CvArr* sre, CvArr* dst, CvArr* temp, IplConvKernel* element, int opera-
tion, int iterations=1)

Python: cv.MorphologyEx (src, dst, temp, element, operation, iterations=1) — None
Parameters

src — Source image. The number of channels can be arbitrary. The depth should be one of
Cv_8u, CV_16U, CV_16S, CV_32F‘ or ‘‘CV_64F.

dst — Destination image of the same size and type as src .

element — Structuring element.

op — Type of a morphological operation that can be one of the following:

— MORPH_OPEN - an opening operation

— MORPH_CLOSE - a closing operation

— MORPH_GRADIENT - a morphological gradient

— MORPH_TOPHAT - “top hat”

— MORPH_BLACKHAT - “black hat”

iterations — Number of times erosion and dilation are applied.

borderType — Pixel extrapolation method. See borderInterpolate() for details.

borderValue — Border value in case of a constant border. The default value has a special
meaning. See createMorphologyFilter() for details.

The function can perform advanced morphological transformations using an erosion and dilation as basic operations.
Opening operation:

dst = open(src, element) = dilate(erode(src, element))

3.1. Image Filtering 239

The OpenCV Reference Manual, Release 2.4.2

Closing operation:

dst = close(src, element) = erode(dilate(src, element))
Morphological gradient:

dst = morph_grad(src, element) = dilate(src,element) — erode(src, element)

“Top hat”:

dst = tophat(src,element) = src — open(src, element)
“Black hat”:

dst = blackhat(src,element) = close(src,element) — src

Any of the operations can be done in-place. In case of multi-channel images, each channel is processed independently.
See Also:

dilate(), erode(), createMorphologyFilter()

Laplacian

Calculates the Laplacian of an image.

C++: void Laplacian (InputArray src, OutputArray dst, int ddepth, int ksize=1, double scale=1, double
delta=0, int borderType=BORDER_DEFAULT)

Python: cv2.Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]]) — dst
C: void cvLaplace (const CvArr* sre, CvArr* dst, int aperture_size=3)
Python: cv.Laplace(src, dst, apertureSize=3) — None
Parameters
src — Source image.
dst — Destination image of the same size and the same number of channels as src .
ddepth — Desired depth of the destination image.

ksize — Aperture size used to compute the second-derivative filters. See
getDerivKernels () for details. The size must be positive and odd.

scale — Optional scale factor for the computed Laplacian values. By default, no scaling is
applied. See getDerivKernels () for details.

delta — Optional delta value that is added to the results prior to storing them in dst .
borderType — Pixel extrapolation method. See borderInterpolate() for details.

The function calculates the Laplacian of the source image by adding up the second x and y derivatives calculated using
the Sobel operator:

%src d%src

dSt:ASFCzw‘FW

This is done when ksize > 1. When ksize == 1, the Laplacian is computed by filtering the image with the
following 3 x 3 aperture:

0 1 0
1T —4 1
0o 1 0

240 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

See Also:
Sobel(), Scharr()

pyrDown

Smoothes an image and downsamples it.

C++: void pyrDown (InputArray sre, OutputArray dst, const Size& dstsize=Size(), int border-
Type=BORDER_DEFAULT)

Python: cv2.pyrDown (src[, dst[, dstsize[, borderType]]]) — dst
C: void cvPyrDown (const CvArr* src, CvArr* dst, int filter=CV_GAUSSIAN_5x5)
Python: cv.PyrDown (src, dst, filter=CV_GAUSSIAN_5X5) — None
Parameters
src — Source image.

dst — Destination image. It has the specified size and the same type as src .

dstsize — Size of the destination image. By default, it is computed as
Size((src.cols+1)/2, (src.rows+1l)/2) . Butin any case, the following conditions
should be satisfied:

[dstsize.width x 2 — src.cols| < 2
|[dstsize.height x 2 — src.rows| < 2

The function performs the downsampling step of the Gaussian pyramid construction. First, it convolves the source
image with the kernel:

1 4 6 4 1

C 416 24 16 4
— |6 24 36 24 6
25614 16 24 16 4
1 4 6 4 1

Then, it downsamples the image by rejecting even rows and columns.

pyrUp

Upsamples an image and then smoothes it.

C++: void pyrUp(InputArray sre, OutputArray dst, const Size& dstsize=Size(), int border-
Type=BORDER_DEFAULT)

Python: cv2. pyrUp(src[, dst[, dstsize[, borderType]]]) — dst
C: cvPyrUp(const CvArr* sre, CvArr* dst, int filter=CV_GAUSSIAN_5x5)
Python: cv.PyruUp (src, dst, filter=CV_GAUSSIAN_5X5) — None
Parameters
src¢ — Source image.

dst — Destination image. It has the specified size and the same type as src .

3.1. Image Filtering 241

The OpenCV Reference Manual, Release 2.4.2

dstsize — Size of the destination image. By default, it is computed as Size(src.colsx2,
(src.rows*2) . Butin any case, the following conditions should be satisfied:

|dstsize.width — src.cols x 2| < (dstsize.width mod 2)
|dstsize.height — src.rows * 2| < (dstsize.height mod 2)

The function performs the upsampling step of the Gaussian pyramid construction though it can actually be used to
construct the Laplacian pyramid. First, it upsamples the source image by injecting even zero rows and columns and
then convolves the result with the same kernel as in pyrDown () multiplied by 4.

pyrMeanShiftFiltering

Performs initial step of meanshift segmentation of an image.

C++: void pyrMeanShiftFiltering(InputArray src, OutputArray dst, double sp, double sr, int
maxLevel=1, TermCriteria termcrit=TermCriteria(TermCrite-
ria:: MAX_ITER+TermCriteria::EPS,5,1))

Python: cv2.pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]]) — dst
C: void cvPyrMeanShiftFiltering(const CvArr* src, CvArr* dst, double sp, dou-

ble ST, int max_level=1, CvTermCeriteria term-
crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,5,1))
Python: cv.PyrMeanShiftFiltering/src, dst, sp, ST, max_level=1, term-
crit=(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 5, 1)) —
None

Parameters
src — The source 8-bit, 3-channel image.
dst — The destination image of the same format and the same size as the source.
sp — The spatial window radius.
sr — The color window radius.
maxLevel — Maximum level of the pyramid for the segmentation.
termcrit — Termination criteria: when to stop meanshift iterations.

The function implements the filtering stage of meanshift segmentation, that is, the output of the function is the filtered
“posterized” image with color gradients and fine-grain texture flattened. At every pixel (X,Y) of the input image (or
down-sized input image, see below) the function executes meanshift iterations, that is, the pixel (X,Y) neighborhood
in the joint space-color hyperspace is considered:

(X)U)iX—SPSXSX‘FSP)Y—SPSU §Y—|—sp,||(R,G,B)—(T,g,b)H S sr

where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively (though, the
algorithm does not depend on the color space used, so any 3-component color space can be used instead). Over the
neighborhood the average spatial value (X',Y’) and average color vector (R’,G’,B") are found and they act as the
neighborhood center on the next iteration:

(X,Y) (X', Y, (R, G,B) (R',G’, B").

242 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

After the iterations over, the color components of the initial pixel (that is, the pixel from where the iterations started)
are set to the final value (average color at the last iteration):

I(X,Y) < —(Rx, G*, Bx)

When maxLevel > 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is run on the
smallest layer first. After that, the results are propagated to the larger layer and the iterations are run again only on
those pixels where the layer colors differ by more than sr from the lower-resolution layer of the pyramid. That makes
boundaries of color regions sharper. Note that the results will be actually different from the ones obtained by running
the meanshift procedure on the whole original image (i.e. when maxLevel==0).

sepFilter2D

Applies a separable linear filter to an image.

C++: void sepFilter2D (InputArray src, OutputArray dst, int ddepth, InputArray KernelX, In-
putArray kernelY, Point anchor=Point(-1,-1), double delta=0, int border-
Type=BORDER_DEFAULT)

Python: cv2.sepFilter2D (src, ddepth, kernelX, kernelY[, dst[, anchor[, delta[, borderType]]]]) — dst
Parameters
src — Source image.
dst — Destination image of the same size and the same number of channels as src .
ddepth —

Destination image depth. The following combination of src.depth() and ddepth are supported:

src.depth() = CV_8U, ddepth =-1/CV_16S/CV_32F/CV_64F

src.depth() = CV_16U/CV_16S, ddepth =-1/CV_32F/CV_64F

src.depth() = CV_32F, ddepth =-1/CV_32F/CV_64F

src.depth() = CV_64F, ddepth = -1/CV_64F

when ddepth=-1, the destination image will have the same depth as the source.
kernelX — Coefficients for filtering each row.

kernelY — Coefficients for filtering each column.

anchor — Anchor position within the kernel. The default value (—1, 1) means that the anchor
is at the kernel center.

delta — Value added to the filtered results before storing them.
borderType — Pixel extrapolation method. See borderInterpolate() for details.

The function applies a separable linear filter to the image. That is, first, every row of src is filtered with the 1D kernel
kernelX . Then, every column of the result is filtered with the 1D kernel kernelY . The final result shifted by delta
is stored in dst .

See Also:

createSeparableLinearFilter(), filter2D(), Sobel(), GaussianBlur(), boxFilter(), blur()

3.1. Image Filtering 243

The OpenCV Reference Manual, Release 2.4.2

Smooth

Smooths the image in one of several ways.

C: void cvSmooth (const CvArr* sre, CvArr* dst, int smoothtype=CV_GAUSSIAN, int sizel=3, int size2=0,
double sigmal=0, double sigma2=0)

Python: cv.Smooth (src, dst, smoothtype=CV_GAUSSIAN, param1=3, param2=0, param3=0, param4=0) —
None
Parameters

src — The source image
dst — The destination image
smoothtype — Type of the smoothing:

— CV_BLUR_NO_SCALE linear convolution with sizel x size2 box kernel (all 1’s).
If you want to smooth different pixels with different-size box kernels, you can use the
integral image that is computed using integral()

— CV_BLUR linear convolution with sizel x size2 box kernel (all 1’s) with subsequent
scaling by 1/(sizel - size2)

— CV_GAUSSIAN linear convolution with a sizel x size2 Gaussian kernel
— CV_MEDIAN median filter with a sizel x sizel square aperture

— CV_BILATERAL bilateral filter with a sizel x sizel square aperture, color sigma=
sigmal and spatial sigma= sigma2 . If sizel=0 , the aperture square side is set
to cvRound(sigma2x1.5)*2+1 . Information about bilateral filtering can be found at
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHTI 1/Bilateral_Filtering.html

sizel — The first parameter of the smoothing operation, the aperture width. Must be a posi-
tive odd number (1, 3, 5, ...)

size2 — The second parameter of the smoothing operation, the aperture height. Ignored
by CV_MEDIAN and CV_BILATERAL methods. In the case of simple scaled/non-scaled and
Gaussian blur if size2 is zero, it is set to sizel . Otherwise it must be a positive odd
number.

sigmal — In the case of a Gaussian parameter this parameter may specify Gaussian o (stan-
dard deviation). If it is zero, it is calculated from the kernel size:

sizel for horizontal kernel

0=03(n/2—1)+0.8 where size? for vertical kernel

Using standard sigma for small kernels (3 x 3 to 7 x 7) gives better speed. If sigmal is
not zero, while sizel and size?2 are zeros, the kernel size is calculated from the sigma (to
provide accurate enough operation).

The function smooths an image using one of several methods. Every of the methods has some features and restrictions
listed below:

* Blur with no scaling works with single-channel images only and supports accumulation of 8-bit to 16-bit format
(similar to Sobel () and Laplacian()) and 32-bit floating point to 32-bit floating-point format.

* Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point images. These two
methods can process images in-place.

* Median and bilateral filters work with 1- or 3-channel 8-bit images and can not process images in-place.

244 Chapter 3. imgproc. Image Processing

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

The OpenCV Reference Manual, Release 2.4.2

Note: The function is now obsolete. Use GaussianBlur(), blur(), medianBlur() or bilateralFilter().

Sobel

Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

C++: void Sobel (InputArray sre, OutputArray dst, int ddepth, int dx, int dy, int ksize=3, double scale=1,
double delta=0, int borderType=BORDER_DEFAULT)

Python: cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]]) — dst
C: void cvSobel (const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size=3)
Python: cv.Sobel(src, dst, xorder, yorder, apertureSize=3) — None
Parameters
src — Source image.
dst — Destination image of the same size and the same number of channels as src .
ddepth —

Destination image depth. The following combination of src.depth() and ddepth are supported:

src.depth() = CV_8U, ddepth =-1/CV_16S/CV_32F/CV_64F
src.depth() = CV_16U/CV_16S, ddepth = -1/CV_32F/CV_64F

src.depth() = CV_32F, ddepth =-1/CV_32F/CV_64F

src.depth() = CV_64F, ddepth = -1/CV_64F

when ddepth=-1, the destination image will have the same depth as the source. In the case
of 8-bit input images it will result in truncated derivatives.

xorder — Order of the derivative X.
yorder — Order of the derivative y.
ksize — Size of the extended Sobel kernel. It must be 1, 3, 5, or 7.

scale — Optional scale factor for the computed derivative values. By default, no scaling is
applied. See getDerivKernels () for details.

delta — Optional delta value that is added to the results prior to storing them in dst .
borderType — Pixel extrapolation method. See borderInterpolate() for details.

In all cases except one, the ksize x ksize separable kernel is used to calculate the derivative. When ksize = 1, the
3 x Tor1x 3kernel is used (that is, no Gaussian smoothing is done). ksize = 1 can only be used for the first or the
second x- or y- derivatives.

There is also the special value ksize = CV_SCHARR (-1) that corresponds to the 3 x 3 Scharr filter that may give more
accurate results than the 3 x 3 Sobel. The Scharr aperture is

-3 0 3
—10 0 10
-3 0 3

for the x-derivative, or transposed for the y-derivative.

3.1. Image Filtering 245

The OpenCV Reference Manual, Release 2.4.2

The function calculates an image derivative by convolving the image with the appropriate kernel:

dst axorder+yordersrc
S =

oxxorder ayyorder

The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less resistant to the
noise. Most often, the function is called with (xorder =1, yorder =0, ksize = 3) or (xorder =0, yorder =1,
ksize = 3) to calculate the first x- or y- image derivative. The first case corresponds to a kernel of:

-1 0 1

-2 0 2
-1 0 1
The second case corresponds to a kernel of:
-1 -2 -1
o o0 0
1 2 1

See Also:

Scharr(), Laplacian(), sepFilter2D(), filter2D(), GaussianBlur(), cartToPolar()

Scharr

Calculates the first x- or y- image derivative using Scharr operator.

C++: void Scharr (InputArray sre, OutputArray dst, int ddepth, int dx, int dy, double scale=1, double
delta=0, int borderType=BORDER_DEFAULT)

Python: cv2.Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]) — dst
Parameters
src — Source image.
dst — Destination image of the same size and the same number of channels as src.

ddepth — Destination image depth. See Sobel () for the list of supported combination of
src.depth() and ddepth.

dx — Order of the derivative x.
dy — Order of the derivative y.

scale — Optional scale factor for the computed derivative values. By default, no scaling is
applied. See getDerivKernels () for details.

delta — Optional delta value that is added to the results prior to storing them in dst.
borderType — Pixel extrapolation method. See borderInterpolate() for details.
The function computes the first x- or y- spatial image derivative using the Scharr operator. The call
Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)

is equivalent to

Sobel(src, dst, ddepth, dx, dy, CV_SCHARR, scale, delta, borderType).

See Also:

cartToPolar()

246 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

3.2 Geometric Image Transformations

The functions in this section perform various geometrical transformations of 2D images. They do not change the
image content but deform the pixel grid and map this deformed grid to the destination image. In fact, to avoid
sampling artifacts, the mapping is done in the reverse order, from destination to the source. That is, for each pixel
(x,y) of the destination image, the functions compute coordinates of the corresponding “donor” pixel in the source
image and copy the pixel value:

dst(x,y) = src(fx(x,y), fy(x,y))

In case when you specify the forward mapping (gx, gy) : src — dst , the OpenCV functions first compute the
corresponding inverse mapping (f, fy) : dst — src and then use the above formula.

The actual implementations of the geometrical transformations, from the most generic remap() and to the simplest
and the fastest resize() , need to solve two main problems with the above formula:

 Extrapolation of non-existing pixels. Similarly to the filtering functions described in the previous section, for
some (x,y) , either one of fy(x,y) , or fy(x,y) , or both of them may fall outside of the image. In this
case, an extrapolation method needs to be used. OpenCYV provides the same selection of extrapolation methods
as in the filtering functions. In addition, it provides the method BORDER_TRANSPARENT . This means that the
corresponding pixels in the destination image will not be modified at all.

* Interpolation of pixel values. Usually f,(x,y) and fy (x,y) are floating-point numbers. This means that (f, f,)
can be either an affine or perspective transformation, or radial lens distortion correction, and so on. So, a pixel
value at fractional coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded
to the nearest integer coordinates and the corresponding pixel can be used. This is called a nearest-neighbor
interpolation. However, a better result can be achieved by using more sophisticated interpolation methods ,
where a polynomial function is fit into some neighborhood of the computed pixel (fy (x,y), fy(x,y)) , and then
the value of the polynomial at (f,(x,y), fy(x,y)) is taken as the interpolated pixel value. In OpenCV, you can
choose between several interpolation methods. See resize() for details.

convertMaps

Converts image transformation maps from one representation to another.

C++: void convertMaps (InputArray mapl, InputArray map2, OutputArray dstmap1, OutputArray dstmap2,
int dstmap1type, bool nninterpolation=false)

Python: cv2.convertMaps(mapl, map2, dstmapltype[, dstmapl[, dstmap2[, nninterpolation]]]) —
dstmapl, dstmap2

Parameters
mapl — The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2.

map2 — The second input map of type CV_16UC1 , CV_32FC1 , or none (empty matrix),
respectively.

dstmap1 — The first output map that has the type dstmapltype and the same size as src .
dstmap?2 — The second output map.

dstmapltype — Type of the first output map that should be CV_16SC2 , CV_32FC1 , or
CV_32FC2.

nninterpolation — Flag indicating whether the fixed-point maps are used for the nearest-
neighbor or for a more complex interpolation.

The function converts a pair of maps for remap() from one representation to another. The following options (
(mapl.type(), map2.type()) — (dstmapl.type(), dstmap2.type())) are supported:

3.2. Geometric Image Transformations 247

http://en.wikipedia.org/wiki/Multivariate_interpolation

The OpenCV Reference Manual, Release 2.4.2

e (CV_32FC1, CV_32FCl) — (CV_16SC2, CV_16UC1) . This is the most frequently used conversion operation,
in which the original floating-point maps (see remap()) are converted to a more compact and much faster
fixed-point representation. The first output array contains the rounded coordinates and the second array (created
only when nninterpolation=false) contains indices in the interpolation tables.

e (CV_32FC2) — (CV_165C2, CV_16UC1) . The same as above but the original maps are stored in one 2-channel
matrix.

» Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same as the origi-
nals.

See Also:

remap(), undistort(), initUndistortRectifyMap()

getAffineTransform

Calculates an affine transform from three pairs of the corresponding points.
C++: Mat getAffineTransform(InputArray sre, InputArray dst)

C++: Mat getAffineTransform(const Point2f sre[], const Point2f dst[])
Python: cv2.getAffineTransform(src, dst) — retval

C: CvMat* cvGetAffineTransform(const CvPoint2D32f* sre, const CvPoint2D32f* dst, CvMat*
map_matrix)

Python: cv.GetAffineTransform(src, dst, mapMatrix) — None
Parameters
src — Coordinates of triangle vertices in the source image.
dst — Coordinates of the corresponding triangle vertices in the destination image.
The function calculates the 2 x 3 matrix of an affine transform so that:
Xi

x!
{ ‘;} =map_matrix - |y;i
Yi 1

where

dSt(i) = (X{ay{)»STC(U = (Xi)yi))i = 0>1)2

See Also:

warpAffine(), transform()

getPerspectiveTransform

Calculates a perspective transform from four pairs of the corresponding points.
C++: Mat getPerspectiveTransform(InputArray sre, InputArray dst)

C++: Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[])
Python: cv2.getPerspectiveTransform(src, dst) — retval

C: CvMat* cvGetPerspectiveTransform(const CvPoint2D32f* src, const CvPoint2D32f* dst, CvMat*
map_matrix)

248 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

Python: cv.GetPerspectiveTransform(src, dst, mapMatrix) — None
Parameters
src — Coordinates of quadrangle vertices in the source image.
dst — Coordinates of the corresponding quadrangle vertices in the destination image.

The function calculates the 3 x 3 matrix of a perspective transform so that:

tix{ Xi
tiy{| =map_matrix- |y;
t; 1
where
dst(i) = (x{,y{),src(i) = (xi,yi),1=0,1,2,3
See Also:

findHomography (), warpPerspective(), perspectiveTransform()

getRectSubPix

Retrieves a pixel rectangle from an image with sub-pixel accuracy.

C++: void getRectSubPix (InputArray image, Size patchSize, Point2f center, OutputArray patch, int
patchType=-1)

Python: cv2.getRectSubPix (image, patchSize, center[, patch[, patchType]]) — patch
C: void cvGetRectSubPix (const CvArr* sre, CvArr* dst, CvPoint2D32f center)
Python: cv.GetRectSubPix (src, dst, center) — None
Parameters
src — Source image.
patchSize — Size of the extracted patch.

center — Floating point coordinates of the center of the extracted rectangle within the source
image. The center must be inside the image.

dst — Extracted patch that has the size patchSize and the same number of channels as src

patchType — Depth of the extracted pixels. By default, they have the same depth as src .

The function getRectSubPix extracts pixels from src :
dst(x,y) = src(x + center.x — (dst.cols — 1) x 0.5,y + center.y — (dst.rows — 1) % 0.5)

where the values of the pixels at non-integer coordinates are retrieved using bilinear interpolation. Every channel of
multi-channel images is processed independently. While the center of the rectangle must be inside the image, parts
of the rectangle may be outside. In this case, the replication border mode (see borderInterpolate()) is used to
extrapolate the pixel values outside of the image.

See Also:

warpAffine(), warpPerspective()

3.2. Geometric Image Transformations 249

The OpenCV Reference Manual, Release 2.4.2

getRotationMatrix2D

Calculates an affine matrix of 2D rotation.
C++: Mat getRotationMatrix2D (Point2f center, double angle, double scale)
Python: cv2.getRotationMatrix2D (center, angle, scale) — retval
C: CvMat* cv2DRotationMatrix (CvPoint2D32f center, double angle, double scale, CvMat* map_matrix)
Python: cv.GetRotationMatrix2D (center, angle, scale, mapMatrix) — None
Parameters
center — Center of the rotation in the source image.

angle — Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
coordinate origin is assumed to be the top-left corner).

scale — Isotropic scale factor.
map_matrix — The output affine transformation, 2x3 floating-point matrix.

The function calculates the following matrix:

o« B (1—«)-center.x—f-center.y
—B o P-center.x+ (1 — «)-center.y

where

o = scale - cosangle,
[} = scale -sinangle

The transformation maps the rotation center to itself. If this is not the target, adjust the shift.

See Also:

getAffineTransform(), warpAffine(), transform()

invertAffineTransform

Inverts an affine transformation.
C++: void invertAffineTransform(InputArray M, OutputArray iM)
Python: cv2.inve rtAffineTransform(M[, iM]) — iM
Parameters
M - Original affine transformation.
iM — Output reverse affine transformation.

The function computes an inverse affine transformation represented by 2 x 3 matrix M :

ajp; arpz by
a1 az b;

The result is also a 2 x 3 matrix of the same type as M .

250 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

LogPolar

Remaps an image to log-polar space.

C: void cvLogPolar(const CvArr* sre, CvArr* dst, CvPoint2D32f center, double M, int
flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS)

Python: cv.LogPolar (src, dst, center, M, flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS) —
None

Parameters
src — Source image
dst — Destination image
center — The transformation center; where the output precision is maximal
M — Magnitude scale parameter. See below
flags — A combination of interpolation methods and the following optional flags:

— CV_WARP_FILL_OUTLIERS fills all of the destination image pixels. If some of them
correspond to outliers in the source image, they are set to zero

— CV_WARP_INVERSE_MAP See below
The function cvLogPolar transforms the source image using the following transformation:

¢ Forward transformation (CV_WARP_INVERSE_MAP is not set):

dst(¢, p) = sre(x,y)

¢ Inverse transformation (CV_WARP_INVERSE_MAP is set):

dst(x,y) = src(d, p)

where

p=M-logvx2+y2 ¢ = atan(y/x)

The function emulates the human “foveal” vision and can be used for fast scale and rotation-invariant template match-
ing, for object tracking and so forth. The function can not operate in-place.

remap

Applies a generic geometrical transformation to an image.

C++: void remap (InputArray src, OutputArray dst, InputArray mapl, InputArray map2, int interpolation,
int borderMode=BORDER_CONSTANT, const Scalar& borderValue=Scalar())

Python: cv2.remap (src, mapl, map2, interpolation[, dst[, borderMode[, borderValue]]]) — dst

C: void cvRemap (const CvArr* sre, CvArr* dst, const CvArr* mapx, const CvArr* mapy,
int flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fill-
val=cvScalarAll(0))

3.2. Geometric Image Transformations 251

The OpenCV Reference Manual, Release 2.4.2

Python: cv.Remap (src, dst, mapx, mapy, flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS, fill-
val=(0, 0, 0, 0)) — None

Parameters
src — Source image.
dst — Destination image. It has the same size as map1l and the same type as src .

mapl — The first map of either (x,y) points or just x values having the type CV_165C2 ,
CV_32FC1, or CV_32FC2 . See convertMaps() for details on converting a floating point
representation to fixed-point for speed.

map2 — The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty
map if maplis (x,y) points), respectively.

interpolation — Interpolation method (see resize()). The method INTER_AREA is not
supported by this function.

borderMode — Pixel extrapolation method (see borderInterpolate()). When
borderMode=BORDER_TRANSPARENT , it means that the pixels in the destination image that
corresponds to the “outliers” in the source image are not modified by the function.

borderValue — Value used in case of a constant border. By default, it is O.

The function remap transforms the source image using the specified map:

dst(x,y) = src(mapy(x,y), mapy(x,y))

where values of pixels with non-integer coordinates are computed using one of available interpolation methods. mapy
and mapy can be encoded as separate floating-point maps in map; and map: respectively, or interleaved floating-
point maps of (x,y) in map; , or fixed-point maps created by using convertMaps() . The reason you might want
to convert from floating to fixed-point representations of a map is that they can yield much faster (~2x) remapping
operations. In the converted case, map; contains pairs (cvFloor(x), cvFloor(y)) and map, contains indices in
a table of interpolation coefficients.

This function cannot operate in-place.

resize

Resizes an image.

C++: void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpola-
tion=INTER_LINEAR)

Python: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) — dst
C: void cvResize(const CvArr* src, CvArr* dst, int interpolation=CV_INTER_LINEAR)
Python: cv.Resize(src, dst, interpolation=CV_INTER_LINEAR) — None
Parameters
src — Source image.

dst — Destination image. It has the size dsize (when it is non-zero) or the size computed
from src.size() , fx,and fy . The type of dst is the same as of src .

dsize — Destination image size. If it is zero, it is computed as:
dsize = Size(round(fxxsrc.cols), round(fy*src.rows))

Either dsize or both fx and fy must be non-zero.

252 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

fx — Scale factor along the horizontal axis. When it is 0, it is computed as

(double)dsize.width/src.cols

fy — Scale factor along the vertical axis. When it is 0, it is computed as

(double)dsize.height/src.rows

interpolation — Interpolation method:
— INTER_NEAREST - a nearest-neighbor interpolation
— INTER_LINEAR - a bilinear interpolation (used by default)

— INTER_AREA - resampling using pixel area relation. It may be a preferred method for
image decimation, as it gives moire’-free results. But when the image is zoomed, it is
similar to the INTER_NEAREST method.

— INTER_CUBIC - a bicubic interpolation over 4x4 pixel neighborhood
— INTER_LANCZOS4 - a Lanczos interpolation over 8x8 pixel neighborhood

The function resize resizes the image src down to or up to the specified size. Note that the initial dst type or size
are not taken into account. Instead, the size and type are derived from the src,*‘dsize‘,"‘fx*‘, and fy . If you want to
resize src so that it fits the pre-created dst , you may call the function as follows:

// explicitly specify dsize=dst.size(); fx and fy will be computed from that.
resize(src, dst, dst.size(), 0, 0, interpolation);

If you want to decimate the image by factor of 2 in each direction, you can call the function this way:
// specify fx and fy and let the function compute the destination image size.

resize(src, dst, Size(), 0.5, 0.5, interpolation);

To shrink an image, it will generally look best with CV_INTER_AREA interpolation, whereas to enlarge an image, it
will generally look best with CV_INTER_CUBIC (slow) or CV_INTER_LINEAR (faster but still looks OK).

See Also:

warpAffine(), warpPerspective(), remap()

warpAffine

Applies an affine transformation to an image.

C++: void warpAffine (InputArray sre, OutputArray dst, InputArray M, Size dsize, int
flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const Scalar&
borderValue=Scalar())

Python: cv2.warpAffine(src, M, dsize[, dst[, ﬂags[, borderMode[, borderValue]]]]) — dst

C: void cvWarpAffine(const CvArr* sre, CvArr* dst, const CvMat*¥* map_matrix, int
flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar fill-
val=cvScalarAll(0))

Python: cv.WarpAffine (src, dst, mapMatrix, flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS,
fillval=(0, 0, 0, 0)) — None

C: void cvGetQuadrangleSubPix (const CvArr* src, CvArr* dst, const CvMat* map_matrix)

Python: cv.GetQuadrangleSubPix (src, dst, mapMatrix) — None

3.2. Geometric Image Transformations 253

The OpenCV Reference Manual, Release 2.4.2

Parameters
src — Source image.
dst — Destination image that has the size dsize and the same type as src .
M - 2 X 3 transformation matrix.
dsize — Size of the destination image.

flags — Combination of interpolation methods (see resize()) and the optional flag
WARP_INVERSE_MAP that means that M is the inverse transformation (dst — src).

borderMode - Pixel extrapolation method (see borderInterpolate()). When
borderMode=BORDER_TRANSPARENT , it means that the pixels in the destination image cor-
responding to the “outliers” in the source image are not modified by the function.

borderValue — Value used in case of a constant border. By default, it is O.

The function warpAffine transforms the source image using the specified matrix:
dst(x,y) = src(Miix + M2y + Mi3, Ma1x + M2y + M23)

when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation 1is first inverted with
invertAffineTransform() and then put in the formula above instead of M . The function cannot operate
in-place.

See Also:

warpPerspective(), resize(), remap(), getRectSubPix (), transform()

Note: cvGetQuadrangleSubPix is similar to cvWarpAffine, but the outliers are extrapolated using replication
border mode.

warpPerspective

Applies a perspective transformation to an image.

C++: void warpPerspective (InputArray src, OutputArray dst, InputArray M, Size dsize, int
flags=INTER_LINEAR, int borderMode=BORDER_CONSTANT, const
Scalar& borderValue=Scalar())

Python: cv2.warpPerspective (src, M, dsize[, dst[, ﬂags[, borderMode[, borderValue]]]]) — dst

C: void cvWarpPerspective(const CvArr* src, CvArr* dst, const CvMat* map_matrix, int
flags=CV_INTER_LINEAR+CV_WARP_FILL_OUTLIERS, CvScalar
fillval=cvScalarAll(0))

Python: cv.WarpPerspective (src, dst, mapMatrix, flags=CV_INNER_LINEAR+CV_WARP_FILL_OUTLIERS,
fillval=(0, 0, 0, 0)) — None

Parameters
src — Source image.
dst — Destination image that has the size dsize and the same type as src .
M - 3 x 3 transformation matrix.
dsize — Size of the destination image.

flags — Combination of interpolation methods (see resize()) and the optional flag
WARP_INVERSE_MAP that means that M is the inverse transformation (dst — src).

254 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

borderMode - Pixel extrapolation method (see borderInterpolate()). When
borderMode=BORDER_TRANSPARENT , it means that the pixels in the destination image that
corresponds to the “outliers” in the source image are not modified by the function.

borderValue — Value used in case of a constant border. By default, it is 0.

The function warpPerspective transforms the source image using the specified matrix:

Mi1x + My + M3 M21X+Mzzy+M23>

dst(x =src
(o y) <M31X+M3zy+M33’M31X+M3zy+M33

when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert() and then put

in the formula above instead of M . The function cannot operate in-place.
See Also:

warpAffine(), resize(), remap(), getRectSubPix(), perspectiveTransform()

initUndistortRectifyMap

Computes the undistortion and rectification transformation map.

C++: void initUndistortRectifyMap (InputArray cameraMatrix, InputArray distCoeffs, InputArray R,
InputArray newCameraMatrix, Size size, int m1type, OutputArray
mapl, OutputArray map2)

Python: cv2.initUndistortRectifyMap (cameraMatrix, distCoeffs, R, newCameraMatrix, size, mltype[,
mapl [, map2]]) — mapl, map2
C: void cvInitUndistortRectifyMap (const CvMat* camera_matrix, const CvMat* dist_coeffs, const
CvMat* R, const CvMat* new_camera_matrix, CvArr* mapx,
CvArr* mapy)

C: void cvInitUndistortMap(const CvMat* camera_matrix, const CvMat* distortion_coeffs, CvArr*
mapx, CvArr* mapy)
Python: cv.InitUndistortRectifyMap (cameraMatrix, distCoeffs, R, newCameraMatrix, mapl, map2) —
None
Python: cv.InitUndistortMap (cameraMatrix, distCoeffs, mapl, map2) — None

Parameters
f, 0 cx
cameraMatrix — Input camera matrix A = | 0 fy ¢y
0 0 1

distCoeffs — Input vector of distortion coefficients (k1,k2,p1,p2[, k3[, k4, ks, kell) of 4,
5, or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

R - Optional rectification transformation in the object space (3x3 matrix). R1 or R2 , com-
puted by stereoRectify() can be passed here. If the matrix is empty, the identity trans-
formation is assumed. In cvInitUndistortMap R assumed to be an identity matrix.

i 0 ¢
newCameraMatrix — New camera matrix A’ = | 0 fg c;
0o 0 1

size — Undistorted image size.

mltype — Type of the first output map that can be CV_32FC1 or CV_16SC2 . See
convertMaps () for details.

mapl — The first output map.

3.2. Geometric Image Transformations

255

The OpenCV Reference Manual, Release 2.4.2

map?2 — The second output map.

The function computes the joint undistortion and rectification transformation and represents the result in the form of
maps for remap() . The undistorted image looks like original, as if it is captured with a camera using the camera
matrix =newCameraMatrix and zero distortion. In case of a monocular camera, newCameraMat rix is usually equal to
cameraMatrix , or it can be computed by getOptimalNewCameraMatrix () for a better control over scaling. In case
of a stereo camera, newCameraMatrix is normally set to P1 or P2 computed by stereoRectify() .

Also, this new camera is oriented differently in the coordinate space, according to R . That, for example, helps to
align two heads of a stereo camera so that the epipolar lines on both images become horizontal and have the same y-
coordinate (in case of a horizontally aligned stereo camera).

The function actually builds the maps for the inverse mapping algorithm that is used by remap() . That is, for each
pixel (1, Vv) in the destination (corrected and rectified) image, the function computes the corresponding coordinates in
the source image (that is, in the original image from camera). The following process is applied:

x— (u—c'y)/f'x

Yy — (v=c'y)/fy

XYW]" — RV s xy1]T

x" — X/W

y «Y/W

X" x/(T+ k1% + kot +k370) + 2p1x/y’ + pa(r? + 2x?)
Y =y (T+kir? +kor* +k3r®) +pi(r% +2y"2) 4 2pox'y’
mapy(u,v) « x'fy + cx

mapy (u,v) « y'fy +cy

where (kq,k2,p1,p2[, k3]) are the distortion coefficients.

In case of a stereo camera, this function is called twice: once for each camera head, after stereoRectify() , which in
its turn is called after stereoCalibrate() . Butif the stereo camera was not calibrated, it is still possible to compute
the rectification transformations directly from the fundamental matrix using stereoRectifyUncalibrated() . For
each camera, the function computes homography H as the rectification transformation in a pixel domain, not a rotation
matrix R in 3D space. R can be computed from H as

R = cameraMatrix ™' - H- cameraMatrix

where cameraMatrix can be chosen arbitrarily.

getDefaultNewCameraMatrix

Returns the default new camera matrix.

C++: Mat getDefaultNewCameraMatrix (InputArray cameraMatrix, Size imgsize=Size(), bool centerPrin-
cipalPoint=false)

Python: cv2.getDefaultNewCameraMat rix(cameraMatrix[, imgsize[, centerPrincipalPoint]]) — retval
Parameters
cameraMatrix — Input camera matrix.
imgsize — Camera view image size in pixels.

centerPrincipalPoint — Location of the principal point in the new camera matrix. The
parameter indicates whether this location should be at the image center or not.

The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
centerPrinicipalPoint=false), or the modified one (when centerPrincipalPoint=true).

256 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

In the latter case, the new camera matrix will be:

fx 0 (imgSize.width — 1) % 0.5
0 fy (imgSize.height — 1) % 0.5] ,
0 0 1

where fy and f,, are (0,0) and (1, 1) elements of cameraMatrix , respectively.

By default, the undistortion functions in OpenCV (see initUndistortRectifyMap(), undistort()) do not move
the principal point. However, when you work with stereo, it is important to move the principal points in both views
to the same y-coordinate (which is required by most of stereo correspondence algorithms), and may be to the same
x-coordinate too. So, you can form the new camera matrix for each view where the principal points are located at the
center.

undistort

Transforms an image to compensate for lens distortion.

C++: void undistort (InputArray src, OutputArray dst, InputArray cameraMatrix, InputArray distCoeffs,
InputArray newCameraMatrix=noArray())

Python: cv2.undistort (src, cameraMatrix, distCoeffs[, dst[, newCameraMatrix]]) — dst

C: void cvUndistort2 (const CvArr* sre, CvArr* dst, const CvMat* camera_matrix, const CvMat* distor-
tion_coeffs, const CvMat* new_camera_matrix=0)

Python: cv.Undistort2 (src, dst, cameraMatrix, distCoeffs) — None
Parameters
src — Input (distorted) image.

dst — Output (corrected) image that has the same size and type as src .

fx 0 cx
cameraMatrix — Input camera matrix A = | 0 f, ¢y
0 0 1

distCoeffs — Input vector of distortion coefficients (k1,k2,p1,p2[, k3[, k4, ks, kell) of 4,
5, or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

newCameraMatrix — Camera matrix of the distorted image. By default, it is the same
as cameraMatrix but you may additionally scale and shift the result by using a different
matrix.

The function transforms an image to compensate radial and tangential lens distortion.

The function is simply a combination of initUndistortRectifyMap() (with unity R) and remap() (with bilinear
interpolation). See the former function for details of the transformation being performed.

Those pixels in the destination image, for which there is no correspondent pixels in the source image, are filled with
zeros (black color).

A particular subset of the source image that will be visible in the corrected image can be regulated by
newCameraMatrix . You can use getOptimalNewCameraMatrix() to compute the appropriate newCameraMatrix
depending on your requirements.

The camera matrix and the distortion parameters can be determined using calibrateCamera() . If the resolution of
images is different from the resolution used at the calibration stage, fx, f,, cx and ¢, need to be scaled accordingly,
while the distortion coefficients remain the same.

3.2. Geometric Image Transformations 257

The OpenCV Reference Manual, Release 2.4.2

undistortPoints

Computes the ideal point coordinates from the observed point coordinates.

C++: void undistortPoints (InputArray srec, OutputArray dst, InputArray cameraMatrix, InputArray dist-
Coeffs, InputArray R=noArray(), InputArray P=noArray())

C: void cvUndistortPoints (const CvMat* src, CvMat* dst, const CvMat* camera_matrix, const CvMat*
dist_coeffs, const CvMat* R=0, const CvMat* P=0)

Python: cv.UndistortPoints (src, dst, cameraMatrix, distCoeffs, R=None, P=None) — None
Parameters
src — Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2).

dst — Output ideal point coordinates after undistortion and reverse perspective transforma-
tion. If matrix P is identity or omitted, dst will contain normalized point coordinates.

fx 0 ¢y
cameraMatrix — Camera matrix | 0 fy ¢y
0 0 1

distCoeffs — Input vector of distortion coefficients (ki,k2,p1,p2[, k3[, k4, ks, kgll) of 4,
5, or 8 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.

R - Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
stereoRectify () can be passed here. If the matrix is empty, the identity transformation is
used.

P — New camera matrix (3x3) or new projection matrix (3x4). Pl or P2 computed by
stereoRectify() can be passed here. If the matrix is empty, the identity new camera
matrix is used.

The function is similar to undistort() and initUndistortRectifyMap() but it operates on a sparse set of points
instead of a raster image. Also the function performs a reverse transformation to projectPoints() . In case of a
3D object, it does not reconstruct its 3D coordinates, but for a planar object, it does, up to a translation vector, if the
proper R is specified.

// (u,v) is the input point, (u’, v’) is the output point
// camera_matrix=[fx 0 cx; 0 fy cy; 0 0 1]

// P=[fx’' 0 cx' tx; 0 fy' cy’ ty; 0 0 1 tz]

x" = (u - cx)/fx

y" = (v - cy)/fy

(x",y") = undistort(x",y",dist_coeffs)

[X,Y,W]T = Rx[x" y" 11T

X = X/W, y=Y/W

// only performed if P=[fx’ 0 cx' [tx]; 0 fy' cy’ [ty]l; © 0 1 [tz]] is specified
u' = xxfx' + cx’

v’ o= yxfy' + cy’,

where undistort() is an approximate iterative algorithm that estimates the normalized original point coordinates out
of the normalized distorted point coordinates (“normalized” means that the coordinates do not depend on the camera
matrix).

The function can be used for both a stereo camera head or a monocular camera (when R is empty).

258 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

3.3 Miscellaneous Image Transformations

adaptiveThreshold

Applies an adaptive threshold to an array.

C++: void adaptiveThreshold (InputArray sre, OutputArray dst, double maxValue, int adaptiveMethod,
int thresholdType, int blockSize, double C)

Python: cv2.adaptiveThreshold (src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) —
dst
C: void cvAdaptiveThreshold(const CvArr* src, CvArr* dst, double max_value, int adap-
tive_method=CV_ADAPTIVE_THRESH_MEAN_C, int thresh-
old_type=CV_THRESH_BINARY, int block_size=3, double paraml=5
)

Python: cv.AdaptiveThreshold (src, dst, maxValue, adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C,

thresholdType=CV_THRESH_BINARY, blockSize=3, paraml=5) —
None

Parameters
src — Source 8-bit single-channel image.
dst — Destination image of the same size and the same type as src .

max Value — Non-zero value assigned to the pixels for which the condition is satisfied. See
the details below.

adaptiveMethod — Adaptive thresholding algorithm to use, ADAPTIVE_THRESH_MEAN_C or
ADAPTIVE_THRESH_GAUSSIAN_C . See the details below.

thresholdType — Thresholding type that must be either THRESH_BINARY or
THRESH_BINARY_INV .

blockSize — Size of a pixel neighborhood that is used to calculate a threshold value for the
pixel: 3, 5,7, and so on.

C - Constant subtracted from the mean or weighted mean (see the details below). Normally,
it is positive but may be zero or negative as well.

The function transforms a grayscale image to a binary image according to the formulae:

« THRESH_BINARY

[maxvalue if src(x,y) > T(x,y)
dst(x,y) = { 0 otherwise
« THRESH_BINARY_INV
| o if ste(x,y) > T(x,y)
dst(x,y) = { maxValue otherwise

where T(x,y) is a threshold calculated individually for each pixel.

* For the method ADAPTIVE_THRESH_MEAN_C , the threshold value T(x,y) is a mean of the blockSize x

blockSize neighborhood of (x,y) minus C .

3.3. Miscellaneous Image Transformations

259

The OpenCV Reference Manual, Release 2.4.2

* For the method ADAPTIVE_THRESH_GAUSSIAN_C , the threshold value T(x,y) is a weighted sum (cross-
correlation with a Gaussian window) of the blockSize x blockSize neighborhood of (x,y) minus C . The
default sigma (standard deviation) is used for the specified blockSize . See getGaussianKernel() .

The function can process the image in-place.
See Also:

threshold(), blur(), GaussianBlur()

cviColor

Converts an image from one color space to another.
C++: void cvtColor (InputArray sre, OutputArray dst, int code, int dstCn=0)
Python: cv2.cvtColor(src, code[, dst[, dstCn]]) — dst
C: void cvCvtColor (const CvArr* src, CvArr* dst, int code)
Python: cv.CvtColor(src, dst, code) — None
Parameters

src — Source image: 8-bit unsigned, 16-bit unsigned (CV_16UC. ..), or single-precision
floating-point.

dst — Destination image of the same size and depth as src .
code — Color space conversion code. See the description below.

dstCn — Number of channels in the destination image. If the parameter is 0, the number of
the channels is derived automatically from src and code .

The function converts an input image from one color space to another. In case of a transformation to-from RGB color
space, the order of the channels should be specified explicitly (RGB or BGR). Note that the default color format in
OpenCV is often referred to as RGB but it is actually BGR (the bytes are reversed). So the first byte in a standard
(24-bit) color image will be an 8-bit Blue component, the second byte will be Green, and the third byte will be Red.
The fourth, fifth, and sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.

The conventional ranges for R, G, and B channel values are:
* 0 to 255 for CV_8U images
* (0 to 65535 for CV_16U images
e 0 to 1 for CV_32F images

In case of linear transformations, the range does not matter. But in case of a non-linear transformation, an input RGB
image should be normalized to the proper value range to get the correct results, for example, for RGB — L*u*v*
transformation. For example, if you have a 32-bit floating-point image directly converted from an 8-bit image without
any scaling, then it will have the 0..255 value range instead of 0..1 assumed by the function. So, before calling
cvtColor, you need first to scale the image down:

img *= 1./255;
cvtColor(img, img, CV_BGR2Luv);

If you use cvtColor with 8-bit images, the conversion will have some information lost. For many applications, this
will not be noticeable but it is recommended to use 32-bit images in applications that need the full range of colors or
that convert an image before an operation and then convert back.

The function can do the following transformations:

260 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

¢ Transformations within RGB space like adding/removing the alpha channel, reversing the channel order, con-
version to/from 16-bit RGB color (R5:G6:B5 or R5:G5:B5), as well as conversion to/from grayscale using:

RGB[A] to Gray: Y « 0.299-R+0.587-G+0.114-B
and
Grayto RGB[A]l: R+« Y, G+~ Y,B— YA <0

The conversion from a RGB image to gray is done with:

cvtColor(src, bwsrc, CV_RGB2GRAY);

More advanced channel reordering can also be done with mixChannels () .

* RGB < CIE XYZ.Rec 709 with D65 white point (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR, CV_XYZ2RGB

):
X 0.412453 0.357580 0.180423 R
Y| « [0.212671 0.715160 0.072169]| - |G
Z 0.019334 0.119193 0.950227 B
R 3.240479 —1.53715 —0.498535 X
G| « |—0.969256 1.875991 0.041556 | - |Y
B 0.055648 —0.204043 1.057311 Z

X, Y and Z cover the whole value range (in case of floating-point images, Z may exceed 1).

« RGB < YCrCb JPEG (or YCC) (CV_BGR2YCrCb, CV_RGB2YCrCb, CV_YCrCb2BGR, CV_YCrCb2RGB)

Y — 0299 -R+0.587-G+0.114-B

Cr— (R—Y)-0.713 + delta

Cb « (B—Y)0.564 + delta

R Y +1.403 - (Cr — delta)

G+ Y—0.344 - (Cr — delta) — 0.714 - (Cb — delta)

B« Y+1.773 - (Cb — delta)

where

128 for 8-bit images
delta = ¢ 32768 for 16-bit images
0.5 for floating-point images

Y, Cr, and Cb cover the whole value range.

* RGB «— HSV (CV_BGR2HSV, CV_RGB2HSV, CV_HSV2BGR, CV_HSV2RGB) In case of 8-bit and 16-bit images,
R, G, and B are converted to the floating-point format and scaled to fit the O to 1 range.

V « max(R, G, B)

3.3. Miscellaneous Image Transformations 261

The OpenCV Reference Manual, Release 2.4.2

V—min(R,G,B) .
s { e iy

0 otherwise

60(G — B)/(V — min(R, G, B)) if V=R
H { 120+ 60(B—R)/(V—min(R, G,
240 + 60(R — G)/(V — min(R,G,B)) ifV =8

IfH<OthenH + H+360.O0noutput0 <V<1,0<S<T1,0<H<360.

The values are then converted to the destination data type:

— 8-bit images

V 255V, S « 2558, H « H/2(to fit to 0 to 255)

— 16-bit images (currently not supported)

V < —65535V, S < —655358, H < —H

— 32-bit images H, S, and V are left as is

* RGB < HLS (CV_BGR2HLS, CV_RGB2HLS, CV_HLS2BGR, CV_HLS2RGB). In case of 8-bit and 16-bit im-
ages, R, G, and B are converted to the floating-point format and scaled to fit the O to 1 range.

Viax ¢ max(R, G, B)
Vinin ¢ min(R, G, B)

L Vmax + Vmin
(_ e

2
Vinax—Vmin 1
T Vmant Vmin] T L 205

60(G — B)/S if Vinax = R
H e { 120+ 60(B —R)/S if Vinax = G
240 + 60(R — G)/S if Vinax = B

IfH<OthenH ¢ H+360.Onoutput0 <L <1,0<S<1,0<H<L360.

The values are then converted to the destination data type:

— 8-bit images

V «255-V,§ « 255-§,H + H/2 (to fit to 0 to 255)

— 16-bit images (currently not supported)

262 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

V < —65535-V,§ < —65535- S, H < —H

— 32-bit images H, S, V are left as is

¢ RGB < CIE L*a*b* (CV_BGR2Lab, CV_RGB2Lab, CV_Lab2BGR, CV_Lab2RGB). In case of 8-bit and 16-
bit images, R, G, and B are converted to the floating-point format and scaled to fit the O to 1 range.

X 0.412453 0.357580 0.180423 R
Y| « [0.212671 0.715160 0.072162| - |G
4 0.019334 0.119193 0.950227 B

X — X/Xn, whereX,, = 0.950456
L — Z/Z,,whereZ, = 1.088754

L 116 xY'/3 —16 for Y > 0.008856
9203.3%Y for Y < 0.008856

a « 500(f(X) —f(Y)) + delta

b« 200(f(Y) — f(Z)) + delta
where

R for t > 0.008856
T\ 7.787t+16/116 fort < 0.008856

and

128 for 8-bit images

delta = { 0 for floating-point images

This outputs 0 < L < 100, —127 < a < 127, =127 < b < 127 . The values are then converted to the
destination data type:

— 8-bit images

L L%255/100, a ¢ a+128, b b+128

— 16-bit images (currently not supported)
— 32-bit images L, a, and b are left as is

¢ RGB < CIE L*u*v* (CV_BGR2Luv, CV_RGB2Luv, CV_Luv2BGR, CV_Luv2RGB). In case of 8-bit and 16-
bit images, R, G, and B are converted to the floating-point format and scaled to fit O to 1 range.

X 0.412453 0.357580 0.180423 R
Y| « [0.212671 0.715160 0.072169| - |G
Z 0.019334 0.119193 0.950227 B

3.3. Miscellaneous Image Transformations 263

The OpenCV Reference Manual, Release 2.4.2

[116Y1/3 for Y > 0.008856
903.3Y for Y < 0.008856

w—4xX/(X+15%xY+32Z)
v 9% Y/(X+15%Y +32)
ue—13+L*(u' —u,) where u, =0.19793943

v 13xLx (v —v,) where v, =0.46831096

This outputs 0 < L <100, —134 <u <220,—-140 <v < 122.
The values are then converted to the destination data type:

— 8-bit images

L « 255/100L, w ¢ 255/354(w + 134), v « 255/256(v + 140)

— 16-bit images (currently not supported)
— 32-bit images L, u, and v are left as is

The above formulae for converting RGB to/from various color spaces have been taken from multiple sources on
the web, primarily from the Charles Poynton site http://www.poynton.com/ColorFAQ.html

e Bayer — RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR, CV_BayerGR2BGR,
CV_BayerBG2RGB, CV_BayerGB2RGB, CV_BayerRG2RGB, CV_BayerGR2RGB). The Bayer pattern is
widely used in CCD and CMOS cameras. It enables you to get color pictures from a single plane where R,G,
and B pixels (sensors of a particular component) are interleaved as follows:

i i R

H H R

The output RGB components of a pixel are interpolated from 1, 2, or 4 neighbors of the pixel having the same
color. There are several modifications of the above pattern that can be achieved by shifting the pattern one pixel
left and/or one pixel up. The two letters C; and C, in the conversion constants CV_Bayer C;C; 2BGR and
CV_Bayer C;C; 2RGB indicate the particular pattern type. These are components from the second row, second
and third columns, respectively. For example, the above pattern has a very popular “BG” type.

264 Chapter 3. imgproc. Image Processing

http://www.poynton.com/ColorFAQ.html

The OpenCV Reference Manual, Release 2.4.2

distanceTransform

Calculates the distance to the closest zero pixel for each pixel of the source image.
C++: void distanceTransform(InputArray src, OutputArray dst, int distanceType, int maskSize)

C++: void distanceTransform(InputArray src, OutputArray dst, OutputArray labels, int distanceType, int
maskSize, int labelType=DIST_LABEL_CCOMP)

Python: cv2.distanceTransform(src, distanceType, maskSize[, dst]) — dst

C: void cvDistTransform(const CvArr* src, CvArr* dst, int distance_type=CV_DIST_ L2, int
mask_size=3, const float* mask=NULL, CvArr* labels=NULL, int label-
Type=CV_DIST_LABEL_CCOMP)

Python: cv.DistTransform(src, dst, distance_type=CV_DIST_L2, mask_size=3, mask=None, la-
bels=None) — None

Parameters
src — 8-bit, single-channel (binary) source image.

dst — Output image with calculated distances. It is a 32-bit floating-point, single-channel
image of the same size as src .

distanceType — Type of distance. It can be CV_DIST L1, CV_DIST_L2,or CV_DIST_C.

maskSize — Size of the distance transform mask. It can be 3, 5, or CV_DIST_MASK_PRECISE
(the latter option is only supported by the first function). In case of the CV_DIST_L1 or
CV_DIST_C distance type, the parameter is forced to 3 because a 3 x 3 mask gives the same
result as 5 x 5 or any larger aperture.

labels — Optional output 2D array of labels (the discrete Voronoi diagram). It has the type
CV_32SC1 and the same size as src . See the details below.

labelType — Type of the label array to build. If labelType==DIST_LABEL_CCOMP then each
connected component of zeros in src (as well as all the non-zero pixels closest to the con-
nected component) will be assigned the same label. If labelType==DIST_LABEL_PIXEL
then each zero pixel (and all the non-zero pixels closest to it) gets its own label.

The functions distanceTransform calculate the approximate or precise distance from every binary image pixel to
the nearest zero pixel. For zero image pixels, the distance will obviously be zero.

When maskSize == CV_DIST_MASK_PRECISE and distanceType == CV_DIST_L2, the function runs the algorithm
described in [Felzenszwalb04]. This algorithm is parallelized with the TBB library.

In other cases, the algorithm [Borgefors86] is used. This means that for a pixel the function finds the shortest path to
the nearest zero pixel consisting of basic shifts: horizontal, vertical, diagonal, or knight’s move (the latest is available
for a 5 x 5 mask). The overall distance is calculated as a sum of these basic distances. Since the distance function
should be symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a), all the diagonal
shifts must have the same cost (denoted as b), and all knight’s moves must have the same cost (denoted as ¢). For the
CV_DIST_C and CV_DIST_L1 types, the distance is calculated precisely, whereas for CV_DIST_L2 (Euclidean distance)
the distance can be calculated only with a relative error (a 5 X 5 mask gives more accurate results). For a,*b*‘ , and ¢
, OpenCV uses the values suggested in the original paper:

CV.DIST.C | 3x3) | a=1,b=1
CV.DIST.LL | 3x3) |a=1,b=2
CV_DIST_L2 | (3x3) | a=0.955, b=1.3693
CV_DIST_L2 | (5x5) | a=I,b=1.4,c=2.1969

Typically, for a fast, coarse distance estimation CV_DIST_L2, a 3 x 3 mask is used. For a more accurate distance
estimation CV_DIST_L2, a5 x 5 mask or the precise algorithm is used. Note that both the precise and the approximate
algorithms are linear on the number of pixels.

3.3. Miscellaneous Image Transformations 265

The OpenCV Reference Manual, Release 2.4.2

The second variant of the function does not only compute the minimum distance for each pixel (x,y) but also iden-
tifies the nearest connected component consisting of zero pixels (labelType==DIST_LABEL_CCOMP) or the nearest
zero pixel (labelType==DIST_LABEL_PIXEL). Index of the component/pixel is stored in labels(x,y) . When
labelType==DIST_LABEL_CCOMP, the function automatically finds connected components of zero pixels in the in-
put image and marks them with distinct labels. When labelType==DIST_LABEL_CCOMP, the function scans through
the input image and marks all the zero pixels with distinct labels.

In this mode, the complexity is still linear. That is, the function provides a very fast way to compute the Voronoi
diagram for a binary image. Currently, the second variant can use only the approximate distance transform algorithm,
i.e. maskSize=CV_DIST_MASK_PRECISE is not supported yet.

floodFill

Fills a connected component with the given color.

C++: int floodFill (InputOutputArray image, Point seedPoint, Scalar newVal, Rect* rect=0, Scalar loD-
iff=Scalar(), Scalar upDiff=Scalar(), int flags=4)

C++: int floodFill(InputOutputArray image, InputOutputArray mask, Point seedPoint, Scalar newVal,
Rect* rect=0, Scalar loDiff=Scalar(), Scalar upDiff=Scalar(), int flags=4)

Python: cv2.floodFill (image, mask, seedPoint, newVa][, loDiff[, upDiff[, ﬂags]]]) — retval, rect

C: void cvFloodFill(CvArr* image, CvPoint seed_point, CvScalar new_val, CvScalar
lo_diff=cvScalarAll(0), CvScalar up_diff=cvScalarAll(0), CvConnectedComp*
comp=NULL, int flags=4, CvArr* mask=NULL)

Python: cv.FloodFill(image, seed_point, new_val, lo_diff=(0, 0, 0, 0), up_diff=(0, 0, 0, 0), flags=4,
mask=None) — comp

Parameters

image — Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
function unless the FLOODFILL_MASK_ONLY flag is set in the second variant of the function.
See the details below.

mask — (For the second function only) Operation mask that should be a single-channel 8-bit
image, 2 pixels wider and 2 pixels taller. The function uses and updates the mask, so you
take responsibility of initializing the mask content. Flood-filling cannot go across non-zero
pixels in the mask. For example, an edge detector output can be used as a mask to stop
filling at edges. It is possible to use the same mask in multiple calls to the function to make
sure the filled area does not overlap.

Note: Since the mask is larger than the filled image, a pixel (x,y) in image corresponds to
the pixel (x + 1,y + 1) in the mask .

seedPoint — Starting point.
new Val — New value of the repainted domain pixels.

loDiff — Maximal lower brightness/color difference between the currently observed pixel
and one of its neighbors belonging to the component, or a seed pixel being added to the
component.

upDiff — Maximal upper brightness/color difference between the currently observed pixel
and one of its neighbors belonging to the component, or a seed pixel being added to the
component.

266 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

rect — Optional output parameter set by the function to the minimum bounding rectangle of
the repainted domain.

flags — Operation flags. Lower bits contain a connectivity value, 4 (default) or 8, used within
the function. Connectivity determines which neighbors of a pixel are considered. Upper bits
can be 0 or a combination of the following flags:

— FLOODFILL_FIXED_RANGE If set, the difference between the current pixel and seed
pixel is considered. Otherwise, the difference between neighbor pixels is considered (that
is, the range is floating).

— FLOODFILL_MASK_ONLY If set, the function does not change the image (newVal
is ignored), but fills the mask. The flag can be used for the second variant only.

The functions floodFill fill a connected component starting from the seed point with the specified color. The
connectivity is determined by the color/brightness closeness of the neighbor pixels. The pixel at (x,y) is considered
to belong to the repainted domain if:

src(x’,y’) — LoDiff < src(x,y) < src(x’,y’) + upDiff

in case of a grayscale image and floating range

src(seedPoint.x, seedPoint.y) — LoDiff < src(x,y) < src(seedPoint.x, seedPoint.y) + upDiff

in case of a grayscale image and fixed range

src(x’,y’)y — LoDiff, < src(x,y)r < src(x’,y’)r + upDiff,,

src(x’,y’)g — LoDiffy < src(x,y)g < src(x’,y’)g + upDiff,
and
src(x’,y")p — LoDiffy < src(x,y)v < src(x’,y’)y + upDiffy

in case of a color image and floating range

src(seedPoint.x, seedPoint.y), — loDiff,. < src(x,y), < src(seedPoint.x,seedPoint.y), + upDiff,,

src(seedPoint.x, seedPoint.y)y — loDiffy < src(x,y)q < src(seedPoint.x, seedPoint.y)q + upDiff,

and

src(seedPoint.x, seedPoint.y)py — loDiffy, < src(x,y)p < src(seedPoint.x, seedPoint.y)y, + upDiffy,
in case of a color image and fixed range

where src(x’,y’) is the value of one of pixel neighbors that is already known to belong to the component. That is, to
be added to the connected component, a color/brightness of the pixel should be close enough to:

¢ Color/brightness of one of its neighbors that already belong to the connected component in case of a floating
range.

* Color/brightness of the seed point in case of a fixed range.

3.3. Miscellaneous Image Transformations 267

The OpenCV Reference Manual, Release 2.4.2

Use these functions to either mark a connected component with the specified color in-place, or build a mask and then
extract the contour, or copy the region to another image, and so on. Various modes of the function are demonstrated
in the floodfill. cpp sample.

See Also:

findContours()

integral

Calculates the integral of an image.
C++: void integral (InputArray src, OutputArray sum, int sdepth=-1)
C++: void integral (InputArray src, OutputArray sum, OutputArray sqsum, int sdepth=-1)

C++: void integral(InputArray src, OutputArray sum, OutputArray sqsum, OutputArray tilted, int
sdepth=-1)

Python: cv2. integral(src[, sum[, sdepth]]) — sum
Python: cv2.integral2 (src[, sum[, sqsum[, sdepth]]]) — sum, sqsum
Python: cv2.integ ra13(src[, sum[, sqsum[, tilted[, sdepth]]]]) — sum, sqsum, tilted

C: void cvIntegral(const CvArr* image, CvArr* sum, CvArr* sqgsum=NULL, CvArr* tilted_sum=NULL
)

Python: cv.Integral(image, sum, sqgsum=None, tiltedSum=None) — None
Parameters
image — Source image as W x H , 8-bit or floating-point (32f or 64f).
sum - Integral image as (W + 1) x (H + 1), 32-bit integer or floating-point (32f or 64f).

sqsum — Integral image for squared pixel values. Itis (W + 1) x (H+ 1), double-precision
floating-point (64f) array.

tilted — Integral for the image rotated by 45 degrees. Itis (W 4 1) x (H 4+ 1) array with the
same data type as sum.

sdepth — Desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
CV_64F.

The functions calculate one or more integral images for the source image as follows:

sum(X,Y) = Z image(x,y)
x<X,y<yY

sqsum(X,Y) = Z image(x,y)?
x<X,y<yY

tilted(X,Y) = > image(x,y)
y<Y,abs(x—X+1)<Y—y—1

Using these integral images, you can calculate sa um, mean, and standard deviation over a specific up-right or rotated
rectangular region of the image in a constant time, for example:

> image(x,y) = sum(xz,Y2) — sum(x1,y2) — sum(x2,y1) + sum(x1,y1)

x1<x<x2,Y1<yYy<y>

268 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

It makes possible to do a fast blurring or fast block correlation with a variable window size, for example. In case of
multi-channel images, sums for each channel are accumulated independently.

As a practical example, the next figure shows the calculation of the integral of a straight rectangle Rect(3,3,3,2)
and of a tilted rectangle Rect (5,1,2,3) . The selected pixels in the original image are shown, as well as the relative
pixels in the integral images sum and tilted .

EEEEEEEE |
LSS ey)
anaeEe |
anuaEe | |
L= @EE
OO E8E
NS
000000808 ,
Py = (.o} = (4,4} Py = {y,x} = {1,5}
P ={y,z+w}={4,7} P={y+wzx+w}={37}
Bgz{'y%—h,;x}:{ﬁ;ﬁl} PQZ{y+h=$_h}:{412}
P;={y+h,z+w}=1{6,7} Ps={y+w+h,z+w—h}={64}

threshold

Applies a fixed-level threshold to each array element.
C++: double threshold (InputArray src, OutputArray dst, double thresh, double maxval, int type)
Python: cv2.threshold(src, thresh, maxval, type[, dst]) — retval, dst

C: double cvThreshold (const CvArr* sre, CvArr* dst, double threshold, double max_value, int thresh-
old_type)

Python: cv.Threshold(src, dst, threshold, maxValue, thresholdType) — None
Parameters
src — Source array (single-channel, 8-bit or 32-bit floating point).
dst — Destination array of the same size and type as src .
thresh — Threshold value.

maxval — Maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV
thresholding types.

type — Thresholding type (see the details below).

The function applies fixed-level thresholding to a single-channel array. The function is typically used to get a bi-level
(binary) image out of a grayscale image (compare() could be also used for this purpose) or for removing a noise,
that is, filtering out pixels with too small or too large values. There are several types of thresholding supported by the
function. They are determined by type :

« THRESH_BINARY

3.3. Miscellaneous Image Transformations 269

The OpenCV Reference Manual, Release 2.4.2

_ | maxval ifsrc(x,y) > thresh
dst(x,y) = { 0 otherwise
e THRESH_BINARY_INV
| o if src(x,y) > thresh
dst(x,y) = { maxval otherwise

« THRESH_TRUNC

threshold if src(x,y) > thresh
src(x,y) otherwise

dst(x,y) —{

THRESH_TOZERO

_ | src(x,y) if src(x,y) > thresh
dst(x,y) = { 0 otherwise
* THRESH_TOZERO_INV
[0 if src(x,y) > thresh
dst(x,y) = { src(x,y) otherwise

Also, the special value THRESH_0TSU may be combined with one of the above values. In this case, the function
determines the optimal threshold value using the Otsu’s algorithm and uses it instead of the specified thresh . The
function returns the computed threshold value. Currently, the Otsu’s method is implemented only for 8-bit images.

270 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

r-—-—Tft----r-—--r---- e e e — e ——————————— = — —————

/’ oy Value and Threshold Level

Threshold Binary

Threshold Binary, Inverted

\ Trunicate

/‘ \\ Threshold to Fero, Inverted

N

Threshold to Zero

] I]]]
(SSSUSPE ESPPEN NN SN [N Ry, N Ep—— 1

—_——————— -

See Also:

adaptiveThreshold(), findContours(), compare(), min(), max()

3.3. Miscellaneous Image Transformations 271

The OpenCV Reference Manual, Release 2.4.2

watershed

Performs a marker-based image segmentation using the watershed algorithm.
C++: void watershed (InputArray image, InputOutputArray markers)
C: void cvWatershed (const CvArr* image, CvArr* markers)
Python: cv2.watershed(image, markers) — None
Parameters
image — Input 8-bit 3-channel image.

markers — Input/output 32-bit single-channel image (map) of markers. It should have the
same size as image .

The function implements one of the variants of watershed, non-parametric marker-based segmentation algorithm,
described in [Meyer92].

Before passing the image to the function, you have to roughly outline the desired regions in the image markers with
positive (>0) indices. So, every region is represented as one or more connected components with the pixel values 1, 2,
3, and so on. Such markers can be retrieved from a binary mask using findContours() and drawContours() (see
the watershed. cpp demo). The markers are “seeds” of the future image regions. All the other pixels in markers ,
whose relation to the outlined regions is not known and should be defined by the algorithm, should be set to 0’s. In the
function output, each pixel in markers is set to a value of the “seed” components or to -1 at boundaries between the
regions.

Visual demonstration and usage example of the function can be found in the OpenCV samples directory (see the
watershed. cpp demo).

Note: Any two neighbor connected components are not necessarily separated by a watershed boundary (-1’s pixels);
for example, they can touch each other in the initial marker image passed to the function.

See Also:

findContours()

grabCut

Runs the GrabCut algorithm.

C++: void grabCut (InputArray img, InputOutputArray mask, Rect rect, InputOutputArray bgdModel, In-
putOutputArray fgdModel, int iterCount, int mode=GC_EVAL)

Python: cv2.grabCut (img, mask, rect, bgdModel, fgdModel, iterCount[, mode]) — None
Parameters
img — Input 8-bit 3-channel image.

mask — Input/output 8-bit single-channel mask. The mask is initialized by the function
when mode is set to GC_INIT_WITH_RECT. Its elements may have one of following values:

— GC_BGD defines an obvious background pixels.

— GC_FGD defines an obvious foreground (object) pixel.
— GC_PR_BGD defines a possible background pixel.

— GC_PR_BGD defines a possible foreground pixel.

272 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

rect — ROI containing a segmented object. The pixels outside of the ROI are marked as
“obvious background”. The parameter is only used when mode==GC_INIT_WITH_RECT .

bgdModel — Temporary array for the background model. Do not modify it while you are
processing the same image.

fgdModel — Temporary arrays for the foreground model. Do not modify it while you are
processing the same image.

iterCount — Number of iterations the algorithm should make before returning the result.
Note that the result can be refined with further calls with mode==GC_INIT_WITH_MASK or
mode==GC_EVAL .

mode — Operation mode that could be one of the following:

— GC_INIT_WITH_RECT The function initializes the state and the mask using the pro-
vided rectangle. After that it runs iterCount iterations of the algorithm.

— GC_INIT_WITH_MASK The function initializes the state using the provided mask.
Note that GC_INIT_WITH_RECT and GC_INIT_WITH_MASK can be combined. Then, all
the pixels outside of the ROI are automatically initialized with GC_BGD .

— GC_EVAL The value means that the algorithm should just resume.

The function implements the GrabCut image segmentation algorithm. See the sample grabcut. cpp to learn how to
use the function.

3.4 Histograms

calcHist

Calculates a histogram of a set of arrays.

C++: void calcHist(const Mat* images, int nimages, const int* channels, InputArray mask, OutputArray
hist, int dims, const int* histSize, const float** ranges, bool uniform=true, bool accu-
mulate=false)

C++: void calcHist (const Mat* images, int nimages, const int* channels, InputArray mask, SparseMat&
hist, int dims, const int* histSize, const float** ranges, bool uniform=true, bool accu-
mulate=false)

Python: cv2.calcHist (images, channels, mask, histSize, ranges[, hist[, accumulate]]) — hist

C: void cvCalcHist (Ipllmage** image, CvHistogram™* hist, int accumulate=0, const CvArr* mask=NULL

)

Python: cv.CalcHist(image, hist, accumulate=0, mask=None) — None
Parameters

images — Source arrays. They all should have the same depth, CV_8U or CV_32F , and the
same size. Each of them can have an arbitrary number of channels.

nimages — Number of source images.

channels — List of the dims channels used to compute the histogram. The first ar-
ray channels are numerated from 0 to images[0].channels()-1 , the second ar-
ray channels are counted from images[0].channels() to images[0].channels() +
images[1].channels()-1, and so on.

3.4. Histograms 273

http://en.wikipedia.org/wiki/GrabCut

The OpenCV Reference Manual, Release 2.4.2

mask — Optional mask. If the matrix is not empty, it must be an 8-bit array of the same
size as images[i] . The non-zero mask elements mark the array elements counted in the
histogram.

hist — Output histogram, which is a dense or sparse dims -dimensional array.

dims — Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
(equal to 32 in the current OpenCV version).

histSize — Array of histogram sizes in each dimension.

ranges — Array of the dims arrays of the histogram bin boundaries in each dimension.
When the histogram is uniform (uniform =true), then for each dimension 1i it is enough to
specify the lower (inclusive) boundary L of the O-th histogram bin and the upper (exclusive)
boundary Up;gtsize[ij—1 for the last histogram bin histSize[i]-1 . That is, in case of a
uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not
uniform (uniform=false), then each of ranges[i] contains histSize[i]+1 elements:
Lo,Uo = Ly, Uy = La,...;Unistsizeri]—2 = Lnistsizeril—1y Unistsizerij—1 - The array
elements, that are not between Lo and Up;istsizerij—1 » are not counted in the histogram.

uniform - Flag indicating whether the histogram is uniform or not (see above).

accumulate — Accumulation flag. If it is set, the histogram is not cleared in the beginning
when it is allocated. This feature enables you to compute a single histogram from several
sets of arrays, or to update the histogram in time.

The functions calcHist calculate the histogram of one or more arrays. The elements of a tuple used to increment a
histogram bin are taken from the corresponding input arrays at the same location. The sample below shows how to
compute a 2D Hue-Saturation histogram for a color image.

#include <cv.h>
#include <highgui.h>

using namespace cv;

int main(int argc, charxx argv)

{
Mat src, hsv;
if(argc '= 2 || !(src=imread(argv[1l], 1)).data)
return -1;

cvtColor(src, hsv, CV_BGR2HSV);

// Quantize the hue to 30 levels

// and the saturation to 32 levels

int hbins = 30, sbins = 32;

int histSize[] = {hbins, sbins};

// hue varies from 0 to 179, see cvtColor

float hranges[] = { 0, 180 };

// saturation varies from O (black-gray-white) to
// 255 (pure spectrum color)

float sranges[] = { 0, 256 };

const float+ ranges[] = { hranges, sranges };
MatND hist;

// we compute the histogram from the O-th and 1-st channels
int channels[] = {0, 1};

calcHist(&hsv, 1, channels, Mat(), // do not use mask
hist, 2, histSize, ranges,
true, // the histogram is uniform

274 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

false);
double maxVal=0;
minMaxLoc(hist, 0, &maxVal, 0, 0);

int scale = 10;
Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);

for(int h = 0; h < hbins; h++)
for(int s = 0; s < sbins; s++)

{
float binVal = hist.at<float>(h, s);
int intensity = cvRound(binValx255/maxVal);
rectangle(histImg, Point(hxscale, sxscale),
Point((h+l)*scale - 1, (s+l)*scale - 1),
Scalar::all(intensity),
CV_FILLED);
}

namedWindow("Source", 1);
imshow("Source", src);

namedWindow("H-S Histogram", 1);
imshow("H-S Histogram", histImg);
waitKey();

calcBackProject

Calculates the back projection of a histogram.

C++: void calcBackProject(const Mat* images, int nimages, const int* channels, InputArray hist,
OutputArray backProject, const float** ranges, double scale=1, bool uni-
form=true)

C++: void calcBackProject (const Mat* images, int nimages, const int* channels, const SparseMat& hist,
OutputArray backProject, const float** ranges, double scale=1, bool uni-
form=true)

Python: cv2.calcBackProject (images, channels, hist, ranges, scale[, dst]) — dst
C: void cvCalcBackProject (Ipllmage** image, CvArr* backProject, const CvHistogram™ hist)
Python: cv.CalcBackProject (image, back_project, hist) — None

Parameters

images — Source arrays. They all should have the same depth, CV_8U or CV_32F , and the
same size. Each of them can have an arbitrary number of channels.

nimages — Number of source images.

channels — The list of channels used to compute the back projection. The number of
channels must match the histogram dimensionality. The first array channels are numer-
ated from O to images[0].channels()-1, the second array channels are counted from
images[0].channels() to images[0].channels() + images[1].channels()-1, and
SO on.

hist — Input histogram that can be dense or sparse.

3.4. Histograms

275

The OpenCV Reference Manual, Release 2.4.2

backProject — Destination back projection array that is a single-channel array of the same
size and depth as images[0] .

ranges — Array of arrays of the histogram bin boundaries in each dimension. See
calcHist() .

scale — Optional scale factor for the output back projection.
uniform - Flag indicating whether the histogram is uniform or not (see above).

The functions calcBackProject calculate the back project of the histogram. That is, similarly to calcHist , at
each location (x, y) the function collects the values from the selected channels in the input images and finds the
corresponding histogram bin. But instead of incrementing it, the function reads the bin value, scales it by scale ,
and stores in backProject(x,y) . In terms of statistics, the function computes probability of each element value in
respect with the empirical probability distribution represented by the histogram. See how, for example, you can find
and track a bright-colored object in a scene:

1. Before tracking, show the object to the camera so that it covers almost the whole frame. Calculate a hue
histogram. The histogram may have strong maximums, corresponding to the dominant colors in the object.

2. When tracking, calculate a back projection of a hue plane of each input video frame using that pre-computed
histogram. Threshold the back projection to suppress weak colors. It may also make sense to suppress pixels
with non-sufficient color saturation and too dark or too bright pixels.

3. Find connected components in the resulting picture and choose, for example, the largest component.
This is an approximate algorithm of the CamShift () color object tracker.
See Also:

calcHist()

compareHist

Compares two histograms.
C++: double compareHist (InputArray H1, InputArray H2, int method)
C++: double compareHist (const SparseMat& H1, const SparseMat& H2, int method)
Python: cv2.compareHist(H1, H2, method) — retval
C: double cvCompareHist (const CvHistogram* histl, const CvHistogram* hist2, int method)
Python: cv.CompareHist (histl, hist2, method) — float
Parameters

H1 - First compared histogram.

H2 — Second compared histogram of the same size as H1 .

method — Comparison method that could be one of the following:

— CV_COMP_CORREL Correlation

— CV_COMP_CHISQR Chi-Square

— CV_COMP_INTERSECT Intersection

— CV_COMP_BHATTACHARY YA Bhattacharyya distance

— CV_COMP_HELLINGER Synonym for CV_COMP_BHATTACHARYYA

The functions compareHist compare two dense or two sparse histograms using the specified method:

276 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

¢ Correlation (method=CV_COMP_CORREL)

> 1 (Hi (1) = Hy)(Ha(I) — Hy)
V1 (H (1) = Hi)2 5 (Ha(1) — Hy)2

where

and N is a total number of histogram bins.

e Chi-Square (method=CV_COMP_CHISQR)

2
a3 (m

I

¢ Intersection (method=CV_COMP_INTERSECT)

d(Hs, Hz) me H; (1), Ha (1))

* Bhattacharyya distance (method=CV_COMP_BHATTACHARYYA or method=CV_COMP_HELLINGER). In fact,
OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.

The function returns d(Hq, Hz) .

While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable for high-dimensional
sparse histograms. In such histograms, because of aliasing and sampling problems, the coordinates of non-zero his-
togram bins can slightly shift. To compare such histograms or more general sparse configurations of weighted points,
consider using the EMD () function.

EMD

Computes the “minimal work™ distance between two weighted point configurations.
C++: float EMD (InputArray signaturel, InputArray signature2, int distType, InputArray cost=noArray(),
float* lowerBound=0, OutputArray flow=noArray())

C: float cvCalcEMD2(const CvArr* signaturel, const CvArr* signature2, int distance_type, CvDis-
tanceFunction distance func=NULL, const CvArr* cost_matrix=NULL, CvArr*
flow=NULL, float* lower_bound=NULL, void* userdata=NULL)

Python: cv.CalcEMD2 (signaturel, signature2, distance_type, distance_func=None, cost_matrix=None,
flow=None, lower_bound=None, userdata=None) — float

Parameters

3.4. Histograms 277

The OpenCV Reference Manual, Release 2.4.2

signaturel — First signature, a sizel x dims + 1 floating-point matrix. Each row stores
the point weight followed by the point coordinates. The matrix is allowed to have a single
column (weights only) if the user-defined cost matrix is used.

signature2 — Second signature of the same format as signaturel , though the number of
rows may be different. The total weights may be different. In this case an extra “dummy”
point is added to either signaturel or signature2 .

distType — Used metric. CV_DIST_L1, CV_DIST L2, and CV_DIST_C stand for one of the
standard metrics. CV_DIST_USER means that a pre-calculated cost matrix cost is used.

distance_func - Custom distance function supported by the old interface.

CvDistanceFunction is defined as:

typedef float (CV_CDECL * CvDistanceFunction)(const floatx a,
const float* b, void+ userdata);

where a and b are point coordinates and userdata is the same as the last parameter.

cost — User-defined sizel x size2 cost matrix. Also, if a cost matrix is used, lower bound-
ary lowerBound cannot be calculated because it needs a metric function.

lowerBound — Optional input/output parameter: lower boundary of a distance between the
two signatures that is a distance between mass centers. The lower boundary may not be
calculated if the user-defined cost matrix is used, the total weights of point configurations
are not equal, or if the signatures consist of weights only (the signature matrices have a
single column). You must initialize * LowerBound . If the calculated distance between mass
centers is greater or equal to *LlowerBound (it means that the signatures are far enough), the
function does not calculate EMD. In any case *lowerBound is set to the calculated distance
between mass centers on return. Thus, if you want to calculate both distance between mass
centers and EMD, xlowerBound should be set to 0.

flow — Resultant sizel x size2 flow matrix: flow;; is a flow from i -th point of
signaturel toj -th point of signature2 .

userdata — Optional pointer directly passed to the custom distance function.

The function computes the earth mover distance and/or a lower boundary of the distance between the two weighted
point configurations. One of the applications described in [RubnerSept98] is multi-dimensional histogram comparison
for image retrieval. EMD is a transportation problem that is solved using some modification of a simplex algorithm,
thus the complexity is exponential in the worst case, though, on average it is much faster. In the case of a real metric
the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used to determine roughly
whether the two signatures are far enough so that they cannot relate to the same object.

equalizeHist

Equalizes the histogram of a grayscale image.
C++: void equalizeHist (InputArray src, OutputArray dst)
Python: cv2.equalizeHist (src[, dst]) — dst
C: void cvEqualizeHist (const CvArr* src, CvArr* dst)
Parameters
src — Source 8-bit single channel image.
dst — Destination image of the same size and type as src .

The function equalizes the histogram of the input image using the following algorithm:

278 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

1. Calculate the histogram H for src .
2. Normalize the histogram so that the sum of histogram bins is 255.
3. Compute the integral of the histogram:
Hi=) H()
0<j<i
4. Transform the image using H’ as a look-up table: dst(x,y) = H'(src(x,y))

The algorithm normalizes the brightness and increases the contrast of the image.

Extra Histogram Functions (C API)

The rest of the section describes additional C functions operating on CvHistogram.

CalcBackProjectPatch

Locates a template within an image by using a histogram comparison.

C: void cvCalcBackProjectPatch (Ipllmage** images, CvArr* dst, CvSize patch_size, CvHistogram™ hist,
int method, double factor)

Python: cv.CalcBackProjectPatch (images, dst, patch_size, hist, method, factor) — None
Parameters
images — Source images (though, you may pass CvMat** as well).
dst — Destination image.
patch_size — Size of the patch slid though the source image.
hist — Histogram.
method — Comparison method passed to CompareHist () (see the function description).

factor — Normalization factor for histograms that affects the normalization scale of the des-
tination image. Pass 1 if not sure.

The function calculates the back projection by comparing histograms of the source image patches with the given
histogram. The function is similar to matchTemplate (), but instead of comparing the raster patch with all its possible
positions within the search window, the function CalcBackProjectPatch compares histograms. See the algorithm
diagram below:

3.4. Histograms 279

The OpenCV Reference Manual, Release 2.4.2

fmy
Patch images

I D e

RO

CalcProbDensity

Divides one histogram by another.

C: void cvCalcProbDensity (const CvHistogram* hist1, const CvHistogram* hist2, CvHistogram* dst_hist,
double scale=255)

Python: cv.CalcProbDensity (histl, hist2, dst_hist, scale=255) — None
Parameters
histl — First histogram (the divisor).
hist2 — Second histogram.
dst_hist — Destination histogram.
scale — Scale factor for the destination histogram.

The function calculates the object probability density from two histograms as:

0 if hist1(I) =0
disthist(I) = s;ale if hist1(I) # 0 and hist2(I) > hist1(I)
mstzlllscle ifhist1(I) # 0 and hist2(I) < hist1(I)

ClearHist

Clears the histogram.

C: void cvClearHist (CvHistogram* hist)

280 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

Python: cv.ClearHist (hist) — None
Parameters
hist — Histogram.

The function sets all of the histogram bins to 0 in case of a dense histogram and removes all histogram bins in case of
a sparse array.

CopyHist

Copies a histogram.
C: void cvCopyHist (const CvHistogram* src, CvHistogram** dst)
Parameters
src — Source histogram.
dst — Pointer to the destination histogram.

The function makes a copy of the histogram. If the second histogram pointer *dst is NULL, a new histogram of the
same size as src is created. Otherwise, both histograms must have equal types and sizes. Then the function copies the
bin values of the source histogram to the destination histogram and sets the same bin value ranges as in src.

CreateHist

Creates a histogram.
C: CvHistogram* cvCreateHist (int dims, int* sizes, int type, float** ranges=NULL, int uniform=1)
Python: cv.CreateHist (dims, type, ranges=None, uniform=1) — hist
Parameters
dims — Number of histogram dimensions.
sizes — Array of the histogram dimension sizes.

type — Histogram representation format. CV_HIST_ARRAY means that the histogram data
is represented as a multi-dimensional dense array CvMatND. CV_HIST_SPARSE means that
histogram data is represented as a multi-dimensional sparse array CvSparseMat.

ranges — Array of ranges for the histogram bins. Its meaning depends on the uniform
parameter value. The ranges are used when the histogram is calculated or backprojected to
determine which histogram bin corresponds to which value/tuple of values from the input
image(s).

uniform — Uniformity flag. If not zero, the histogram has evenly spaced bins and for every
0 <=1 < cDims ranges[i] is an array of two numbers: lower and upper boundaries
for the i-th histogram dimension. The whole range [lower,upper] is then split into dims[i]
equal parts to determine the i-th input tuple value ranges for every histogram bin. And
if uniform=0 , then the i-th element of the ranges array contains dims[i]+1 elements:
lowerg, uppery, lowery, upper; = lowersz,...uppergai,s;ij—1 where lower; and uppers;
are lower and upper boundaries of the i-th input tuple value for the j-th bin, respectively. In
either case, the input values that are beyond the specified range for a histogram bin are not
counted by CalcHist () and filled with 0 by CalcBackProject().

The function creates a histogram of the specified size and returns a pointer to the created histogram. If the array ranges
is 0, the histogram bin ranges must be specified later via the function SetHistBinRanges (). Though CalcHist ()

3.4. Histograms 281

The OpenCV Reference Manual, Release 2.4.2

and CalcBackProject() may process 8-bit images without setting bin ranges, they assume they are equally spaced
in 0 to 255 bins.

GetMinMaxHistValue

Finds the minimum and maximum histogram bins.

C: void cvGetMinMaxHistValue(const CvHistogram* hist, float* min_value, float* max_value, int*
min_idx=NULL, int* max_idx=NULL)

Python: cv.GetMinMaxHistValue (hist)-> (min_value, max_value, min_idx, max_idx)
Parameters
hist — Histogram.
min_value — Pointer to the minimum value of the histogram.
max_value — Pointer to the maximum value of the histogram.
min_idx — Pointer to the array of coordinates for the minimum.
max_idx — Pointer to the array of coordinates for the maximum.

The function finds the minimum and maximum histogram bins and their positions. All of output arguments are
optional. Among several extremas with the same value the ones with the minimum index (in the lexicographical
order) are returned. In case of several maximums or minimums, the earliest in the lexicographical order (extrema
locations) is returned.

MakeHistHeaderForArray

Makes a histogram out of an array.

C: CvHistogram* cvMakeHistHeaderForArray (int dims, int* sizes, CvHistogram* hist, float* data, float**
ranges=NULL, int uniform=1)

Parameters
dims — Number of the histogram dimensions.
sizes — Array of the histogram dimension sizes.
hist — Histogram header initialized by the function.
data — Array used to store histogram bins.
ranges — Histogram bin ranges. See CreateHist () for details.
uniform — Uniformity flag. See CreateHist () for details.

The function initializes the histogram, whose header and bins are allocated by the user. ReleaseHist () does not need
to be called afterwards. Only dense histograms can be initialized this way. The function returns hist.

NormalizeHist

Normalizes the histogram.
C: void cvNormalizeHist (CvHistogram* hist, double factor)
Python: cv.NormalizeHist (hist, factor) — None

Parameters

282 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

hist — Pointer to the histogram.
factor — Normalization factor.

The function normalizes the histogram bins by scaling them so that the sum of the bins becomes equal to factor.

ReleaseHist

Releases the histogram.
C: void cvReleaseHist (CvHistogram** hist)
Parameters
hist — Double pointer to the released histogram.

The function releases the histogram (header and the data). The pointer to the histogram is cleared by the function. If
xhist pointer is already NULL, the function does nothing.

SetHistBinRanges

Sets the bounds of the histogram bins.
C: void cvSetHistBinRanges (CvHistogram* hist, float** ranges, int uniform=1)
Parameters
hist — Histogram.
ranges — Array of bin ranges arrays. See CreateHist () for details.
uniform — Uniformity flag. See CreateHist () for details.

This is a standalone function for setting bin ranges in the histogram. For a more detailed description of the parameters
ranges and uniform, see the CalcHist () function that can initialize the ranges as well. Ranges for the histogram
bins must be set before the histogram is calculated or the backproject of the histogram is calculated.

ThreshHist

Thresholds the histogram.
C: void cvThreshHist (CvHistogram* hist, double threshold)
Python: cv.ThreshHist (hist, threshold) — None
Parameters
hist — Pointer to the histogram.
threshold — Threshold level.

The function clears histogram bins that are below the specified threshold.

3.5 Structural Analysis and Shape Descriptors

moments

Calculates all of the moments up to the third order of a polygon or rasterized shape.

3.5. Structural Analysis and Shape Descriptors 283

The OpenCV Reference Manual, Release 2.4.2

C++: Moments moments (InputArray array, bool binaryImage=false)
Python: cv2.moments (array[, binaryImage]) — retval
C: void cvMoments (const CvArr* arr, CvMoments* moments, int binary=0)
Python: cv.Moments (arr, binary=0) — moments

Parameters

array — Raster image (single-channel, 8-bit or floating-point 2D array) or an array (1 x N
or N x 1) of 2D points (Point or Point2f).

binaryImage — If it is true, all non-zero image pixels are treated as 1’s. The parameter is
used for images only.

moments — Output moments.

The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The results are returned
in the structure Moments defined as:

class Moments

{
public:
Moments();
Moments(double m0O, double ml0, double m0@l, double m20, double mll,
double m02, double m30, double m21l, double ml2, double m0@3);
Moments(const CvMoments& moments);
operator CvMoments() const;
// spatial moments
double m0OO, mlO, mO1l, m20, mll, mO2, m30, m21l, ml2, mO3;
// central moments
double mu20, mull, mu@2, mu30, mu2l, mul2, mu@3;
// central normalized moments
double nu20, null, nu@2, nu30, nu2l, nul2, nu03;
}

In case of a raster image, the spatial moments Moments: :mj; are computed as:
mj; = Z (array(x,y) - ¥ - y)
X?y
The central moments Moments: : mu;; are computed as:
mui =Y (array(x,y)- (x=%) - (y—19)%)
XY
where (X, §) is the mass center:

% = m10 §= Mo1
=—, J=—
Moo Moo

The normalized central moments Moments: : nuy; are computed as:

mu;i

Mt = /241
00

Note: mugg = mgg, NUgp = 1 nujg = muj9 = mug; = muio = O, hence the values are not stored.

284 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

The moments of a contour are defined in the same way but computed using the Green’s formula (see
http://en.wikipedia.org/wiki/Green_theorem). So, due to a limited raster resolution, the moments computed for a
contour are slightly different from the moments computed for the same rasterized contour.

Note: Since the contour moments are computed using Green formula, you may get seemingly odd results for contours
with self-intersections, e.g. a zero area (m00) for butterfly-shaped contours.

See Also:

contourArea(), arcLength()

HuMoments

Calculates seven Hu invariants.
C++: void HuMoments (const Moments& m, OutputArray hu)
C++: void HuMoments (const Moments& moments, double hu[7])
Python: cv2.HuMoments(m[, hu]) — hu
C: void cvGetHuMoments (CvMoments* moments, CvHuMoments* hu_moments)
Python: cv.GetHuMoments(moments) — hu
Parameters
moments — Input moments computed with moments () .
hu — Output Hu invariants.

The function calculates seven Hu invariants (introduced in [Hu62]; see also
http://en.wikipedia.org/wiki/Image_moment) defined as:

hul0] =n20 + Moz

hu[1] = (M20 —Mo2)? +4ﬂ%1

hu(2] = (m3p — 3T112) + (3n21 —Mo3)?

huf3] = M30 +M12)%2 + M21 +Mo3)?

hufd] = (3o — 3n12)(M30 +T112)[(T130 +112)% = 3(M21 +103)2 + (3021 —Mo3)M21 +Mo3) B30 +M12)% — (21 +M03)?]
hul5] = (M20 —Mo02)[(M30 +M12)% — M21 +M03)%] + 4111 (M30 +M12)(M21 +Mo3)

hul6] = (321 —Mo3)(M21 +M03)B(Mz0 +M12)% — (M21 +M03)*] — M30 — 3n12)(M21 +M03)BM30 +M12)% — (M21 +M03)?]

where n);; stands for Moments: :nuj; .

These values are proved to be invariants to the image scale, rotation, and reflection except the seventh one, whose sign
is changed by reflection. This invariance is proved with the assumption of infinite image resolution. In case of raster
images, the computed Hu invariants for the original and transformed images are a bit different.

See Also:
matchShapes ()

findContours

Finds contours in a binary image.

C++: void findContours (InputOutputArray image, OutputArrayOfArrays contours, OutputArray hierar-
chy, int mode, int method, Point offset=Point())

3.5. Structural Analysis and Shape Descriptors 285

http://en.wikipedia.org/wiki/Green_theorem
http://en.wikipedia.org/wiki/Image_moment

The OpenCV Reference Manual, Release 2.4.2

C++: void findContours (InputOutputArray image, OutputArrayOfArrays contours, int mode, int method,
Point offset=Point())

Python: cv2.findContours (image, mode, method[, contours[, hierarchy[, offset]]]) — contours, hierar-
chy

C: int cvFindContours (CvArr* image, CvMemStorage* storage, CvSeq** first_contour,
int header_size=sizeof(CvContour), int mode=CV_RETR_LIST, int
method=CV_CHAIN_APPROX_SIMPLE, CvPoint offset=cvPoint(0,0))

Python: cv.FindContours (image, storage, mode=CV_RETR_LIST, method=CV_CHAIN_APPROX_SIMPLE,
offset=(0, 0)) — contours

Parameters

image — Source, an 8-bit single-channel image. Non-zero pixels are treated as 1’s. Zero
pixels remain 0’s, so the image is treated as binary . You can use compare() , inRange()
,threshold() ,adaptiveThreshold(), Canny() , and others to create a binary image out
of a grayscale or color one. The function modifies the image while extracting the contours.

contours — Detected contours. Each contour is stored as a vector of points.

hierarchy — Optional output vector containing information about the image topology. It has
as many elements as the number of contours. For each contour contours[i] , the elements
hierarchy[i][0] , hiearchy[i][1] , hiearchy[i][2] , and hiearchy[i][3] are set
to 0-based indices in contours of the next and previous contours at the same hierarchical
level: the first child contour and the parent contour, respectively. If for a contour i there are
no next, previous, parent, or nested contours, the corresponding elements of hierarchy[i]
will be negative.

mode — Contour retrieval mode (if you use Python see also a note below).

— CV_RETR_EXTERNAL retrieves only the extreme outer contours. It sets
hierarchy[i][2]=hierarchy[i][3]=-1 for all the contours.

— CV_RETR_LIST retrieves all of the contours without establishing any hierarchical rela-
tionships.

— CV_RETR_CCOMP retrieves all of the contours and organizes them into a two-level
hierarchy. At the top level, there are external boundaries of the components. At the
second level, there are boundaries of the holes. If there is another contour inside a hole of
a connected component, it is still put at the top level.

— CV_RETR_TREE retrieves all of the contours and reconstructs a full hierarchy of nested
contours. This full hierarchy is built and shown in the OpenCV contours.c demo.

method — Contour approximation method (if you use Python see also a note below).

— CV_CHAIN_APPROX_NONE stores absolutely all the contour points. That is, any 2
subsequent points (x1,y1l) and (x2,y2) of the contour will be either horizontal, vertical
or diagonal neighbors, that is, max (abs (x1-x2),abs(y2-yl))==1.

— CV_CHAIN_APPROX_SIMPLE compresses horizontal, vertical, and diagonal seg-
ments and leaves only their end points. For example, an up-right rectangular contour
is encoded with 4 points.

— CV_CHAIN_APPROX_TC89 L1,CV_CHAIN_APPROX_TC89_KCOS applies one
of the flavors of the Teh-Chin chain approximation algorithm. See [TehChin89] for de-
tails.

offset — Optional offset by which every contour point is shifted. This is useful if the contours
are extracted from the image ROI and then they should be analyzed in the whole image
context.

286 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

The function retrieves contours from the binary image using the algorithm [Suzuki85]. The contours are a useful tool
for shape analysis and object detection and recognition. See squares. c in the OpenCV sample directory.

Note: Source image is modified by this function.

Note: If you use the new Python interface then the CV_ prefix has to be omitted in contour retrieval mode and contour
approximation method parameters (for example, use cv2.RETR_LIST and cv2.CHAIN_APPROX_NONE parameters). If
you use the old Python interface then these parameters have the CV_ prefix (for example, use cv.CV_RETR_LIST and
cv.CV_CHAIN_APPROX_NONE).

approxPolyDP

Approximates a polygonal curve(s) with the specified precision.
C++: void approxPolyDP (InputArray curve, OutputArray approxCurve, double epsilon, bool closed)
Python: cv2.approxPolyDP (curve, epsilon, closed[, approxCurve]) — approxCurve

C: CvSeq* cvApproxPoly (const void* src_seq, int header_size, CvMemStorage* storage, int method, dou-
ble eps, int recursive=0)

Parameters
curve — Input vector of a 2D point stored in:
— std::vector or Mat (C++ interface)
— Nx2 numpy array (Python interface)
— CvSeqor ‘“ CvMat (C interface)

approxCurve — Result of the approximation. The type should match the type of the input
curve. In case of C interface the approximated curve is stored in the memory storage and
pointer to it is returned.

epsilon — Parameter specifying the approximation accuracy. This is the maximum distance
between the original curve and its approximation.

closed — If true, the approximated curve is closed (its first and last vertices are connected).
Otherwise, it is not closed.

header_size — Header size of the approximated curve. Normally, sizeof (CvContour) is
used.

storage — Memory storage where the approximated curve is stored.
method — Contour approximation algorithm. Only CV_POLY_APPROX_DP is supported.

recursive — Recursion flag. If it is non-zero and curve is CvSeqx*, the function
cvApproxPoly approximates all the contours accessible from curve by h_next and v_next
links.

The functions approxPolyDP approximate a curve or a polygon with another curve/polygon with less vertices so
that the distance between them is less or equal to the specified precision. It uses the Douglas-Peucker algorithm
http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm

See http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/contours.cpp for the function usage model.

3.5. Structural Analysis and Shape Descriptors 287

http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/contours.cpp

The OpenCV Reference Manual, Release 2.4.2

ApproxChains

Approximates Freeman chain(s) with a polygonal curve.

C: CvSeq* cvApproxChains (CvSeq* src_seq, CvMemStorage* storage, int
method=CV_CHAIN_APPROX_SIMPLE, double parameter=0, int mini-
mal_perimeter=0, int recursive=0)

Python: cv.ApproxChains (src_seq, storage, method=CV_CHAIN_APPROX_SIMPLE, parameter=0, mini-
mal_perimeter=0, recursive=0) — contours

Parameters
src_seq — Pointer to the approximated Freeman chain that can refer to other chains.
storage — Storage location for the resulting polylines.
method — Approximation method (see the description of the function FindContours()).
parameter — Method parameter (not used now).

minimal_perimeter — Approximates only those contours whose perimeters are not less than
minimal_perimeter . Other chains are removed from the resulting structure.

recursive — Recursion flag. If it is non-zero, the function approximates all chains that can
be obtained from chain by using the h_next or v_next links. Otherwise, the single input
chain is approximated.

This is a standalone contour approximation routine, not represented in the new interface. When FindContours()
retrieves contours as Freeman chains, it calls the function to get approximated contours, represented as polygons.

arcLength

Calculates a contour perimeter or a curve length.
C++: double arcLength (InputArray curve, bool closed)
Python: cv2.arcLength(curve, closed) — retval
C: double cvArcLength (const void* curve, CvSlice slice=CV_WHOLE_SEQ, int is_closed=-1)
Python: cv.ArcLength(curve, slice=CV_WHOLE_SEQ, isClosed=-1) — float
Parameters
curve — Input vector of 2D points, stored in std: :vector or Mat.
closed — Flag indicating whether the curve is closed or not.

The function computes a curve length or a closed contour perimeter.

boundingRect

Calculates the up-right bounding rectangle of a point set.
C++: Rect boundingRect (InputArray points)

Python: cv2.boundingRect (points) — retval

C: CvRect cvBoundingRect (CvArr* points, int update=0)
Python: cv.BoundingRect (points, update=0) — CvRect

Parameters

288 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

points — Input 2D point set, stored in std: : vector or Mat.

The function calculates and returns the minimal up-right bounding rectangle for the specified point set.

contourArea

Calculates a contour area.
C++: double contourArea (InputArray contour, bool oriented=false)
Python: cv2.contourArea (contour[, oriented]) — retval
C: double cvContourArea(const CvArr* contour, CvSlice slice=CV_WHOLE_SEQ, int oriented=0)
Python: cv.ContourArea (contour, slice=CV_WHOLE_SEQ) — float
Parameters
contour — Input vector of 2D points (contour vertices), stored in std: :vector or Mat.

oriented — Oriented area flag. If it is true, the function returns a signed area value, depending
on the contour orientation (clockwise or counter-clockwise). Using this feature you can
determine orientation of a contour by taking the sign of an area. By default, the parameter
is false, which means that the absolute value is returned.

The function computes a contour area. Similarly to moments () , the area is computed using the Green formula. Thus,
the returned area and the number of non-zero pixels, if you draw the contour using drawContours () or fillPoly()
, can be different. Also, the function will most certainly give a wrong results for contours with self-intersections.

Example:

vector<Point> contour;
contour.push_back(Point2f(0, 0));
contour.push_back(Point2f (10, 0));
contour.push_back(Point2f (10, 10));
contour.push_back(Point2f (5, 4));

double area® = contourArea(contour);
vector<Point> approx;
approxPolyDP(contour, approx, 5, true);
double areal = contourArea(approx);

cout << "area@® =" << area0® << endl <<
"areal =" << areal << endl <<
"approx poly vertices" << approx.size() << endl;

convexHull

Finds the convex hull of a point set.

C++: void convexHull (InputArray points, OutputArray hull, bool clockwise=false, bool returnPoints=true

)
Python: cv2.convexHull (points[, hull[, clockwise[, returnPoints]]]) — hull

C: CvSeq* cvConvexHull2(const CvArr* input, void* hull_storage=NULL, int orienta-
tion=CV_CLOCKWISE, int return_points=0)

Python: cv.ConvexHull2 (points, storage, orientation=CV_CLOCKWISE, return_points=0) — convexHull

Parameters

3.5. Structural Analysis and Shape Descriptors 289

The OpenCV Reference Manual, Release 2.4.2

points — Input 2D point set, stored in std: : vector or Mat.

hull — Output convex hull. It is either an integer vector of indices or vector of points. In
the first case, the hull elements are 0-based indices of the convex hull points in the original
array (since the set of convex hull points is a subset of the original point set). In the second
case, hull elements are the convex hull points themselves.

hull_storage — Output memory storage in the old API (cvConvexHull2 returns a sequence
containing the convex hull points or their indices).

clockwise — Orientation flag. If it is true, the output convex hull is oriented clockwise.
Otherwise, it is oriented counter-clockwise. The usual screen coordinate system is assumed
so that the origin is at the top-left corner, x axis is oriented to the right, and y axis is oriented
downwards.

orientation — Convex hull orientation parameter in the old API, CV_CLOCKWISE or
CV_COUNTERCLOCKWISE.

returnPoints — Operation flag. In case of a matrix, when the flag is true, the function
returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
output array is std: :vector, the flag is ignored, and the output depends on the type of the
vector: std::vector<int> implies returnPoints=true, std::vector<Point> implies
returnPoints=false.

The functions find the convex hull of a 2D point set using the Sklansky’s algorithm [Sklansky82] that has O(N logN)
complexity in the current implementation. See the OpenCV sample convexhull. cpp that demonstrates the usage of
different function variants.

convexityDefects

Finds the convexity defects of a contour.
C++: void convexityDefects (InputArray contour, InputArray convexhull, OutputArray convexityDefects)
Python: cv2.convexityDefects (contour, convexhull[, convexityDefects]) — convexityDefects

C: CvSeq* cvConvexityDefects (const CvArr* contour, const CvArr* convexhull, CvMemStorage* stor-
age=NULL)

Python: cv.ConvexityDefects (contour, convexhull, storage) — convexityDefects
Parameters
contour — Input contour.

convexhull — Convex hull obtained using convexHull() that should contain indices of the
contour points that make the hull.

convexityDefects — The output vector of convexity defects. In C++ and the
new Python/Java interface each convexity defect is represented as 4-element inte-
ger vector (a.k.a. cv::Vecdi): (start_index, end_index, farthest_pt_index,
fixpt_depth), where indices are 0-based indices in the original contour of the convexity
defect beginning, end and the farthest point, and fixpt_depth is fixed-point approximation
(with 8 fractional bits) of the distance between the farthest contour point and the hull. That
is, to get the floating-point value of the depth will be fixpt_depth/256.0. In C interface
convexity defect is represented by CvConvexityDefect structure - see below.

storage — Container for the output sequence of convexity defects. If it is NULL, the contour
or hull (in that order) storage is used.

290 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

The function finds all convexity defects of the input contour and returns a sequence of the CvConvexityDefect
structures, where CvConvexityDetect is defined as:

struct CvConvexityDefect
{
CvPoint* start; // point of the contour where the defect begins
CvPointx end; // point of the contour where the defect ends
CvPoint* depth_point; // the farthest from the convex hull point within the defect
float depth; // distance between the farthest point and the convex hull
+

The figure below displays convexity defects of a hand contour:

fitEllipse

Fits an ellipse around a set of 2D points.
C++: RotatedRect fitEllipse (InputArray points)
Python: cv2.fitEllipse(points) — retval
C: CvBox2D cvFitEllipse2 (const CvArr* points)
Python: cv.FitEllipse2 (points) — Box2D
Parameters
points — Input 2D point set, stored in:

— std::vector<> or Mat (C++ interface)

3.5. Structural Analysis and Shape Descriptors 291

The OpenCV Reference Manual, Release 2.4.2

— CvSeg* or CvMatx* (C interface)
— Nx2 numpy array (Python interface)

The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of all. It returns the rotated
rectangle in which the ellipse is inscribed. The algorithm [Fitzgibbon95] is used.

fitLine

Fits a line to a 2D or 3D point set.

C++: void fitLine (InputArray points, OutputArray line, int distType, double param, double reps, double
aeps)

Python: cv2.fitLine(points, distType, param, reps, aeps[, line]) — line
C: void cvFitLine (const CvArr* points, int dist_type, double param, double reps, double aeps, float* line)
Python: cv.FitLine(points, dist_type, param, reps, aeps) — line
Parameters
points — Input vector of 2D or 3D points, stored in std: : vector<> or Mat.

line — Output line parameters. In case of 2D fitting, it should be a vector of 4 elements (like
Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line
and (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements
(like Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector
collinear to the line and (x0, y®, z0) is a point on the line.

distType — Distance used by the M-estimator (see the discussion below).

param — Numerical parameter (C) for some types of distances. If it is 0, an optimal value
is chosen.

reps — Sufficient accuracy for the radius (distance between the coordinate origin and the
line).

aeps — Sufficient accuracy for the angle. 0.01 would be a good default value for reps and
aeps.

The function fitLine fits a line to a 2D or 3D point set by minimizing) ; p(ri) where 7; is a distance between the
ith point, the line and p(r) is a distance function, one of the following:

¢ distType=CV_DIST_L2

p(r) =12/2 (the simplest and the fastest least-squares method)

« distType=CV_DIST_L1

¢ distType=CV_DIST_L12

2
P =2-(1fT+5 —1)

292 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

« distType=CV_DIST_FAIR

p(r)=C?. (% — log (1 + %)) where C = 1.3998

¢ distType=CV_DIST_WELSCH

p(r)= %2 . <1 — exp (— <2>2>) where C = 2.9846

¢ distType=CV_DIST_HUBER

r2/2 ifr<C
p(r) = { C-(r—C/2) otherwise where € =1.345

The algorithm is based on the M-estimator (http://en.wikipedia.org/wiki/M-estimator) technique that iteratively fits
the line using the weighted least-squares algorithm. After each iteration the weights w; are adjusted to be inversely
proportional to p(1;) .

isContourConvex

Tests a contour convexity.
C++: bool isContourConvex (InputArray contour)
Python: cv2.isContourConvex(contour) — retval
C: int cvCheckContourConvexity (const CvArr* contour)
Python: cv.CheckContourConvexity (contour) — int
Parameters
contour — Input vector of 2D points, stored in:
— std::vector<> or Mat (C++ interface)
— CvSeqx* or CvMatx* (C interface)
— Nx2 numpy array (Python interface)

The function tests whether the input contour is convex or not. The contour must be simple, that is, without self-
intersections. Otherwise, the function output is undefined.

minAreaRect

Finds a rotated rectangle of the minimum area enclosing the input 2D point set.

C++: RotatedRect minAreaRect (InputArray points)

Python: cv2.minAreaRect (points) — retval

C: CvBox2D cvMinAreaRect2 (const CvArr* points, CvMemStorage* storage=NULL)

Python: cv.MinAreaRect2 (points, storage=None) — Box2D

3.5. Structural Analysis and Shape Descriptors 293

http://en.wikipedia.org/wiki/M-estimator

The OpenCV Reference Manual, Release 2.4.2

Parameters
points — Input vector of 2D points, stored in:
— std::vector<> or Mat (C++ interface)
— CvSeqx* or CvMatx* (C interface)
— Nx2 numpy array (Python interface)

The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a specified point set.
See the OpenCV sample minarea.cpp .

minEnclosingCircle

Finds a circle of the minimum area enclosing a 2D point set.
C++: void minEnclosingCircle (InputArray points, Point2f& center, float& radius)
Python: cv2.minEnclosingCircle(points) — center, radius
C: int cvMinEnclosingCircle(const CvArr* points, CvPoint2D32f* center, float* radius)
Python: cv.MinEnclosingCircle(points)-> (int, center, radius)
Parameters

points — Input vector of 2D points, stored in:

— std::vector<> or Mat (C++ interface)

— CvSeqx* or CvMatx* (C interface)

— Nx2 numpy array (Python interface)

center — Output center of the circle.

radius — Output radius of the circle.

The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. See the OpenCV sample
minarea.cpp.

matchShapes

Compares two shapes.
C++: double matchShapes (InputArray contourl, InputArray contour2, int method, double parameter)
Python: cv2.matchShapes (contourl, contour2, method, parameter) — retval
C: double cvMatchShapes (const void* objectl, const void* object2, int method, double parameter=0)
Python: cv.MatchShapes (objectl, object2, method, parameter=0) — float
Parameters
objectl — First contour or grayscale image.
object2 — Second contour or grayscale image.

method — Comparison method: CV_CONTOURS_MATCH_I1 , CV_CONTOURS_MATCH_I2 or
CV_CONTOURS_MATCH_I3 (see the details below).

parameter — Method-specific parameter (not supported now).

294 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

The function compares two shapes. All three implemented methods use the Hu invariants (see HuMoments ()) as
follows (A denotes objectl,:math:B denotes object2):

* method=CV_CONTOURS_MATCH_I1

i=1...7
¢ method=CV_CONTOURS_MATCH_I3
A B
|mi —my |
I3(A,B) = max_ |mA

where

and h{*, hP are the Hu moments of A and B , respectively.

pointPolygonTest

Performs a point-in-contour test.
C++: double pointPolygonTest (InputArray contour, Point2f pt, bool measureDist)
Python: cv2.pointPolygonTest (contour, pt, measureDist) — retval
C: double cvPointPolygonTest (const CvArr* contour, CvPoint2D32f pt, int measure_dist)
Python: cv.PointPolygonTest (contour, pt, measure_dist) — float
Parameters
contour — Input contour.
pt — Point tested against the contour.

measureDist — If true, the function estimates the signed distance from the point to the
nearest contour edge. Otherwise, the function only checks if the point is inside a contour or
not.

The function determines whether the point is inside a contour, outside, or lies on an edge (or coincides with a vertex). It
returns positive (inside), negative (outside), or zero (on an edge) value, correspondingly. When measureDist=false
, the return value is +1, -1, and 0, respectively. Otherwise, the return value is a signed distance between the point and
the nearest contour edge.

See below a sample output of the function where each image pixel is tested against the contour.

3.5. Structural Analysis and Shape Descriptors 295

The OpenCV Reference Manual, Release 2.4.2

3.6 Motion Analysis and Object Tracking

accumulate

Adds an image to the accumulator.

C++: void accumulate (InputArray sre, InputOutputArray dst, InputArray mask=noArray())
Python: cv2.accumulate (src, dst[, mask]) — None

C: void cvAcc(const CvArr* image, CvArr* sum, const CvArr* mask=NULL)

Python: cv.Acc(image, sum, mask=None) — None

296 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

Parameters
src — Input image as 1- or 3-channel, 8-bit or 32-bit floating point.

dst — Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.

mask — Optional operation mask.

The function adds src or some of its elements to dst :
dst(x,y) « dst(x,y) + src(x,y) if mask(x,y)#0

The function supports multi-channel images. Each channel is processed independently.

The functions accumulatex can be used, for example, to collect statistics of a scene background viewed by a still
camera and for the further foreground-background segmentation.

See Also:

accumulateSquare(), accumulateProduct(), accumulateWeighted()

accumulateSquare

Adds the square of a source image to the accumulator.
C++: void accumulateSquare (InputArray src, InputOutputArray dst, InputArray mask=noArray())
Python: cv2.accumulateSquare(src, dst[, mask]) — None
C: void cvSquareAcc (const CvArr* image, CvArr* sqsum, const CvArr* mask=NULL)
Python: cv.SquareAcc(image, sqgsum, mask=None) — None
Parameters
src — Input image as 1- or 3-channel, 8-bit or 32-bit floating point.

dst — Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.

mask — Optional operation mask.

The function adds the input image src or its selected region, raised to a power of 2, to the accumulator dst :
dst(x,y) « dst(x,y) + src(x,y)? if mask(x,y) #0

The function supports multi-channel images. Each channel is processed independently.
See Also:

accumulateSquare(), accumulateProduct(), accumulateWeighted()

accumulateProduct

Adds the per-element product of two input images to the accumulator.

C++: void accumulateProduct (InputArray srcl, InputArray src2, InputOutputArray dst, InputArray
mask=noArray())

Python: cv2.accumulateProduct (srcl, src2, dst[, mask]) — None

C: void cvMultiplyAcc(const CvArr* imagel, const CvArr* image2, CvArr* ace, const CvArr*
mask=NULL)

3.6. Motion Analysis and Object Tracking 297

The OpenCV Reference Manual, Release 2.4.2

Python: cv.MultiplyAcc(imagel, image2, acc, mask=None) — None
Parameters
srcl — First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
src2 — Second input image of the same type and the same size as srcl .

dst — Accumulator with the same number of channels as input images, 32-bit or 64-bit
floating-point.

mask — Optional operation mask.

The function adds the product of two images or their selected regions to the accumulator dst :
dst(x,y) « dst(x,y) + srcl(x,y)-src2(x,y) if mask(x,y) #0

The function supports multi-channel images. Each channel is processed independently.
See Also:

accumulate(), accumulateSquare(), accumulateWeighted()

accumulateWeighted

Updates a running average.

C++: void accumulateWeighted (InputArray sre, InputOutputArray dst, double alpha, InputArray
mask=noArray())

Python: cv2.accumulateWeighted (src, dst, alpha[, mask]) — None
C: void cvRunningAvg (const CvArr* image, CvArr* acc, double alpha, const CvArr* mask=NULL)
Python: cv.RunningAvg(image, acc, alpha, mask=None) — None
Parameters
src — Input image as 1- or 3-channel, 8-bit or 32-bit floating point.

dst — Accumulator image with the same number of channels as input image, 32-bit or 64-bit
floating-point.

alpha — Weight of the input image.
mask — Optional operation mask.

The function calculates the weighted sum of the input image src and the accumulator dst so that dst becomes a
running average of a frame sequence:

dst(x,y) « (1 —alpha) - dst(x,y) + alpha-src(x,y) if mask(x,y) #0

That is, alpha regulates the update speed (how fast the accumulator “forgets” about earlier images). The function
supports multi-channel images. Each channel is processed independently.
See Also:

accumulate(), accumulateSquare(), accumulateProduct()

298 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

phaseCorrelate

The function is used to detect translational shifts that occur between two images. The operation takes advantage of the
Fourier shift theorem for detecting the translational shift in the frequency domain. It can be used for fast image regis-
tration as well as motion estimation. For more information please see http://en.wikipedia.org/wiki/Phase_correlation

Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed with
getOptimalDFTSize().

C++: Point2d phaseCorrelate (InputArray srcl, InputArray src2, InputArray window=noArray())
Parameters
srcl — Source floating point array (CV_32FC1 or CV_64FC1)
src2 — Source floating point array (CV_32FC1 or CV_64FC1)

window — Floating point array with windowing coefficients to reduce edge effects (op-
tional).

Return value: detected phase shift (sub-pixel) between the two arrays.
The function performs the following equations

* First it applies a Hanning window (see http://en.wikipedia.org/wiki/Hann_function) to each image to remove
possible edge effects. This window is cached until the array size changes to speed up processing time.

* Next it computes the forward DFTs of each source array:

Gq = F{src1}, Gy, = F{srca}

where F is the forward DFT.

* It then computes the cross-power spectrum of each frequency domain array:

_ GG}
IGaGyl

¢ Next the cross-correlation is converted back into the time domain via the inverse DFT:

r=F YR}

* Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to achieve sub-
pixel accuracy.

(Ax, Ay) = weightedCentroid{arg (max]{r}}
x)y

See Also:
dft(), getOptimalDFTSize(), idft(), mulSpectrums() createHanningWindow()

3.6. Motion Analysis and Object Tracking 299

http://en.wikipedia.org/wiki/Phase_correlation
http://en.wikipedia.org/wiki/Hann_function

The OpenCV Reference Manual, Release 2.4.2

createHanningWindow

This function computes a Hanning window coefficients in two dimensions. See
http://en.wikipedia.org/wiki/Hann_function and http://en.wikipedia.org/wiki/Window_function for more infor-
mation.

C++: void createHanningWindow (OutputArray dst, Size winSize, int type)
Parameters
dst — Destination array to place Hann coefficients in
winSize — The window size specifications
type — Created array type
An example is shown below:

// create hanning window of size 100x100 and type CV_32F
Mat hann;
createHanningWindow(hann, Size(100, 100), CV_32F);

See Also:

phaseCorrelate()

3.7 Feature Detection

Canny

Finds edges in an image using the [Canny86] algorithm.

C++: void Canny (InputArray image, OutputArray edges, double threshold1, double threshold2, int aper-
tureSize=3, bool L2gradient=false)

Python: cv2.Canny (image, thresholdl, threshole[, edges [, apertureSize[, L2gradient]]]) — edges

C: void cvCanny(const CvArr* image, CvArr* edges, double thresholdl, double threshold2, int aper-
ture_size=3)

Python: cv.Canny(image, edges, thresholdl, threshold2, aperture_size=3) — None
Parameters
image — Single-channel 8-bit input image.
edges — Output edge map. It has the same size and type as image .
threshold1 — First threshold for the hysteresis procedure.
threshold2 — Second threshold for the hysteresis procedure.

apertureSize — Aperture size for the Sobel () operator.

L2gradient — Flag indicating whether a more accurate L, norm = \/ (dI/dx)? + (dI/dy)?
should be used to compute the image gradient magnitude (L2gradient=true), or a faster
default Ly norm = |dI/dx| + |dI/dy] is enough (L2gradient=false).

The function finds edges in the input image image and marks them in the output map edges using the Canny algorithm.
The smallest value between thresholdl and threshold2 is used for edge linking. The largest value is used to find
initial segments of strong edges. See http://en.wikipedia.org/wiki/Canny_edge_detector

300 Chapter 3. imgproc. Image Processing

http://en.wikipedia.org/wiki/Hann_function
http://en.wikipedia.org/wiki/Window_function
http://en.wikipedia.org/wiki/Canny_edge_detector

The OpenCV Reference Manual, Release 2.4.2

cornerEigenValsAndVecs

Calculates eigenvalues and eigenvectors of image blocks for corner detection.

C++: void cornerEigenValsAndVecs (InputArray src, OutputArray dst, int blockSize, int ksize, int border-
Type=BORDER_DEFAULT)

Python: cv2.cornerEigenValsAndVecs (src, blockSize, ksize[, dst[, borderType]]) — dst

C: void cvCornerEigenValsAndVecs (const CvArr* image, CvArr* eigenvv, int block_size, int aper-
ture_size=3)

Python: cv.CornerEigenValsAndVecs (image, eigenvv, blockSize, aperture_size=3) — None
Parameters
src¢ — Input single-channel 8-bit or floating-point image.
dst — Image to store the results. It has the same size as src and the type CV_32FC(6) .
blockSize — Neighborhood size (see details below).
ksize — Aperture parameter for the Sobel () operator.
borderType — Pixel extrapolation method. See borderInterpolate() .

For every pixel p , the function cornerEigenValsAndVecs considers a blockSize X blockSize neighborhood S(p)
. It calculates the covariation matrix of derivatives over the neighborhood as:

Y s(p)(dl/dx)? Y s(p(dl/dxdl/dy)?

M=o (A1 dxdl/dy)2 Zs (d1/dy)>

where the derivatives are computed using the Sobel () operator.

After that, it finds eigenvectors and eigenvalues of M and stores them in the destination image as
(A1,A2,%1,Y1,X2,Y2) Where

* A1, Ay are the non-sorted eigenvalues of M

* Xx1,Y7 are the eigenvectors corresponding to A;

* X2, are the eigenvectors corresponding to A,
The output of the function can be used for robust edge or corner detection.
See Also:

cornerMinEigenVal(), cornerHarris(), preCornerDetect()

cornerHarris

Harris edge detector.

C++: void cornerHarris (InputArray src, OutputArray dst, int blockSize, int ksize, double k, int border-
Type=BORDER_DEFAULT)

Python: cv2.cornerHarris (src, blockSize, ksize, k[, dst[, borderType]]) — dst

C: void cvCornerHarris (const CvArr* image, CvArr* harris_responce, int block_size, int aper-
ture_size=3, double k=0.04)

Python: cv.CornerHarris (image, harris_dst, blockSize, aperture_size=3, k=0.04) — None
Parameters

src — Input single-channel 8-bit or floating-point image.

3.7. Feature Detection 301

The OpenCV Reference Manual, Release 2.4.2

dst — Image to store the Harris detector responses. It has the type CV_32FC1 and the same
size as src .

blockSize — Neighborhood size (see the details on cornerEigenValsAndVecs()).
ksize — Aperture parameter for the Sobel () operator.

k — Harris detector free parameter. See the formula below.

borderType — Pixel extrapolation method. See borderInterpolate() .

The function runs the Harris edge detector on the image. Similarly to cornerMinEigenVal() and
cornerEigenValsAndVecs () , for each pixel (x,y) it calculates a 2 x 2 gradient covariance matrix MY over
a blockSize x blockSize neighborhood. Then, it computes the following characteristic:

2
dst(x,y) = detM*Y) —%. (trM(x‘y))

Corners in the image can be found as the local maxima of this response map.

cornerMinEigenVal

Calculates the minimal eigenvalue of gradient matrices for corner detection.

C++: void cornerMinEigenVal (InputArray src, OutputArray dst, int blockSize, int ksize=3, int border-
Type=BORDER_DEFAULT)

Python: cv2.cornerMinEigenVal (src, blockSize[, dst[, ksize[, borderType]]]) — dst

C: void cvCornerMinEigenVal (const CvArr* image, CvArr* eigenval, int block_size, int aperture_size=3

)

Python: cv.CornerMinEigenVal(image, eigenval, blockSize, aperture_size=3) — None
Parameters
src — Input single-channel 8-bit or floating-point image.

dst — Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size
assrc.

blockSize — Neighborhood size (see the details on cornerEigenValsAndVecs()).
ksize — Aperture parameter for the Sobel () operator.
borderType — Pixel extrapolation method. See borderInterpolate() .

The function is similar to cornerEigenValsAndVecs () but it calculates and stores only the minimal eigenvalue of
the covariance matrix of derivatives, that is, min(A1, A,) in terms of the formulae in the cornerEigenValsAndVecs ()
description.

cornerSubPix

Refines the corner locations.
C++: void cornerSubPix (InputArray image, InputOutputArray corners, Size winSize, Size zeroZone,
TermCeriteria criteria)
Python: cv2.cornerSubPix(image, corners, winSize, zeroZone, criteria) — None
C: void cvFindCornerSubPix (const CvArr* image, CvPoint2D32f* corners, int count, CvSize win, CvSize
zero_zone, CvTermCriteria criteria)

Python: cv.FindCornerSubPix (image, corners, win, zero_zone, criteria) — corners

302 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

Parameters
image — Input image.

corners — Initial coordinates of the input corners and refined coordinates provided for out-
put.

winSize — Half of the side length of the search window. For example, if
winSize=Size(5,5) ,thena5%2+1x5%2+1 =11 x 11 search window is used.

zeroZone — Half of the size of the dead region in the middle of the search zone over which
the summation in the formula below is not done. It is used sometimes to avoid possible
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no
such a size.

criteria — Criteria for termination of the iterative process of corner refinement. That is, the
process of corner position refinement stops either after criteria.maxCount iterations or
when the corner position moves by less than criteria.epsilon on some iteration.

The function iterates to find the sub-pixel accurate location of corners or radial saddle points, as shown on the figure
below.

(red) gradient direction

Sub-pixel accurate corner locator is based on the observation that every vector from the center ¢ to a point p located
within a neighborhood of q is orthogonal to the image gradient at p subject to image and measurement noise. Consider
the expression:

ei=DIL,," (q—pi)

where DI, is an image gradient at one of the points p; in a neighborhood of ¢ . The value of (is to be found so that
€; is minimized. A system of equations may be set up with €; set to zero:

Z(DI’F’& : DIPiT) - Z(DIPi ’ DIPiT ' pi)
i i

where the gradients are summed within a neighborhood (“search window”) of q . Calling the first gradient term G and
the second gradient term b gives:

q:G_1 -b

The algorithm sets the center of the neighborhood window at this new center q and then iterates until the center stays
within a set threshold.

3.7. Feature Detection 303

The OpenCV Reference Manual, Release 2.4.2

goodFeaturesToTrack

Determines strong corners on an image.

C++: void goodFeaturesToTrack (InputArray image, OutputArray corners, int maxCorners, double qual-
ityLevel, double minDistance, InputArray mask=noArray(), int block-
Size=3, bool useHarrisDetector=false, double k=0.04)

Python: cv2.goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[,
blockSize[, useHarrisDetector[, k]]]]]) — corners

C: void cvGoodFeaturesToTrack(const CvArr* image, CvArr* eig_image, CvArr* temp_image, Cv-
Point2D32f* corners, int* corner_count, double quality_level, dou-
ble min_distance, const CvArr* mask=NULL, int block_size=3, int
use_harris=0, double k=0.04)

Python: cv.GoodFeaturesToTrack(image, eiglmage, templmage, cornerCount, qualityLevel, minDistance,
mask=None, blockSize=3, useHarris=0, k=0.04) — cornerCount

Parameters
image — Input 8-bit or floating-point 32-bit, single-channel image.
eig_image — The parameter is ignored.
temp_image — The parameter is ignored.
corners — Output vector of detected corners.

maxCorners — Maximum number of corners to return. If there are more corners than are
found, the strongest of them is returned.

qualityLevel — Parameter characterizing the minimal accepted quality of image cor-
ners. The parameter value is multiplied by the best corner quality measure, which is
the minimal eigenvalue (see cornerMinEigenVal()) or the Harris function response
(see cornerHarris()). The corners with the quality measure less than the product
are rejected. For example, if the best corner has the quality measure = 1500, and the
qualitylLevel=0.01, then all the corners with the quality measure less than 15 are re-
jected.

minDistance — Minimum possible Euclidean distance between the returned corners.

mask — Optional region of interest. If the image is not empty (it needs to have the type
CV_8UC1 and the same size as image), it specifies the region in which the corners are
detected.

blockSize — Size of an average block for computing a derivative covariation matrix over
each pixel neighborhood. See cornerEigenValsAndVecs() .

useHarrisDetector — Parameter indicating whether to use a Harris detector (see
cornerHarris()) or cornerMinEigenVal().

k — Free parameter of the Harris detector.
The function finds the most prominent corners in the image or in the specified image region, as described in [Shi94]:

1. Function calculates the corner quality measure at every source image pixel using the cornerMinEigenVal() or
cornerHarris() .

2. Function performs a non-maximum suppression (the local maximums in 3 x 3 neighborhood are retained).

3. The corners with the minimal eigenvalue less than qualitylLevel - max, , qualityMeasureMap(x,y) are
rejected.

4. The remaining corners are sorted by the quality measure in the descending order.

304 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

5. Function throws away each corner for which there is a stronger corner at a distance less than maxDistance.

The function can be used to initialize a point-based tracker of an object.

Note: If the function is called with different values A and B of the parameter qualityLevel, and A > {B}, the vector
of returned corners with qualityLevel=A will be the prefix of the output vector with qualityLevel=B.

See Also:

cornerMinEigenVal(), cornerHarris(), calcOpticalFlowPyrLK(), estimateRigidTransform(),

HoughCircles

Finds circles in a grayscale image using the Hough transform.

C++: void HoughCircles (InputArray image, OutputArray circles, int method, double dp, double minDist,
double param1=100, double param2=100, int minRadius=0, int maxRadius=0)

C: CvSeq* cvHoughCircles (CvArr* image, void* circle_storage, int method, double dp, double
min_dist, double param1=100, double param2=100, int min_radius=0, int
max_radius=0)

Python: cv2.HoughCircles (image, method, dp, minDist[, circles[, paraml [, param2[, minRadius[, maxRa-
dius]]]]]) — circles

Parameters
image — 8-bit, single-channel, grayscale input image.

circles — Output vector of found circles. Each vector is encoded as a 3-element floating-
point vector (x,y, radius) .

circle_storage — In C function this is a memory storage that will contain the output sequence
of found circles.

method — Detection method to use. Currently, the only implemented method is
CV_HOUGH_GRADIENT , which is basically 2/HT , described in [Yuen90].

dp — Inverse ratio of the accumulator resolution to the image resolution. For example, if
dp=1, the accumulator has the same resolution as the input image. If dp=2 , the accumulator
has half as big width and height.

minDist — Minimum distance between the centers of the detected circles. If the parameter
is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it
is too large, some circles may be missed.

paraml — First method-specific parameter. In case of CV_HOUGH_GRADIENT, it is the higher
threshold of the two passed to the Canny () edge detector (the lower one is twice smaller).

param2 — Second method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the
accumulator threshold for the circle centers at the detection stage. The smaller it is, the
more false circles may be detected. Circles, corresponding to the larger accumulator values,
will be returned first.

minRadius — Minimum circle radius.
maxRadius — Maximum circle radius.
The function finds circles in a grayscale image using a modification of the Hough transform.

Example:

3.7. Feature Detection 305

The OpenCV Reference Manual, Release 2.4.2

#include <cv.h>
#include <highgui.h>
#include <math.h>

using namespace cv;

int main(int argc, charsx argv)

{
Mat img, gray;
if(argc !'= 2 & !(img=imread(argv[1l], 1)).data)
return -1;
cvtColor(img, gray, CV_BGR2GRAY);
// smooth it, otherwise a lot of false circles may be detected
GaussianBlur(gray, gray, Size(9, 9), 2, 2);
vector<Vec3f> circles;
HoughCircles(gray, circles, CV_HOUGH_GRADIENT,
2, gray->rows/4, 200, 100);
for(size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// draw the circle center
circle(img, center, 3, Scalar(0,255,0), -1, 8, 0);
// draw the circle outline
circle(img, center, radius, Scalar(0,0,255), 3, 8, 0);
}
namedWindow("circles", 1);
imshow("circles", img);
return 0;
}

Note: Usually the function detects the centers of circles well. However, it may fail to find correct radii. You can assist
to the function by specifying the radius range (minRadius and maxRadius) if you know it. Or, you may ignore the
returned radius, use only the center, and find the correct radius using an additional procedure.

See Also:

fitEllipse(), minEnclosingCircle()

HoughLines

Finds lines in a binary image using the standard Hough transform.

C++: void HoughLines (InputArray image, OutputArray lines, double rho, double theta, int threshold, dou-
ble srn=0, double stn=0)

Python: cv2.HoughLines (image, rho, theta, threshold[, lines[, srn[, stn]]]) — lines

C: CvSeq* cvHoughLines2 (CvArr* image, void* line_storage, int method, double rho, double theta, int
threshold, double param1=0, double param2=0)

Python: cv.HoughLines2 (image, storage, method, rho, theta, threshold, param1=0, param2=0) — lines
Parameters

image — 8-bit, single-channel binary source image. The image may be modified by the
function.

306 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

lines — Output vector of lines. Each line is represented by a two-element vector (p,0) . p
is the distance from the coordinate origin (0, 0) (top-left corner of the image). 0 is the line
rotation angle in radians (O ~ vertical line, 7t/2 ~ horizontal line).

rho — Distance resolution of the accumulator in pixels.
theta — Angle resolution of the accumulator in radians.

threshold — Accumulator threshold parameter. Only those lines are returned that get enough
votes (> threshold).

srn — For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
The coarse accumulator distance resolution is rho and the accurate accumulator resolution
is rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise,
both these parameters should be positive.

stn — For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
method — One of the following Hough transform variants:

— CV_HOUGH_STANDARD classical or standard Hough transform. Every line is repre-
sented by two floating-point numbers (p, 0) , where p is a distance between (0,0) point
and the line, and 0 is the angle between x-axis and the normal to the line. Thus, the matrix
must be (the created sequence will be) of CV_32FC2 type

— CV_HOUGH_PROBABILISTIC probabilistic Hough transform (more efficient in case
if the picture contains a few long linear segments). It returns line segments rather than
the whole line. Each segment is represented by starting and ending points, and the matrix
must be (the created sequence will be) of the CV_325C4 type.

— CV_HOUGH_MULTI_SCALE multi-scale variant of the classical Hough transform.
The lines are encoded the same way as CV_HOUGH_STANDARD.

param1 — First method-dependent parameter:

— For the classical Hough transform, it is not used (0).

— For the probabilistic Hough transform, it is the minimum line length.
— For the multi-scale Hough transform, it is srn.

param?2 — Second method-dependent parameter:

— For the classical Hough transform, it is not used (0).

— For the probabilistic Hough transform, it is the maximum gap between line segments
lying on the same line to treat them as a single line segment (that is, to join them).

— For the multi-scale Hough transform, it is stn.

The function implements the standard or standard multi-scale Hough transform algorithm for line detection. See
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm for a good explanation of Hough transform. See also the example
in HoughLinesP () description.

HoughLinesP

Finds line segments in a binary image using the probabilistic Hough transform.

C++: void HoughLinesP (InputArray image, OutputArray lines, double rho, double theta, int threshold, dou-
ble minLineLength=0, double maxLineGap=0)

Python: cv2.HoughLinesP (image, rho, theta, threshold[, lines[, minLineLength[, maxLineGap]]]) —
lines

3.7. Feature Detection 307

http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm

The OpenCV Reference Manual, Release 2.4.2

Parameters

image — 8-bit, single-channel binary source image. The image may be modified by the
function.

lines — Output vector of lines. Each line is represented by a 4-element vector (x1,Y1,X2,Y2)
, where (x1,y1) and (x2,y>) are the ending points of each detected line segment.

rho — Distance resolution of the accumulator in pixels.
theta — Angle resolution of the accumulator in radians.

threshold — Accumulator threshold parameter. Only those lines are returned that get enough
votes (> threshold).

minLineLength — Minimum line length. Line segments shorter than that are rejected.
maxLineGap — Maximum allowed gap between points on the same line to link them.

The function implements the probabilistic Hough transform algorithm for line detection, described in [Matas00]. See
the line detection example below:

/* This is a standalone program. Pass an image name as the first parameter
of the program. Switch between standard and probabilistic Hough transform
by changing "#if 1" to "#if 0" and back x/

#include <cv.h>

#include <highgui. h>

#include <math.h>

using namespace Cv;

int main(int argc, charsx argv)
{
Mat src, dst, color_dst;
if(argc !'= 2 || !(src=imread(argv[1l], 0)).data)
return -1;

Canny(src, dst, 50, 200, 3);
cvtColor(dst, color_dst, CV_GRAY2BGR);

#1f 0
vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100);

for(size_t i = 0; 1 < lines.size(); i++)
{
float rho = lines[i][0];
float theta = lines[i][1];
double a = cos(theta), b = sin(theta);
double x0 = axrho, y@ = bxrho;
Point ptl(cvRound(x0 + 1000x(-b)),
cvRound(y@ + 1000%(a)));
Point pt2(cvRound(x0 - 1000%(-b)),
cvRound(y0@ - 1000%(a)));
line(color_dst, ptl, pt2, Scalar(0,0,255), 3, 8);
}
#else
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 80, 30, 10);
for(size_t 1 = 0; i < lines.size(); i++)

{

308 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

line(color_dst, Point(lines[i][@], lines[i][1]),
Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8);
}
#endif
namedWindow("Source", 1);
imshow("Source", src);

namedWindow("Detected Lines", 1);
imshow("Detected Lines", color_dst);

waitKey(0);
return 0;

}

This is a sample picture the function parameters have been tuned for:

A | A

=

= A

And this is the output of the above program in case of the probabilistic Hough transform:

3.7. Feature Detection 309

The OpenCV Reference Manual, Release 2.4.2

= Illl 4
=l Tyt

11 e II
.

\
1
.||
1l
I
|| ||_i|
i

i
'
g

]
|

preCornerDetect

Calculates a feature map for corner detection.

C++: void preCornerDetect (InputArray src, OutputArray dst, int ksize, int border-
Type=BORDER_DEFAULT)

Python: cv2.preCornerDetect (src, ksize[, dst[, borderType]]) — dst
C: void cvPreCornerDetect (const CvArr* image, CvArr* corners, int aperture_size=3)
Python: cv.PreCornerDetect (image, corners, apertureSize=3) — None
Parameters

src — Source single-channel 8-bit of floating-point image.

dst — Output image that has the type CV_32F and the same size as src .

ksize — Aperture size of the Sobel () .

borderType — Pixel extrapolation method. See borderInterpolate() .

The function calculates the complex spatial derivative-based function of the source image
dst = (Dys rc)2 -Dyysrc+ (Dys rc)? - Dyxsrc — 2Dysrc - Dysrc- Dyysrc

where Dy,:math:D_y are the first image derivatives, D,:math:D_{yy} are the second image derivatives, and D, is
the mixed derivative.

The corners can be found as local maximums of the functions, as shown below:

310 Chapter 3. imgproc. Image Processing

The OpenCV Reference Manual, Release 2.4.2

Mat corners, dilated_corners;

preCornerDetect(image, corners, 3);

// dilation with 3x3 rectangular structuring element
dilate(corners, dilated_corners, Mat(), 1);

Mat corner_mask = corners == dilated_corners;

3.8 Object Detection

matchTemplate

Compares a template against overlapped image regions.
C++: void matchTemplate (InputArray image, InputArray templ, OutputArray result, int method)
Python: cv2.matchTemplate(image, templ, method[, result]) — result
C: void cvMatchTemplate (const CvArr* image, const CvArr* templ, CvArr* result, int method)
Python: cv.MatchTemplate(image, templ, result, method) — None
Parameters
image — Image where the search is running. It must be 8-bit or 32-bit floating-point.

templ — Searched template. It must be not greater than the source image and have the same
data type.

result — Map of comparison results. It must be single-channel 32-bit floating-point. If image
is W x H and templisw x h, then resultis (W —-—w+1)x (H—h+1).

method — Parameter specifying the comparison method (see below).

The function slides through image , compares the overlapped patches of size w x h against templ using the specified
method and stores the comparison results in result . Here are the formulae for the available comparison methods
(I denotes image, T template, R result). The summation is done over template and/or the image patch: x’ =
0..w—1,y’ =0..h — 1 * method=CV_TM_SQDIFF

Ruy) = D (T,y) —TIx+x,y+y")?

Y
X5y

* method=CV_TM_SQDIFF_NORMED

R(X y) = ZX,vUI(T(X/)y/)_I(X—FX/)y +y/))2
\/Z’”,y’ T(x',y’)?- ZX,,y/ I(x+x',y+1y’)?

* method=CV_TM_CCORR

R(x,y) = Z (Tx,y") - Iix+x",y+y')

x’,y’

* method=CV_TM_CCORR_NORMED

3.8. Object Detection 311

The OpenCV Reference Manual, Release 2.4.2

T (T Y1) - 1x Xy +y)

R(X’y) =
\/Zx/,y’ T(x',y’)?- leyy/ I(x +x/,y +y')2

¢ method=CV_TM_CCOEFF

ROyl = D (T'(¢,y") - T'lx+x,y +y")

X !’ ‘y !’
where

T'xy) =Ty) =1/(w-h)- 3y T(X",y")
Uix+x\y+y') =Ix+x,y+y)—=1/(w-h)- ¥ o Ix+x"y+y")

* method=CV_TM_CCOEFF_NORMED

ZX'»U/(T/(X/,U/) . I’(X+X/,y+y’))
R(X)y) =
\/ZXIQJ/ T/(X/’y/)z . ZX’,y’ I/(X+X/,y +y,)2

After the function finishes the comparison, the best matches can be found as global minimums (when CV_TM_SQDIFF
was used) or maximums (when CV_TM_CCORR or CV_TM_CCOEFF was used) using the minMaxLoc () function. In case
of a color image, template summation in the numerator and each sum in the denominator is done over all of the
channels and separate mean values are used for each channel. That is, the function can take a color template and a
color image. The result will still be a single-channel image, which is easier to analyze.

312 Chapter 3. imgproc. Image Processing

CHAPTER
FOUR

HIGHGUI. HIGH-LEVEL GUI AND MEDIA
I/O

While OpenCV was designed for use in full-scale applications and can be used within functionally rich UI frameworks
(such as Qt*, WinForms*, or Cocoa*) or without any UI at all, sometimes there it is required to try functionality quickly
and visualize the results. This is what the HighGUI module has been designed for.

It provides easy interface to:

* Create and manipulate windows that can display images and “remember” their content (no need to handle repaint
events from OS).

* Add trackbars to the windows, handle simple mouse events as well as keyboard commands.
* Read and write images to/from disk or memory.

¢ Read video from camera or file and write video to a file.

4.1 User Interface

createTrackbar

Creates a trackbar and attaches it to the specified window.

C++: int createTrackbar(const string& trackbarname, const string& winname, int* value, int count,
TrackbarCallback onChange=0, void* userdata=0)

C: int cvCreateTrackbar(const char* trackbar_name, const char* window_name, int* value, int count,
CvTrackbarCallback on_change=NULL)

Python: cv.CreateTrackbar (trackbarName, windowName, value, count, onChange) — None
Parameters
trackbarname — Name of the created trackbar.
winname — Name of the window that will be used as a parent of the created trackbar.

value — Optional pointer to an integer variable whose value reflects the position of the slider.
Upon creation, the slider position is defined by this variable.

count — Maximal position of the slider. The minimal position is always 0.

onChange — Pointer to the function to be called every time the slider changes position. This
function should be prototyped as void Foo(int,voidx); , where the first parameter is the

313

The OpenCV Reference Manual, Release 2.4.2

trackbar position and the second parameter is the user data (see the next parameter). If the
callback is the NULL pointer, no callbacks are called, but only value is updated.

userdata — User data that is passed as is to the callback. It can be used to handle trackbar
events without using global variables.

The function createTrackbar creates a trackbar (a slider or range control) with the specified name and range, assigns
a variable value to be a position synchronized with the trackbar and specifies the callback function onChange to be
called on the trackbar position change. The created trackbar is displayed in the specified window winname.

Note: [Qt Backend Only] winname can be empty (or NULL) if the trackbar should be attached to the control panel.

Clicking the label of each trackbar enables editing the trackbar values manually.

getTrackbarPos

Returns the trackbar position.
C++: int getTrackbarPos (const string& trackbarname, const string& winname)
Python: cv2.getTrackbarPos (trackbarname, winname) — retval
C: int cvGetTrackbarPos (const char* trackbar_name, const char* window_name)
Python: cv.GetTrackbarPos (trackbarName, windowName) — retval
Parameters
trackbarname — Name of the trackbar.
winname — Name of the window that is the parent of the trackbar.

The function returns the current position of the specified trackbar.

Note: [Qt Backend Only] winname can be empty (or NULL) if the trackbar is attached to the control panel.

imshow

Displays an image in the specified window.
C++: void imshow (const string& winname, InputArray mat)
Python: cv2.imshow(winname, mat) — None
C: void cvShowImage (const char* name, const CvArr* image)
Python: cv.ShowImage(name, image) — None
Parameters
winname — Name of the window.
image — Image to be shown.

The function imshow displays an image in the specified window. If the window was created with the
CV_WINDOW_AUTOSIZE flag, the image is shown with its original size. Otherwise, the image is scaled to fit the window.
The function may scale the image, depending on its depth:

* If the image is 8-bit unsigned, it is displayed as is.

314 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

o If the image is 16-bit unsigned or 32-bit integer, the pixels are divided by 256. That is, the value range
[0,255%256] is mapped to [0,255].

« If the image is 32-bit floating-point, the pixel values are multiplied by 255. That is, the value range [0,1] is
mapped to [0,255].

namedWindow

Creates a window.
C++: void namedWindow (const string& winname, int flags=WINDOW_AUTOSIZE)
Python: cv2. namedwindow(winname[, ﬂags]) — None
C: int cvNamedWindow (const char* name, int flags=CV_WINDOW_AUTOSIZE)
Python: cv.NamedWindow(name, flags=CV_WINDOW_AUTOSIZE) — None
Parameters
name — Name of the window in the window caption that may be used as a window identifier.

flags — Flags of the window. Currently the only supported flag is CV_WINDOW_AUTOSIZE
. If this is set, the window size is automatically adjusted to fit the displayed image (see
imshow()), and you cannot change the window size manually.

The function namedWindow creates a window that can be used as a placeholder for images and trackbars. Created
windows are referred to by their names.

If a window with the same name already exists, the function does nothing.

You can call destroyWindow() or destroyAllWindows () to close the window and de-allocate any associated mem-
ory usage. For a simple program, you do not really have to call these functions because all the resources and windows
of the application are closed automatically by the operating system upon exit.

Note: Qt backend supports additional flags:

e CV_WINDOW_NORMAL or CV_WINDOW_AUTOSIZE: CV_WINDOW_NORMAL enables you to resize the
window, whereas CV_WINDOW_AUTOSIZE adjusts automatically the window size to fit the displayed image (see
imshow()), and you cannot change the window size manually.

« CV_WINDOW_FREERATIO or CV_WINDOW_KEEPRATIO: CV_WINDOW_FREERATIO adjusts the image
with no respect to its ratio, whereas CV_WINDOW_KEEPRATIO keeps the image ratio.

* CV_GUI_NORMAL or CV_GUI_EXPANDED: CV_GUI_NORMAL is the old way to draw the window without
statusbar and toolbar, whereas CV_GUI_EXPANDED is a new enhanced GUI.

By default, flags == CV_WINDOW_AUTOSIZE | CV_WINDOW_KEEPRATIO | CV_GUI_EXPANDED

destroyWindow

Destroys a window.

C++: void destroyWindow (const string& winname)
Python: cv2.destroyWindow(winname) — None
C: void cvDestroyWindow (const char* name)

Python: cv.DestroyWindow(name) — None

4.1. User Interface 315

The OpenCV Reference Manual, Release 2.4.2

Parameters
winname — Name of the window to be destroyed.

The function destroyWindow destroys the window with the given name.

destroyAllWindows

Destroys all of the HighGUI windows.

C++: void destroyAllWindows ()

Python: cv2.destroyAllWindows () — None

C: void cvDestroyAllWindows ()

Python: cv.DestroyAllWindows () — None

The function destroyAllWindows destroys all of the opened HighGUI windows.

MoveWindow

Moves window to the specified position
C++: void moveWindow (const string& winname, int X, int y)
Python: cv2.moveWindow(winname, X, y) — None
C: void cvMoveWindow (const char* name, int X, int y)
Python: cv.MoveWindow(name, X, y) — None
Parameters
winname — Window name
x — The new x-coordinate of the window

y — The new y-coordinate of the window

ResizeWindow

Resizes window to the specified size
C++: void resizeWindow (const string& winname, int width, int height)
Python: cv2.resizeWindow(winname, width, height) — None
C: void cvResizeWindow (const char* name, int width, int height)
Python: cv.ResizeWindow(name, width, height) — None
Parameters
winname — Window name
width — The new window width

height — The new window height

Note:

* The specified window size is for the image area. Toolbars are not counted.

316 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

* Only windows created without CV_WINDOW_AUTOSIZE flag can be resized.

SetMouseCallback

Sets mouse handler for the specified window
C++: void setMouseCallback (const string& winname, MouseCallback onMouse, void* userdata=0)

C: void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mouse, void*
param=NULL)

Python: cv.SetMouseCallback(windowName, onMouse, param=None) — None
Parameters
winname — Window name

onMouse - Mouse callback. See OpenCV samples, such as
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/ffilldemo.cpp, on how to
specify and use the callback.

userdata — The optional parameter passed to the callback.

setTrackbarPos

Sets the trackbar position.
C++: void setTrackbarPos (const string& trackbarname, const string& winname, int pos)
Python: cv2.setTrackbarPos (trackbarname, winname, pos) — None
C: void cvSetTrackbarPos (const char* trackbar_name, const char* window_name, int pos)
Python: cv.SetTrackbarPos (trackbarName, windowName, pos) — None
Parameters

trackbarname — Name of the trackbar.

winname — Name of the window that is the parent of trackbar.

pos — New position.

The function sets the position of the specified trackbar in the specified window.

Note: [Qt Backend Only] winname can be empty (or NULL) if the trackbar is attached to the control panel.

waitKey

Wiaits for a pressed key.

C++: int waitKey (int delay=0)

Python: cv2.waitKey ([delay]) — retval
C: int cvWaitKey (int delay=0)

Python: cv.WaitKey(delay=0) — int

Parameters

4.1. User Interface 317

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/ffilldemo.cpp

The OpenCV Reference Manual, Release 2.4.2

delay — Delay in milliseconds. O is the special value that means “forever”.

The function waitKey waits for a key event infinitely (when delay < 0) or for delay milliseconds, when it is
positive. Since the OS has a minimum time between switching threads, the function will not wait exactly delay ms,
it will wait at least delay ms, depending on what else is running on your computer at that time. It returns the code of
the pressed key or -1 if no key was pressed before the specified time had elapsed.

Note: This function is the only method in HighGUI that can fetch and handle events, so it needs to be called
periodically for normal event processing unless HighGUI is used within an environment that takes care of event
processing.

Note: The function only works if there is at least one HighGUI window created and the window is active. If there are
several HighGUI windows, any of them can be active.

4.2 Reading and Writing Images and Video

imdecode

Reads an image from a buffer in memory.
C++: Mat imdecode (InputArray buf, int flags)
C: Ipllmage* cvDecodeImage (const CvMat* buf, int iscolor=CV_LOAD_IMAGE_COLOR)
C: CvMat* cvDecodeImageM(const CvMat* buf, int iscolor=CV_LOAD_IMAGE_COLOR)
Python: cv2.imdecode (buf, flags) — retval
Parameters
buf — Input array or vector of bytes.
flags — The same flags as in imread() .

The function reads an image from the specified buffer in the memory. If the buffer is too short or contains invalid data,
the empty matrix/image is returned.

See imread () for the list of supported formats and flags description.

imencode

Encodes an image into a memory buffer.

C++: bool imencode(const string& ext, InputArray img, vector<uchar>& buf, const vector<int>&
params=vector<int>())

C: CvMat* cvEncodeImage (const char* ext, const CvArr* image, const int* params=0)
Python: cv2.imencode (ext, img[, params]) — retval, buf
Parameters
ext — File extension that defines the output format.
img — Image to be written.

buf — Output buffer resized to fit the compressed image.

318 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

params — Format-specific parameters. See imwrite() .

The function compresses the image and stores it in the memory buffer that is resized to fit the result. See imwrite()
for the list of supported formats and flags description.

Note: cvEncodeImage returns single-row matrix of type CV_8UC1 that contains encoded image as array of bytes.

imread

Loads an image from a file.
C++: Mat imread (const string& filename, int flags=1)
Python: cv2. imread(ﬁlename[, ﬂags]) — retval
C: Ipllmage* cvLoadImage (const char* filename, int iscolor=CV_LOAD_IMAGE_COLOR)
C: CvMat* cvLoadImageM (const char* filename, int iscolor=CV_LOAD_IMAGE_COLOR)
Python: cv.LoadImage (filename, iscolor=CV_LOAD_IMAGE_COLOR) — None
Python: cv.LoadImageM(filename, iscolor=CV_LOAD_IMAGE_COLOR) — None
Parameters
filename — Name of file to be loaded.
flags — Flags specifying the color type of a loaded image:
— >0 Return a 3-channel color image
— =0 Return a grayscale image

— <0 Return the loaded image as is. Note that in the current implementation the alpha
channel, if any, is stripped from the output image. For example, a 4-channel RGBA
image is loaded as RGB if flags > 0.

The function imread loads an image from the specified file and returns it. If the image cannot be read (be-
cause of missing file, improper permissions, unsupported or invalid format), the function returns an empty matrix
(Mat::data==NULL). Currently, the following file formats are supported:

* Windows bitmaps - x.bmp, *.dib (always supported)

JPEG files - x.jpeg, *.jpg, *.jpe (see the Notes section)

JPEG 2000 files - *. jp2 (see the Notes section)
* Portable Network Graphics - *.png (see the Notes section)
* Portable image format - *.pbm, *.pgm, =.ppm (always supported)

e Sun rasters - *x.sr, *.ras (always supported)

TIFF files - *.tiff, *.tif (see the Notes section)

Note:
* The function determines the type of an image by the content, not by the file extension.

* On Microsoft Windows* OS and MacOSX*, the codecs shipped with an OpenCV image (libjpeg, libpng, libtiff,
and libjasper) are used by default. So, OpenCV can always read JPEGs, PNGs, and TIFFs. On MacOSX, there
is also an option to use native MacOSX image readers. But beware that currently these native image loaders
give images with different pixel values because of the color management embedded into MacOSX.

4.2. Reading and Writing Images and Video 319

The OpenCV Reference Manual, Release 2.4.2

* On Linux*, BSD flavors and other Unix-like open-source operating systems, OpenCV looks for codecs supplied
with an OS image. Install the relevant packages (do not forget the development files, for example, “libjpeg-dev”,
in Debian* and Ubuntu*) to get the codec support or turn on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake.

imwrite

Saves an image to a specified file.
C++: bool imwrite(const string& filename, InputArray img, const vector<int>& params=vector<int>())
Python: cv2.imwrite (filename, img[, params]) — retval
C: int cvSaveImage (const char* filename, const CvArr* image, const int* params=0)
Python: cv.SaveImage (filename, image) — None
Parameters
filename — Name of the file.
image — Image to be saved.

params — Format-specific save parameters encoded as pairs paramId_1, paramValue_1,
paramId_2, paramValue_2, The following parameters are currently supported:

— For JPEG, it can be a quality (CV_IMWRITE_JPEG_QUALITY) from O to 100 (the higher
is the better). Default value is 95.

— For PNG, it can be the compression level (CV_IMWRITE_PNG_COMPRESSION) from O to
9. A higher value means a smaller size and longer compression time. Default value is 3.

— For PPM, PGM, or PBM, it can be a binary format flag (CV_IMWRITE_PXM_BINARY), O
or 1. Default value is 1.

The function imwrite saves the image to the specified file. The image format is chosen based on the filename
extension (see imread() for the list of extensions). Only 8-bit (or 16-bit in case of PNG, JPEG 2000, and TIFF)
single-channel or 3-channel (with ‘BGR’ channel order) images can be saved using this function. If the format, depth
or channel order is different, use Mat::convertTo() , and cvtColor() to convert it before saving. Or, use the
universal XML I/O functions to save the image to XML or YAML format.

It is possible to store PNG images with an alpha channel using this function. To do this, create 8-bit (or 16-bit) 4-
channel image BGRA, where the alpha channel goes last. Fully transparent pixels should have alpha set to 0, fully
opaque pixels should have alpha set to 255/65535. The sample below shows how to create such a BGRA image and
store to PNG file. It also demonstrates how to set custom compression parameters

#include <vector>
#include <stdio.h>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

void createAlphaMat(Mat &mat)
{
for (int 1 = 0; i < mat.rows; ++i) {
for (int j = 0; j < mat.cols; ++j) {

Vec4b& rgba = mat.at<Vecdb>(1i, j);
rgba[0] = UCHAR_MAX;
rghba[l] = saturate_cast<uchar>((float (mat.cols - j)) / ((float)mat.cols) * UCHAR_MAX);
rgba[2] = saturate_cast<uchar>((float (mat.rows - 1)) / ((float)mat.rows) * UCHAR_MAX);

320 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

rgha[3] = saturate_cast<uchar>(0.5 * (rgba[l] + rgbal[2]));

}

int main(int argv, char *xargc)

{
// Create mat with alpha channel
Mat mat (480, 640, CV_8UC4);
createAlphaMat(mat);

vector<int> compression_params;
compression_params.push_back(CV_IMWRITE_PNG_COMPRESSION);
compression_params.push_back(9);

try {
imwrite("alpha.png", mat, compression_params);

}

catch (runtime_error& ex) {
fprintf(stderr, "Exception converting image to PNG format: %s\n", ex.what());
return 1;

fprintf(stdout, "Saved PNG file with alpha data.\n");
return 0;

VideoCapture

class VideoCapture

Class for video capturing from video files or cameras. The class provides C++ API for capturing video from cameras
or for reading video files. Here is how the class can be used:

#include "opencv2/opencv.hpp"
using namespace cv;

int main(int, charxx)

{
VideoCapture cap(0); // open the default camera
if(!cap.isOpened()) // check if we succeeded

return -1;

Mat edges;

namedWindow("edges",1);

for(;;)

{
Mat frame;
cap >> frame; // get a new frame from camera
cvtColor(frame, edges, CV_BGR2GRAY);
GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);
Canny(edges, edges, 0, 30, 3);
imshow("edges", edges);
if(waitKey(30) >= 0) break;

}

// the camera will be deinitialized automatically in VideoCapture destructor

4.2. Reading and Writing Images and Video 321

The OpenCV Reference Manual, Release 2.4.2

return 0;

Note: In C API the black-box structure CvCapture is used instead of VideoCapture.

VideoCapture::VideoCapture

VideoCapture constructors.
C++: VideoCapture::VideoCapture()
C++: VideoCapture: :VideoCapture (const string& filename)
C++: VideoCapture::VideoCapture (int device)
Python: cv2.VideoCapture() — <VideoCapture object>
Python: cv2.VideoCapture(filename) — <VideoCapture object>
Python: cv2.VideoCapture(device) — <VideoCapture object>
C: CvCapture* cvCaptureFromCAM(int device)
Python: cv.CaptureFromCAM(index) — CvCapture
C: CvCapture* cvCaptureFromFile (const char* filename)
Python: cv.CaptureFromFile(filename) — CvCapture
Parameters
filename — name of the opened video file

device — id of the opened video capturing device (i.e. a camera index). If there is a single
camera connected, just pass 0.

Note: In C API, when you finished working with video, release CvCapture structure with cvReleaseCapture(), or
use Ptr<CvCapture> that calls cvReleaseCapture() automatically in the destructor.

VideoCapture::open

Open video file or a capturing device for video capturing
C++: bool VideoCapture: :open(const string& filename)
C++: bool VideoCapture: :open(int device)
Python: cv2.VideoCapture.open (filename) — retval
Python: cv2.VideoCapture.open(device) — retval
Parameters
filename — name of the opened video file
device — id of the opened video capturing device (i.e. a camera index).

The methods first call VideoCapture::release() to close the already opened file or camera.

322 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

VideoCapture::isOpened

Returns true if video capturing has been initialized already.
C++: bool VideoCapture: :isOpened ()
Python: cv2.VideoCapture.isOpened() — retval

If the previous call to VideoCapture constructor or VideoCapture: :open succeeded, the method returns true.

VideoCapture::release

Closes video file or capturing device.

C++: void VideoCapture: :release()

Python: cv2.VideoCapture.release() — None

C: void cvReleaseCapture(CvCapture** capture)

The methods are automatically called by subsequent VideoCapture::open() and by VideoCapture destructor.

The C function also deallocates memory and clears xcapture pointer.

VideoCapture::grab

Grabs the next frame from video file or capturing device.

C++: bool VideoCapture::grab()

Python: cv2.VideoCapture.grab() — retval

C: int cvGrabFrame (CvCapture* capture)

Python: cv.GrabFrame(capture) — int

The methods/functions grab the next frame from video file or camera and return true (non-zero) in the case of success.

The primary use of the function is in multi-camera environments, especially when the cameras do not have hardware
synchronization. That is, you call VideoCapture::grab() for each camera and after that call the slower method
VideoCapture: :retrieve() to decode and get frame from each camera. This way the overhead on demosaicing or
motion jpeg decompression etc. is eliminated and the retrieved frames from different cameras will be closer in time.

Also, when a connected camera is multi-head (for example, a stereo camera or a Kinect de-
vice), the correct way of retrieving data from it is to call VideoCapture::grab first and then call
VideoCapture::retrieve() one or more times with different values of the channel parameter. See
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/kinect_maps.cpp

VideoCapture::retrieve

Decodes and returns the grabbed video frame.

C++: bool VideoCapture::retrieve (Mat& image, int channel=0)

Python: cv2.VideoCapture.retrieve([image[, channel]]) — retval, image
C: Ipllmage* cvRetrieveFrame(CvCapture* capture, int streamIdx=0)

Python: cv.RetrieveFrame(capture) — image

4.2. Reading and Writing Images and Video 323

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/kinect_maps.cpp

The OpenCV Reference Manual, Release 2.4.2

The methods/functions decode and return the just grabbed frame. If no frames has been grabbed (camera has been
disconnected, or there are no more frames in video file), the methods return false and the functions return NULL
pointer.

Note: OpenCV 1.x functions cvRetrieveFrame and cv.RetrieveFrame return image stored inside the video cap-
turing structure. It is not allowed to modify or release the image! You can copy the frame using cvCloneImage() and
then do whatever you want with the copy.

VideoCapture::read

Grabs, decodes and returns the next video frame.

C++: VideoCapture& VideoCapture: :operator>>(Mat& image)
C++: bool VideoCapture: :read(Mat& image)

Python: cv2.VideoCapture.read([image]) — retval, image

C: Ipllmage* cvQueryFrame (CvCapture* capture)

Python: cv.QueryFrame(capture) — image

The methods/functions combine VideoCapture::grab() and VideoCapture::retrieve() in one call. This is the
most convenient method for reading video files or capturing data from decode and return the just grabbed frame. If
no frames has been grabbed (camera has been disconnected, or there are no more frames in video file), the methods
return false and the functions return NULL pointer.

Note: OpenCV 1.x functions cvRetrieveFrame and cv.RetrieveFrame return image stored inside the video cap-
turing structure. It is not allowed to modify or release the image! You can copy the frame using cvCloneImage () and
then do whatever you want with the copy.

VideoCapture::get

Returns the specified VideoCapture property
C++: double VideoCapture: :get (int propld)
Python: cv2.VideoCapture.get(propld) — retval
C: double cvGetCaptureProperty (CvCapture* capture, int property_id)
Python: cv.GetCaptureProperty (capture, property_id) — float
Parameters
propld — Property identifier. It can be one of the following:

— CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds or
video capture timestamp.

— CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured
next.

— CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: O - start of the
film, 1 - end of the film.

— CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.

324 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

— CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
— CV_CAP_PROP_FPS Frame rate.

— CV_CAP_PROP_FOURCC 4-character code of codec.

— CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.

— CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
— CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
— CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).

— CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).

— CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).

— CV_CAP_PROP_HUE Hue of the image (only for cameras).

— CV_CAP_PROP_GAIN Gain of the image (only for cameras).

— CV_CAP_PROP_EXPOSURE Exposure (only for cameras).

— CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should
be converted to RGB.

— CV_CAP_PROP_WHITE_BALANCE Currently not supported

— CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only
supported by DC1394 v 2.x backend currently)

Note: When querying a property that is not supported by the backend used by the VideoCapture class, value O is
returned.

VideoCapture::set

Sets a property in the VideoCapture.
C++: bool VideoCapture: :set(int propld, double value)
Python: cv2.VideoCapture.set(propld, value) — retval
C: int cvSetCaptureProperty (CvCapture* capture, int property_id, double value)
Python: cv.SetCaptureProperty (capture, property_id, value) — retval
Parameters
propld — Property identifier. It can be one of the following:
— CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.

— CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured
next.

— CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: O - start of the
film, 1 - end of the film.

— CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
— CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
— CV_CAP_PROP_FPS Frame rate.

— CV_CAP_PROP_FOURCC 4-character code of codec.

— CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.

4.2. Reading and Writing Images and Video 325

The OpenCV Reference Manual, Release 2.4.2

— CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .

— CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
— CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).

— CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).

— CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).

— CV_CAP_PROP_HUE Hue of the image (only for cameras).

— CV_CAP_PROP_GAIN Gain of the image (only for cameras).

— CV_CAP_PROP_EXPOSURE Exposure (only for cameras).

— CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should
be converted to RGB.

— CV_CAP_PROP_WHITE_BALANCE Currently unsupported

— CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only
supported by DC1394 v 2.x backend currently)

value — Value of the property.

VideoWriter

class VideoWriter

Video writer class.

VideoWriter::VideoWriter

VideoWriter constructors
C++: VideoWriter::VideoWriter()

C++: VideoWriter::VideoWriter (const string& filename, int fource, double fps, Size frameSize, bool
isColor=true)

Python: cv2.VideoWriter([ﬁlename, fourcc, fps, frameSize[, isColor]]) — <VideoWriter object>

C: CvVideoWriter* cvCreateVideoWriter (const char* filename, int fourcc, double fps, CvSize frame_size,
int is_color=1)

Python: cv.CreateVideoWriter (filename, fourcc, fps, frame_size, is_color=true) — CvVideoWriter
Python: cv2.VideoWriter.isOpened() — retval
Python: cv2.VideoWriter.open(filename, fourcc, fps, frameSize[, isColor]) — retval
Python: cv2.VideoWriter.write(image) — None
Parameters
filename — Name of the output video file.

fourcc — 4-character code of codec used to compress the frames. For example,
CV_FOURCC('P’","'I"','M,"'1") is a MPEG-1 codec, CV_FOURCC('M’,"’3",'P','G") is a
motion-jpeg codec etc.

fps — Framerate of the created video stream.

frameSize — Size of the video frames.

326 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

isColor — If it is not zero, the encoder will expect and encode color frames, otherwise it will
work with grayscale frames (the flag is currently supported on Windows only).

The constructors/functions initialize video writers. On Linux FFMPEG is used to write videos; on Windows FFMPEG
or VFW is used; on MacOSX QTK:it is used.

ReleaseVideoWriter

Releases the AVI writer.
C: void cvReleaseVideoWriter (CvVideoWriter** writer)

The function should be called after you finished using CvVideoWriter opened with CreateVideoWriter().

VideoWriter::open

Initializes or reinitializes video writer.

C++: bool VideoWriter: :open(const string& filename, int fource, double fps, Size frameSize, bool is-
Color=true)

Python: cv2.VideoWriter.open(filename, fourcc, fps, frameSize[, isColor]) — retval

The method opens video writer. Parameters are the same as in the constructor VideoWriter: :VideoWriter().

VideoWriter::isOpened

Returns true if video writer has been successfully initialized.
C++: bool VideoWriter: :isOpened()

Python: cv2.VideoWriter.isOpened() — retval

VideoWriter::write

Writes the next video frame
C++: VideoWriter& VideoWriter: :operator<<(const Mat& image)
C++: void VideoWriter: :write(const Mat& image)
Python: cv2.VideoWriter.write(image) — None
C: int cvWriteFrame (CvVideoWriter* writer, const Ipllmage* image)
Python: cv.WriteFrame (writer, image) — int
Parameters
writer — Video writer structure (OpenCV 1.x API)
image — The written frame

The functions/methods write the specified image to video file. It must have the same size as has been specified when
opening the video writer.

4.2. Reading and Writing Images and Video 327

The OpenCV Reference Manual, Release 2.4.2

4,

3 Qt New Functions

T

This is the control panel. There is one
control panel per program. We can
attach buttons and trackbar to it.

his is the window’s toolbar. “Actions” such as panning,
zoom, save image and access to the control panel are
available from here.

e setiings

main1 - B tQT.exs
2 of

“«9 t 4@ 0PLOHY g Al _

- - wackz (000fess) (|| A button bar is a horizontal
Atrackbar created with a NULL window (O buttonS 4~ buttoné container for the buttons. Each
name is attached to the control panel. —— buttoncreated is attached to the
same button bar as long as a
new trackbaris not created .

M main2

Atrackbar created with a correct
window name is attached to the
window.

This is an gverlay information. It is
possible to write information on it.

|l |
This is a menu with the same “actions” Panning left (CTRL+arrowLEFT)
trackl (050/255) (L as with the window’s toolbar. It is [P ammrright (CTRL+arrowRIGHT)
t| Coordinate: 180103 ~ R:199 G:81 B:107 available by right clicking on the image. [panning up (CTRL+arrowUP)
\ & Panning down (CTRL+arrowDOWN)
Window created with the f & Zoomx1 (CTRLHP)
CV_GUI EXPANDED flag. ‘ §3 Zoom x15 (see label) (CTRL+X)
- 59 Zoomin (CTRL++)
/ 5 Zoom out (CTRL+-)
This is the window’s statusbar. It is possible to B save current image (CTRL+S)
write information on it. The mouse coordinate Window created with the @ Display properties window (CTRL+P)
and pixel color are displayed by default. CV_GUI_NORMAL flag.

This figure explains new functionality implemented with Qt* GUI. The new GUI provides a statusbar, a toolbar, and a
control panel. The control panel can have trackbars and buttonbars attached to it. If you cannot see the control panel,

pre

ss Ctrl+P or right-click any Qt window and select Display properties window.
* To attach a trackbar, the window name parameter must be NULL.

 To attach a buttonbar, a button must be created. If the last bar attached to the control panel is a buttonbar, the
new button is added to the right of the last button. If the last bar attached to the control panel is a trackbar, or
the control panel is empty, a new buttonbar is created. Then, a new button is attached to it.

See below the example used to generate the figure:

int

main(int argc, char =*argv[])
int value = 50;
int value2 = 0;

cvNamedWindow("mainl",CV_WINDOW_NORMAL) ;
cvNamedWindow("main2",CV_WINDOW_AUTOSIZE | CV_GUI_NORMAL);

cvCreateTrackbar("trackl", "mainl", &value, 255, NULL);//0K tested
charx namebl = "buttonl";

charx nameb2 = "button2";

cvCreateButton(namebl, callbackButton,namebl,CV_CHECKBOX,1);

cvCreateButton(nameb2, callbackButton,nameb2,CV_CHECKBOX,O0) ;
cvCreateTrackbar("track2", NULL, &value2, 255, NULL);
cvCreateButton("button5", callbackButtonl,NULL,CV_RADIOBOX,0);
cvCreateButton("button6", callbackButton2,NULL,CV_RADIOBOX,1);

cvSetMouseCallback("main2",on_mouse,NULL);

328 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

IplImage* imgl = cvLoadImage("files/flower.jpg");

IplImage* img2 = cvCreatelImage(cvGetSize(imgl),8,3);

CvCapturex video = cvCaptureFromFile("files/hockey.avi");

IplImage* img3 = cvCreateImage(cvGetSize(cvQueryFrame(video)),8,3);

while(cvWaitKey(33) != 27)

{
cvAddS(imgl, cvScalarAll(value),img2);
cvAddS (cvQueryFrame(video),cvScalarAll(value2),img3);
cvShowImage("mainl",img2);
cvShowImage("main2",img3);
}

cvDestroyAllWindows () ;
cvReleaseImage(&imgl);
cvReleaseImage(&img2);
cvReleaseImage(&img3);
cvReleaseCapture(&video);
return 0;

setWindowProperty

Changes parameters of a window dynamically.
C++: void setWindowProperty (const string& winname, int prop_id, double prop_value)
Python: cv2.setWindowProperty (winname, prop_id, prop_value) — None

C: void cvSetWindowProperty (const char* name, int prop_id, double prop_value)

Parameters

name — Name of the window.

prop_id — Window property to edit. The following operation flags are available:
— CV_WND_PROP_FULLSCREEN Change if the window is fullscreen

CV_WINDOW_NORMAL or CV_WINDOW_FULLSCREEN)

— CV_WND_PROP_AUTOSIZE Change if the window is resizable (CV_WINDOW_NORMAL

or CV_WINDOW_AUTOSIZE).

— CV_WND_PROP_ASPECTRATIO Change if the aspect ratio of the image is preserved

(CV_WINDOW_FREERATIO or CV_WINDOW_KEEPRATIO).

prop_value — New value of the window property. The following operation flags are avail-

able:

- CV_WINDOW_NORMAL Change the window to normal size or make the window

resizable.

— CV_WINDOW_AUTOSIZE Constrain the size by the displayed image. The window is

not resizable.

— CV_WINDOW_FULLSCREEN Change the window to fullscreen.

— CV_WINDOW_FREERATIO Make the window resizable without any ratio con-

straints.

4.3. Qt New Functions

329

The OpenCV Reference Manual, Release 2.4.2

- CV_WINDOW_KEEPRATIO Make the window resizable, but preserve the proportions
of the displayed image.

The function setWindowProperty enables changing properties of a window.

getWindowProperty

Provides parameters of a window.
C++: double getWindowProperty (const string& winname, int prop_id)
Python: cv2.getWindowProperty(winname, prop_id) — retval
C: double cvGetWindowProperty (const char* name, int prop_id)
Parameters
name — Name of the window.
prop_id — Window property to retrieve. The following operation flags are available:

— CV_WND_PROP_FULLSCREEN Change if the window is fullscreen (
CV_WINDOW_NORMAL or CV_WINDOW_FULLSCREEN).

— CV_WND_PROP_AUTOSIZE Change if the window is resizable (CV_WINDOW_NORMAL
or CV_WINDOW_AUTOSIZE).

— CV_WND_PROP_ASPECTRATIO Change if the aspect ratio of the image is preserved
(CV_WINDOW_FREERATIO or CV_WINDOW_KEEPRATIO).

See setWindowProperty () to know the meaning of the returned values.

The function getWindowProperty returns properties of a window.

fontQt

Creates the font to draw a text on an image.

C++: CvFont fontQt(const string& nameFont, int pointSize=-1, Scalar color=Scalar::all(0), int
weight=CV_FONT_NORMAL, int style=CV_STYLE_NORMAL, int spacing=0)

C: CvFont cvFontQt(const char* nameFont, int pointSize=-1, CvScalar color=cvScalarAll(0), int
weight=CV_FONT_NORMAL, int style=CV_STYLE_NORMAL, int spacing=0)

Parameters

nameFont — Name of the font. The name should match the name of a system font (such as
Times). If the font is not found, a default one is used.

pointSize — Size of the font. If not specified, equal zero or negative, the point size of the
font is set to a system-dependent default value. Generally, this is 12 points.

color — Color of the font in BGRA where A = 255 is fully transparent. Use the macro CV _
RGB for simplicity.

weight — Font weight. The following operation flags are available:
— CV_FONT_LIGHT Weight of 25

— CV_FONT_NORMAL Weight of 50

— CV_FONT_DEMIBOLD Weight of 63

— CV_FONT_BOLD Weight of 75

330 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

— CV_FONT_BLACK Weight of 87

You can also specify a positive integer for better control.

style — Font style. The following operation flags are available:

— CV_STYLE_NORMAL Normal font

— CV_STYLE_ITALIC Italic font

— CV_STYLE_OBLIQUE Oblique font

spacing — Spacing between characters. It can be negative or positive.
The function fontQt creates a CvFont object. This CvFont is not compatible with putText .
A basic usage of this function is the following:

CvFont font = fontQt(’''Times’’);
addText(imgl, ‘‘Hello World !’’, Point(50,50), font);

addText

Creates the font to draw a text on an image.
C++: void addText (const Mat& img, const string& text, Point org, CvFont font)
C: void cvAddText (const CvArr* img, const char* text, CvPoint org, CvFont* arg2)
Parameters
img — 8-bit 3-channel image where the text should be drawn.
text — Text to write on an image.
org — Point(x,y) where the text should start on an image.
font — Font to use to draw a text.

The function addText draws text on an image img using a specific font font (see example fontQt())

displayOverlay

Displays a text on a window image as an overlay for a specified duration.
C++: void displayOverlay (const string& winname, const string& text, int delayms=0)
C: void cvDisplayOverlay (const char* name, const char* text, int delayms=0)
Parameters
name — Name of the window.
text — Overlay text to write on a window image.

delayms — The period (in milliseconds), during which the overlay text is displayed. If this
function is called before the previous overlay text timed out, the timer is restarted and the
text is updated. If this value is zero, the text never disappears.

The function displayOverlay displays useful information/tips on top of the window for a certain amount of time
delayms. The function does not modify the image, displayed in the window, that is, after the specified delay the
original content of the window is restored.

4.3. Qt New Functions 331

The OpenCV Reference Manual, Release 2.4.2

displayStatusBar

Displays a text on the window statusbar during the specified period of time.
C++: void displayStatusBar (const string& winname, const string& text, int delayms=0)
C: void cvDisplayStatusBar (const char* name, const char* text, int delayms=0)
Parameters
name — Name of the window.
text — Text to write on the window statusbar.

delayms — Duration (in milliseconds) to display the text. If this function is called before the
previous text timed out, the timer is restarted and the text is updated. If this value is zero,
the text never disappears.

The function displayOverlay displays useful information/tips on top of the window for a certain amount of
time delayms . This information is displayed on the window statusbar (the window must be created with the
CV_GUI_EXPANDED flags).

setOpenGiDrawCallback

Sets a callback function to be called to draw on top of displayed image.
C++: void setOpenGlDrawCallback(const string& winname, OpenGlDrawCallback onOpenGIlDraw,
void* userdata=0)

C: void cvSetOpenGlDrawCallback (const char* window_name, CvOpenGlDrawCallback callback, void*
userdata=NULL)

Parameters
window_name — Name of the window.

onOpenGIDraw — Pointer to the function to be called every frame. This function should be
prototyped as void Foo(voidx) .

userdata — Pointer passed to the callback function. (Optional)

The function setOpenGlDrawCallback can be used to draw 3D data on the window. See the example of callback
function below:

void on_opengl(void* param)

{
glLoadIdentity();

glTranslated(0.0, 0.0, -1.0);
glRotatef(55, 1, 0, 0);
glRotatef(45, 0, 1, 0);
glRotatef(0, 0, 0, 1);

static const int coords[6][4][3] = {
{{+1, -1, -1}, { -1, -1, -1 %}, { -1, +#1, -1}, { +1, +1, -1} },
{{+1, +1, -1 %}, { -1, +1, -1 3}, { -1, +1, +1 }, { +1, +1, +1 } },
{{+1, -1, +1 %}, { +1, -1, -1 3}, { +1, +1, -1}, { +1, +1, +1 } },
{{-1, -1, -1 %, {-1, -1, #+1 3}, { -1, +1, +1 %}, { -1, +1, -1} },
{{+1, -1, +1 3}, { -1, -1, +1 3}, { -1, -1, -1}, { +1, -1, -1} 1},
{{ -1, -1, +1 %}, { +1, -1, +1 %}, { +1, +1, +1 }, { -1, +1, +1 } }

332 Chapter 4. highgui. High-level GUI and Media I/O

The OpenCV Reference Manual, Release 2.4.2

for (int 1 = 0; 1 < 6; ++1) {
glColor3ub(i*20, 100+ix10, 1i*42);
glBegin(GL_QUADS) ;
for (int j = 0; j < 4; ++j) {
glVertex3d(0.2 * coords[i][j]1[0], 0.2 * coords[i]l[j][1], 0.2 * coords[il[j1[2]);

}
glEnd();

saveWindowParameters

Saves parameters of the specified window.
C++: void saveWindowParameters (const string& windowName)
C: void cvSaveWindowParameters (const char* name)
Parameters
name — Name of the window.

The function saveWindowParameters saves size, location, flags, trackbars value, zoom and panning location of the
window window_name .

loadWindowParameters

Loads parameters of the specified window.
C++: void loadWindowParameters (const string& windowName)
C: void cvLoadWindowParameters (const char* name)
Parameters
name — Name of the window.

The function loadWindowParameters loads size, location, flags, trackbars value, zoom and panning location of the
window window_name .

createButton

Attaches a button to the control panel.
C++: int createButton (const string& bar_name, ButtonCallback on_change, void* userdata=NULL, int
type=CV_PUSH_BUTTON, bool initial_button_state=0)

C: int cvCreateButton(const char* button_name=NULL, CvButtonCallback on_change=NULL,
void* userdata=NULL, int button_type=CV_PUSH_BUTTON, int ini-
tial_button_state=0)

Parameters
button_name — Name of the button.

on_change — Pointer to the function to be called every time the button changes its state. This
function should be prototyped as void Foo(int state,*void); . state is the current state
of the button. It could be -1 for a push button, O or 1 for a check/radio box button.

4.3. Qt New Functions 333

The OpenCV Reference Manual, Release 2.4.2

userdata — Pointer passed to the callback function.
button_type — Optional type of the button.

— CV_PUSH_BUTTON Push button

— CV_CHECKBOX Checkbox button

— CV_RADIOBOX Radiobox button. The radiobox on the same buttonbar (same line) are
exclusive, that is only one can be selected at a time.

initial_button_state — Default state of the button. Use for checkbox and radiobox. Its value
could be 0 or 1. (Optional)

The function createButton attaches a button to the control panel. Each button is added to a buttonbar to the right of
the last button. A new buttonbar is created if nothing was attached to the control panel before, or if the last element
attached to the control panel was a trackbar.

See below various examples of the createButton function call:

createButton(NULL,callbackButton);//create a push button "button 0", that will call callbackButton.
createButton("button2",callbackButton,NULL,CV_CHECKBOX,0);
createButton("button3",callbackButton,&value);
createButton("button5",callbackButtonl,NULL,CV_RADIOBOX);
createButton("button6",callbackButton2,NULL,CV_PUSH_BUTTON,1);

334 Chapter 4. highgui. High-level GUI and Media I/O

CHAPTER
FIVE

VIDEO. VIDEO ANALYSIS

5.1 Motion Analysis and Object Tracking

calcOpticalFlowPyrLK

Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids.

C++: void calcOpticalFlowPyrLK (InputArray previmg, InputArray nextImg, InputArray prevPts,
InputOutputArray nextPts, OutputArray status, OutputArray err,
Size winSize=Size(21,21), int maxLevel=3, TermCriteria crite-
ria=TermCeriteria(TermCriteria:: COUNT+TermCeriteria::EPS, 30, 0.01),
int flags=0, double minEigThreshold=1e-4)

Python: cv2.calcOpticalFlowPyrLK(previmg, nextlmg, preths[, nextPts[, status[, err[, winSize[,
maxLevel[, criteria[, ﬂags[, minEigThreshold]]]]]]]]) —
nextPts, status, err

C: void cvCalcOpticalFlowPyrLK(const CvArr* prev, const CvArr* curr, CvArr* prev_pyr, CvArr*
curr_pyr, const CvPoint2D32f* prev_features, CvPoint2D32f*
curr_features, int count, CvSize win_size, int level, char* status, float*
track_error, CvTermCriteria criteria, int flags)

Python: cv.CalcOpticalFlowPyrLK(prev, curr, prevPyr, currPyr, prevFeatures, winSize, level, criteria, flags,
guesses=None) -> (currFeatures, status, track_error)

Parameters

previmg - First 8-bit input image or pyramid constructed by
buildOpticalFlowPyramid().

nextImg — Second input image or pyramid of the same size and the same type as prevImg.

prevPts — Vector of 2D points for which the flow needs to be found. The point coordinates
must be single-precision floating-point numbers.

nextPts — Output vector of 2D points (with single-precision floating-point coordinates)
containing the calculated new positions of input features in the second image. When
OPTFLOW_USE_INITIAL FLOW flag is passed, the vector must have the same size as in the
input.

status — Output status vector. Each element of the vector is set to 1 if the flow for the

corresponding features has been found. Otherwise, it is set to 0.

err — Output vector of errors. Each element of the vector is set to a error for the correspond-
ing feature. A type of the error measure can be set in flags parameter. If the flow wasn’t
found then the error is not defined (use the status parameter to find such cases).

335

The OpenCV Reference Manual, Release 2.4.2

winSize — Size of the search window at each pyramid level.

maxLevel — 0-based maximal pyramid level number. If set to 0, pyramids are not used
(single level). If set to 1, two levels are used, and so on. If pyramids are passed to input then
algorithm will use as many levels as pyramids have but no more than maxLevel.

criteria — Parameter specifying the termination criteria of the iterative search algorithm
(after the specified maximum number of iterations criteria.maxCount or when the search
window moves by less than criteria.epsilon.

flags — Operation flags:

— OPTFLOW_USE_INITIAL_FLOW Use initial estimations stored in nextPts . If the
flag is not set, then prevPts is copied to nextPts and is considered as the initial estimate.

— OPTFLOW_LK_GET_MIN_EIGENVALS Use minimum eigen values as a error mea-
sure (see minEigThreshold description). If the flag is not set, then L1 distance between
patches around the original and a moved point divided by number of pixels in a window
is used as a error measure.

minEigThreshold — The algorithm computes a minimum eigen value of a 2x2 normal ma-
trix of optical flow equations (this matrix is called a spatial gradient matrix in [Bouguet00])
divided by number of pixels in a window. If this value is less then minEigThreshold then
a corresponding feature is filtered out and its flow is not computed. So it allows to remove
bad points earlier and speed up the computation.

The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See [BouguetOO].
The function is parallelized with the TBB library.

buildOpticalFlowPyramid

Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK().

C++: int buildOpticalFlowPyramid (InputArray img, OutputArrayOfArrays pyramid, Size
winSize, int maxLevel, Dbool withDerivatives=true, int
pyrBorder=BORDER_REFLECT 101, int derivBor-
der=BORDER_CONSTANT, bool tryReuseInputImage=true)

Python: cv2.buildOpticalFlowPyramid(img, winSize, maxLevel[, pyramid[, withDerivatives[, pyrBor-
der[, derivBorder[, tryReuseInputImage]]]]]) — retval, pyra-
mid
Parameters
img — 8-bit input image.
pyramid — output pyramid.

winSize — window size of optical flow algorithm. Must be not less than winSize argu-
ment of calcOpticalFlowPyrLK(). It is needed to calculate required padding for pyramid
levels.

maxLevel — 0-based maximal pyramid level number.

withDerivatives — set to precompute gradients for the every pyramid level. If pyramid
is constructed without the gradients then calcOpticalFlowPyrLK() will calculate them
internally.

pyrBorder — the border mode for pyramid layers.

derivBorder — the border mode for gradients.

336 Chapter 5. video. Video Analysis

The OpenCV Reference Manual, Release 2.4.2

tryReuseInputImage — put ROI of input image into the pyramid if possible. You can pass
false to force data copying.

Returns number of levels in constructed pyramid. Can be less than maxLevel.

calcOpticalFlowFarneback

Computes a dense optical flow using the Gunnar Farneback’s algorithm.

C++: void calcOpticalFlowFarneback (InputArray prev, InputArray next, InputOutputArray flow, double
pyr_scale, int levels, int winsize, int iterations, int poly_n, double
poly_sigma, int flags)

C: void cvCalcOpticalFlowFarneback(const CvArr* prev, const CvArr* next, CvArr* flow, double
pyr_scale, int levels, int winsize, int iterations, int poly_n, dou-
ble poly_sigma, int flags)

Python: cv2.calcOpticalFlowFarneback(prev, next, pyr_scale, levels, winsize, iterations, poly_n,
poly_sigma, ﬂags[, ﬂow]) — flow

Parameters
prev — First 8-bit single-channel input image.
next — Second input image of the same size and the same type as prev .
flow — Computed flow image that has the same size as prev and type CV_32FC2 .

pyr_scale — Parameter specifying the image scale (<1) to build pyramids for each image.
pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the
previous one.

levels — Number of pyramid layers including the initial image. levels=1 means that no
extra layers are created and only the original images are used.

winsize — Averaging window size. Larger values increase the algorithm robustness to image
noise and give more chances for fast motion detection, but yield more blurred motion field.

iterations — Number of iterations the algorithm does at each pyramid level.

poly_n — Size of the pixel neighborhood used to find polynomial expansion in each pixel.
Larger values mean that the image will be approximated with smoother surfaces, yielding
more robust algorithm and more blurred motion field. Typically, poly_n =5 or 7.

poly_sigma — Standard deviation of the Gaussian that is used to smooth derivatives used as
a basis for the polynomial expansion. For poly_n=5, you can set poly_sigma=1.1. For
poly_n=7, a good value would be poly_sigma=1.5.

flags — Operation flags that can be a combination of the following:

— OPTFLOW_USE_INITIAL_FLOW Use the input flow as an initial flow approxima-
tion.

— OPTFLOW_FARNEBACK_GAUSSIAN Use the Gaussian winsize x winsize filter
instead of a box filter of the same size for optical flow estimation. Usually, this option
gives z more accurate flow than with a box filter, at the cost of lower speed. Normally,
winsize for a Gaussian window should be set to a larger value to achieve the same level
of robustness.

The function finds an optical flow for each prev pixel using the [Farneback2003] algorithm so that

prev(y,x) ~ next(y + flow(y, x)[1],x + flow(y, x)[0])

5.1. Motion Analysis and Object Tracking 337

The OpenCV Reference Manual, Release 2.4.2

estimateRigidTransform

Computes an optimal affine transformation between two 2D point sets.
C++: Mat estimateRigidTransform(InputArray src, InputArray dst, bool fullAffine)
Python: cv2.estimateRigidTransform(src, dst, fullAffine) — retval
Parameters
srec — First input 2D point set stored in std: :vector or Mat, or an image stored in Mat.
dst — Second input 2D point set of the same size and the same type as A, or another image.

fullAffine — If true, the function finds an optimal affine transformation with no additional
restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
limited to combinations of translation, rotation, and uniform scaling (5 degrees of freedom).

The function finds an optimal affine transform [Alb] (a 2 x 3 floating-point matrix) that approximates best the affine
transformation between:

* Two point sets

» Two raster images. In this case, the function first finds some features in the src image and finds the correspond-
ing features in dst image. After that, the problem is reduced to the first case.

In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix A and 2x1 vector b so that:

A*|b*] = arg min dstfi] — Asrc[i]” —b|?
[A*[b*] g[AIb];H (i] [i] I

where src[i] and dst[1i] are the i-th points in src and dst, respectively

[A|b] can be either arbitrary (when fullAffine=true) or have a form of

ajpr ajz by
—aj2 apr by

when fullAffine=false.
See Also:

getAffineTransform(), getPerspectiveTransform(), findHomography()

updateMotionHistory

Updates the motion history image by a moving silhouette.

C++: void updateMotionHistory (InputArray silhouette, InputOutputArray mhi, double timestamp, double
duration)

Python: cv2.updateMotionHistory (silhouette, mhi, timestamp, duration) — None

C: void cvUpdateMotionHistory (const CvArr* silhouette, CvArr* mhi, double timestamp, double dura-
tion)

Python: cv.UpdateMotionHistory (silhouette, mhi, timestamp, duration) — None
Parameters
silhouette — Silhouette mask that has non-zero pixels where the motion occurs.

mhi — Motion history image that is updated by the function (single-channel, 32-bit floating-
point).

338 Chapter 5. video. Video Analysis

The OpenCV Reference Manual, Release 2.4.2

timestamp — Current time in milliseconds or other units.
duration — Maximal duration of the motion track in the same units as timestamp .
The function updates the motion history image as follows:
timestamp if silhouette(x,y) #0

mhi(x,y) =< O if silhouette(x,y) = 0and mhi < (timestamp — duration)
mhi(x,y) otherwise

That is, MHI pixels where the motion occurs are set to the current timestamp , while the pixels where the motion
happened last time a long time ago are cleared.

The function, together with calcMotionGradient() and calcGlobalOrientation() , implements a motion tem-
plates technique described in [Davis97] and [BradskiOO]. See also the OpenCV sample motempl. c that demonstrates
the use of all the motion template functions.

calcMotionGradient

Calculates a gradient orientation of a motion history image.

C++: void calcMotionGradient (InputArray mhi, OutputArray mask, OutputArray orientation, double
deltal, double delta2, int apertureSize=3)

Python: cv2.calcMotionGradient (mhi, deltal, delta2[, mask[, orientation[, apertureSize]]]) — mask,
orientation

C: void cvCalcMotionGradient (const CvArr* mhi, CvArr* mask, CvArr* orientation, double deltal, dou-
ble delta2, int aperture_size=3)

Python: cv.CalcMotionGradient (mhi, mask, orientation, deltal, delta2, apertureSize=3) — None
Parameters
mhi — Motion history single-channel floating-point image.

mask — Output mask image that has the type CV_8UC1 and the same size as mhi . Its non-
zero elements mark pixels where the motion gradient data is correct.

orientation — Output motion gradient orientation image that has the same type and the same
size as mhi . Each pixel of the image is a motion orientation, from 0 to 360 degrees.

deltal — Minimal (or maximal) allowed difference between mhi values within a pixel neigh-
borhood.

delta2 — Maximal (or minimal) allowed difference between mhi values within a pixel neigh-
borhood. That is, the function finds the minimum (m(x,y)) and maximum (M(x,y)) mhi
values over 3 x 3 neighborhood of each pixel and marks the motion orientation at (x,y) as
valid only if

min(deltal,delta2) < M(x,y) — m(x,y) < max(deltal,delta2).

apertureSize — Aperture size of the Sobel () operator.
The function calculates a gradient orientation at each pixel (x,y) as:

dmhi/dy

orientation(x = arctan
(6 y) dmhi/dx

In fact, fastAtan2() and phase() are used so that the computed angle is measured in degrees and covers the full
range 0..360. Also, the mask is filled to indicate pixels where the computed angle is valid.

5.1. Motion Analysis and Object Tracking 339

The OpenCV Reference Manual, Release 2.4.2

calcGlobalOrientation

Calculates a global motion orientation in a selected region.

C++: double calcGlobalOrientation (InputArray orientation, InputArray mask, InputArray mhi, double
timestamp, double duration)

Python: cv2.calcGlobalOrientation (orientation, mask, mhi, timestamp, duration) — retval

C: double cvCalcGlobalOrientation (const CvArr* orientation, const CvArr* mask, const CvArr* mhi,
double timestamp, double duration)

Python: cv.CalcGlobalOrientation (orientation, mask, mhi, timestamp, duration) — float
Parameters

orientation — Motion gradient orientation image calculated by the function
calcMotionGradient() .

mask — Mask image. It may be a conjunction of a valid gradient mask, also calculated by
calcMotionGradient () , and the mask of a region whose direction needs to be calculated.

mhi — Motion history image calculated by updateMotionHistory() .
timestamp — Timestamp passed to updateMotionHistory() .

duration — Maximum duration of a motion track in milliseconds, passed to
updateMotionHistory() .

The function calculates an average motion direction in the selected region and returns the angle between 0 degrees and
360 degrees. The average direction is computed from the weighted orientation histogram, where a recent motion has
a larger weight and the motion occurred in the past has a smaller weight, as recorded in mhi .

segmentMotion
Splits a motion history image into a few parts corresponding to separate independent motions (for example, left hand,
right hand).

C++: void segmentMotion (InputArray mhi, OutputArray segmask, vector<Rect>& boundingRects, double
timestamp, double segThresh)

Python: cv2.segmentMotion (mhi, timestamp, segThresh[, segmask]) — segmask, boundingRects

C: CvSeq* cvSegmentMotion(const CvArr* mhi, CvArr* seg_mask, CvMemStorage* storage, double
timestamp, double seg_thresh)

Python: cv.SegmentMotion (mhi, seg_mask, storage, timestamp, seg_thresh) — boundingRects
Parameters
mhi — Motion history image.

segmask — Image where the found mask should be stored, single-channel, 32-bit floating-
point.

boundingRects — Vector containing ROIs of motion connected components.
timestamp — Current time in milliseconds or other units.

segThresh — Segmentation threshold that is recommended to be equal to the interval be-
tween motion history “steps” or greater.

The function finds all of the motion segments and marks them in segmask with individual values (1,2,...). It also
computes a vector with ROIs of motion connected components. After that the motion direction for every component
can be calculated with calcGlobalOrientation() using the extracted mask of the particular component.

340 Chapter 5. video. Video Analysis

The OpenCV Reference Manual, Release 2.4.2

CamShift

Finds an object center, size, and orientation.
C++: RotatedRect CamShift (InputArray probImage, Rect& window, TermCeriteria criteria)
Python: cv2.CamShift (problmage, window, criteria) — retval, window

C: int cvCamShift (const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnected-
Comp* comp, CvBox2D* box=NULL)

Python: cv.CamShift (prob_image, window, criteria) -> (int, comp, box)
Parameters
probImage — Back projection of the object histogram. See calcBackProject() .
window — Initial search window.
criteria — Stop criteria for the underlying meanShift() .
Returns (in old interfaces) Number of iterations CAMSHIFT took to converge

The function implements the CAMSHIFT object tracking algorithm [Bradski98]. First, it finds an object center using
meanShift() and then adjusts the window size and finds the optimal rotation. The function returns the rotated
rectangle structure that includes the object position, size, and orientation. The next position of the search window can
be obtained with RotatedRect: :boundingRect() .

See the OpenCV sample camshiftdemo. c that tracks colored objects.

meanShift

Finds an object on a back projection image.
C++: int meanShift (InputArray probImage, Rect& window, TermCriteria criteria)
Python: cv2.meanShift (probImage, window, criteria) — retval, window

C: int cvMeanShift (const CvArr* prob_image, CvRect window, CvTermCriteria criteria, CvConnected-
Comp* comp)

Python: cv.MeanShift (prob_image, window, criteria) — comp
Parameters
probImage — Back projection of the object histogram. See calcBackProject () for details.
window — Initial search window.
criteria — Stop criteria for the iterative search algorithm.
Returns Number of iterations CAMSHIFT took to converge.

The function implements the iterative object search algorithm. It takes the input back projection of an object and the
initial position. The mass center in window of the back projection image is computed and the search window center
shifts to the mass center. The procedure is repeated until the specified number of iterations criteria.maxCount is
done or until the window center shifts by less than criteria.epsilon . The algorithm is used inside CamShift ()
and, unlike CamShift() , the search window size or orientation do not change during the search. You can sim-
ply pass the output of calcBackProject() to this function. But better results can be obtained if you pre-filter
the back projection and remove the noise. For example, you can do this by retrieving connected components with
findContours () , throwing away contours with small area (contourArea()), and rendering the remaining con-
tours with drawContours() .

5.1. Motion Analysis and Object Tracking 341

The OpenCV Reference Manual, Release 2.4.2

KalmanFilter
class KalmanFilter
Kalman filter class.

The class implements a standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter, [Welch95]. However, you
can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter func-
tionality. See the OpenCV sample kalman.cpp .

KalmanFilter::KalmanFilter

The constructors.
C++: KalmanFilter::KalmanFilter()

C++: KalmanFilter::KalmanFilter (int dynamParams, int measureParams, int controlParams=0, int
type=CV_32F)

Python: cv2.KalmanFilter([dynamParams, measureParams[, controlParams[, type]]]) — <KalmanFilter
object>

C: CvKalman* cvCreateKalman (int dynam_params, int measure_params, int control_params=0)

Python: cv.CreateKalman(dynam_params, measure_params, control_params=0) — CvKalman
The full constructor.

Parameters
dynamParams — Dimensionality of the state.
measureParams — Dimensionality of the measurement.
controlParams — Dimensionality of the control vector.

type — Type of the created matrices that should be CV_32F or CV_64F.

Note: In C API when CvKalman* kalmanFilter structure is not needed anymore, it should be released with
cvReleaseKalman(&kalmanFilter)

KalmanFilter::init

Re-initializes Kalman filter. The previous content is destroyed.

C++: void KalmanFilter::init(int dynamParams, int measureParams, int controlParams=0, int
type=CV_32F)

Parameters
dynamParams — Dimensionalityensionality of the state.
measureParams — Dimensionality of the measurement.
controlParams — Dimensionality of the control vector.

type — Type of the created matrices that should be CV_32F or CV_64F.

342 Chapter 5. video. Video Analysis

http://en.wikipedia.org/wiki/Kalman_filter

The OpenCV Reference Manual, Release 2.4.2

KalmanFilter::predict

Computes a predicted state.
C++: const Mat& KalmanFilter: :predict (const Mat& control=Mat())
Python: cv2.KalmanFilter. predict([control]) — retval
C: const CvMat* cvKalmanPredict (CvKalman* kalman, const CvMat* control=NULL)
Python: cv.KalmanPredict (kalman, control=None) — mat
Parameters

control — The optional input control

KalmanFilter::correct

Updates the predicted state from the measurement.
C++: const Mat& KalmanFilter: :correct(const Mat& measurement)
Python: cv2.KalmanFilter.correct(measurement) — retval
C: const CvMat* cvKalmanCorrect (CvKalman* kalman, const CvMat* measurement)
Python: cv.KalmanCorrect (kalman, measurement) — mat
Parameters

measurement — The measured system parameters

BackgroundSubtractor

class BackgroundSubtractor : public Algorithm
Base class for background/foreground segmentation.

class BackgroundSubtractor : public Algorithm

{

public:
virtual ~BackgroundSubtractor();
virtual void operator() (InputArray image, OutputArray fgmask, double learningRate=0);
virtual void getBackgroundImage(OutputArray backgroundImage) const;

+i

The class is only used to define the common interface for the whole family of background/foreground segmentation
algorithms.

BackgroundSubtractor::operator()

Computes a foreground mask.

C++: void BackgroundSubtractor: :operator() (InputArray image, OutputArray fgmask, double learn-
ingRate=0)

Python: cv2.BackgroundSubtractor. apply(image[, fgmask[, learningRate]]) — fgmask
Parameters

image — Next video frame.

5.1. Motion Analysis and Object Tracking 343

The OpenCV Reference Manual, Release 2.4.2

fgmask — The output foreground mask as an 8-bit binary image.

BackgroundSubtractor::getBackgroundimage

Computes a background image.
C++: void BackgroundSubtractor: :getBackgroundImage (OutputArray backgroundImage) const
Parameters

backgroundImage — The output background image.

Note: Sometimes the background image can be very blurry, as it contain the average background statistics.

BackgroundSubtractorMOG

class BackgroundSubtractorMOG : public BackgroundSubtractor
Gaussian Mixture-based Background/Foreground Segmentation Algorithm.

The class implements the algorithm described in P. KadewTraKuPong and R. Bowden, An
improved adaptive background mixture model for real-time tracking with shadow detec-
tion, Proc. 2nd FEuropean Workshop on Advanced Video-Based Surveillance Systems, 2001:
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf

BackgroundSubtractorMOG::BackgroundSubtractorMOG

The constructors.
C++: BackgroundSubtractorM0G: :BackgroundSubtractorMoG()

C++: BackgroundSubtractorMOG: :BackgroundSubtractorMOG (int history, int nmixtures, double back-
groundRatio, double noiseSigma=0)

Python: cv2.BackgroundSubtractorMoG([history, nmixtures, backgroundRatio [, noiseSigma]]) —
<BackgroundSubtractorMOG object>

Parameters
history — Length of the history.
nmixtures — Number of Gaussian mixtures.
backgroundRatio — Background ratio.
noiseSigma — Noise strength.

Default constructor sets all parameters to default values.

BackgroundSubtractorMOG::operator()

Updates the background model and returns the foreground mask

C++: void BackgroundSubtractorM0G: :operator() (InputArray image, OutputArray fgmask, double
learningRate=0)

Parameters are the same as in BackgroundSubtractor: :operator()

344 Chapter 5. video. Video Analysis

http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf

The OpenCV Reference Manual, Release 2.4.2

BackgroundSubtractorMOG2

Gaussian Mixture-based Background/Foreground Segmentation Algorithm.

class BackgroundSubtractorM0G2 : public BackgroundSubtractor
Here are important members of the class that control the algorithm, which you can set after constructing the
class instance:

int nmixtures
Maximum allowed number of mixture components. Actual number is determined dynamically per pixel.

float backgroundRatio
Threshold defining whether the component is significant enough to be included into the background
model (corresponds to TB=1-cf from the paper??which paper??). cf=0.1 => TB=0.9 is default. For
alpha=0.001, it means that the mode should exist for approximately 105 frames before it is considered
foreground.

float varThresholdGen
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the existing
components (corresponds to Tg). If it is not close to any component, a new component is generated. 3
sigma => Tg=3*3=9 is default. A smaller Tg value generates more components. A higher Tg value may
result in a small number of components but they can grow too large.

float fVarInit
Initial variance for the newly generated components. It affects the speed of adaptation. The parameter
value is based on your estimate of the typical standard deviation from the images. OpenCV uses 15 as a
reasonable value.

float fVarMin
Parameter used to further control the variance.

float fVarMax
Parameter used to further control the variance.

float fCT
Complexity reduction parameter. This parameter defines the number of samples needed to accept to prove
the component exists. CT=0.05 is a default value for all the samples. By setting CT=0 you get an algorithm
very similar to the standard Stauffer&Grimson algorithm.

uchar nShadowDetection
The value for marking shadow pixels in the output foreground mask. Default value is 127.

float fTau
Shadow threshold. The shadow is detected if the pixel is a darker version of the background. Tau is a
threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel is more than twice
darker then it is not shadow. See Prati,Mikic,Trivedi,Cucchiarra, Detecting Moving Shadows..., IEEE
PAMI,2003.

The class implements the Gaussian mixture model background subtraction described in:

e Z.Zivkovic, Improved adaptive Gausian mixture model for background subtraction, International Conference
Pattern Recognition, UK, August, 2004, http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf. The code
is very fast and performs also shadow detection. Number of Gausssian components is adapted per pixel.

e Z.Zivkovic, F. van der Heijden, Efficient Adaptive Density Estimapion per Image Pixel for the Task of Back-
ground Subtraction, Pattern Recognition Letters, vol. 27, no. 7, pages 773-780, 2006. The algorithm similar to
the standard Stauffer&Grimson algorithm with additional selection of the number of the Gaussian components
based on: Z.Zivkovic, F.van der Heijden, Recursive unsupervised learning of finite mixture models, IEEE Trans.
on Pattern Analysis and Machine Intelligence, vol.26, no.5, pages 651-656, 2004.

5.1. Motion Analysis and Object Tracking 345

http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf

The OpenCV Reference Manual, Release 2.4.2

BackgroundSubtractorMOG2::BackgroundSubtractorMOG2

The constructors.
C++: BackgroundSubtractorM0G2: :BackgroundSubtractorMoG2 ()

C++: BackgroundSubtractorMOG2: :BackgroundSubtractorM0G2 (int history, float varThreshold, bool
bShadowDetection=true)

Parameters
history — Length of the history.

varThreshold — Threshold on the squared Mahalanobis distance to decide whether it is
well described by the background model (see Cthr??). This parameter does not affect the
background update. A typical value could be 4 sigma, that is, varThreshold=4*4=16; (see
Tb??).

bShadowDetection — Parameter defining whether shadow detection should be enabled
(true or false).

BackgroundSubtractorMOG2::operator()

Updates the background model and computes the foreground mask

C++: void BackgroundSubtractorM0G2: :operator() (InputArray image, OutputArray fgmask, double
learningRate=-1)
See BackgroundSubtractor::operator().

BackgroundSubtractorMOG2::getBackgroundimage

Returns background image
C++: void BackgroundSubtractorM0G2: : getBackgroundImage (OutputArray backgroundImage)

See BackgroundSubtractor::getBackgroundImage().

346 Chapter 5. video. Video Analysis

CHAPTER
SIX

CALIB3D. CAMERA CALIBRATION AND
3D RECONSTRUCTION

6.1 Camera Calibration and 3D Reconstruction

The functions in this section use a so-called pinhole camera model. In this model, a scene view is formed by projecting
3D points into the image plane using a perspective transformation.

sm’ =ARt{M’
or
X
u fx 0 o |11 T2 T3 Y
s{v| =10 fy Cy T21 T2 T3 2 7
1 0 0 1 T3] T32 T33 13 1
where:

e (X,Y, Z) are the coordinates of a 3D point in the world coordinate space
* (u,V) are the coordinates of the projection point in pixels

e A is a camera matrix, or a matrix of intrinsic parameters

* (cx, cy) is a principal point that is usually at the image center

* fx, fy are the focal lengths expressed in pixel units.

Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled (multiplied/divided,
respectively) by the same factor. The matrix of intrinsic parameters does not depend on the scene viewed. So, once
estimated, it can be re-used as long as the focal length is fixed (in case of zoom lens). The joint rotation-translation
matrix [R|t] is called a matrix of extrinsic parameters. It is used to describe the camera motion around a static scene, or
vice versa, rigid motion of an object in front of a still camera. That is, [R[t] translates coordinates of a point (X, Y, Z) to
a coordinate system, fixed with respect to the camera. The transformation above is equivalent to the following (when

z#0):

X X

y| =R |[Y]| +t
z Z
x'=x/z
y' =y/z

w=", *x +cx
v="~fy*xy +cy

347

The OpenCV Reference Manual, Release 2.4.2

Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion. So, the above model
is extended as:

X X

y| =R [Y]| +t
z Z
x' =x/z
y'=y/z

" __ /1+k1r2+k2r4+k3r6 15,1 2 12
X =X e s H 2Py pa(r? 4 2x)

oo 1+kir? kot +kar’ 2 72 A
V" =y e aoys TP+ 2y77) + 2paxy

where 12 =x"? +y’?
u="fy*xx" +cy

_ 1
v="1fyxy” +cy

k1, k2, k3, k4, ks, and k¢ are radial distortion coefficients. p; and p, are tangential distortion coefficients. Higher-
order coefficients are not considered in OpenCV. In the functions below the coefficients are passed or returned as

(k1,k2,p1,p2l, k3, ka, k5, kell)

vector. That is, if the vector contains four elements, it means that k3 = 0 . The distortion coefficients do not depend
on the scene viewed. Thus, they also belong to the intrinsic camera parameters. And they remain the same regardless
of the captured image resolution. If, for example, a camera has been calibrated on images of 320 x 240 resolution,
absolutely the same distortion coefficients can be used for 640 x 480 images from the same camera while f,, fy, cx,
and ¢y need to be scaled appropriately.

The functions below use the above model to do the following:
* Project 3D points to the image plane given intrinsic and extrinsic parameters.
» Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their projections.

» Estimate intrinsic and extrinsic camera parameters from several views of a known calibration pattern (every
view is described by several 3D-2D point correspondences).

 Estimate the relative position and orientation of the stereo camera “heads” and compute the rectification trans-
formation that makes the camera optical axes parallel.

calibrateCamera

Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.

C++: double calibrateCamera (InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints,
Size imageSize, InputOutputArray cameraMatrix, InputOutputAr-
ray distCoeffs, OutputArrayOfArrays rvecs, OutputArrayOfArrays
tvecs, int flags=0, TermCriteria criteria=TermCriteria(TermCrite-
ria:;:COUNT+TermCeriteria::EPS, 30, DBL_EPSILON))

Python: cv2.calibrateCamera (objectPoints, imagePoints, imageSize[, cameraMatrix[, distCoeffs[, rvecs[,
tvecs[, ﬂags[, criteria]]]]]]) — retval, cameraMatrix, distCoeffs, rvecs,

tvecs

C: double cvCalibrateCamera2(const CvMat* object_points, const CvMat* image_points,
const CvMat* point_counts, CvSize image_size, CvMat*
camera_matrix, CvMat* distortion_coeffs, CvMat* rota-
tion_vectors=NULL, CvMat* translation_vectors=NULL,
int flags=0, CvTermCeriteria term_crit=cvTermCeriteria(

CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)
)

348 Chapter 6. calib3d. Camera Calibration and 3D Reconstruction

The OpenCV Reference Manual, Release 2.4.2

Python: cv.CalibrateCamera2 (objectPoints, imagePoints, pointCounts, imageSize, cameraMatrix, distCo-
effs, rvecs, tvecs, flags=0) — None

Parameters

objectPoints — In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space. The outer vector contains as many elements as the
number of the pattern views. If the same calibration pattern is shown in each view and it
is fully visible, all the vectors will be the same. Although, it is possible to use partially
occluded patterns, or even different patterns in different views. Then, the vectors will be
different. The points are 3D, but since they are in a pattern coordinate system, then, if the rig
is planar, it may make sense to put the model to a XY coordinate plane so that Z-coordinate
of each input object point is 0.

In the old interface all the vectors of object points from different views are concatenated
together.

imagePoints — In the new interface it is a vector of vectors of the projections
of calibration pattern points. imagePoints.size() and objectPoints.size() and
imagePoints[i].size() must be equal to objectPoints[i].size() for each i.

In the old interface all the vectors of object points from different views are concatenated
together.

point_counts — In the old interface this is a vector of integers, containing as many elements,
as the number of views of the calibration pattern. Each element is the number of points in
each view. Usually, all the elements are the same and equal to the number of feature points
on the calibration pattern.

imageSize — Size of the image used only to initialize the intrinsic camera matrix.

fx 0 ¢y
cameraMatrix — Output 3x3 floating-point camera matrix A = [0 fy c¢cy| . If
0o 0 1

CV_CALIB_USE_INTRINSIC_GUESS and/or CV_CALIB_FIX_ASPECT_RATIO are specified,
some or all of fx, fy, cx, cy mustbe initialized before calling the function.

distCoeffs — Output vector of distortion coefficients (k1, k2, p1,p2l, kK3l, k4, ks, kgl]) of 4,
5, or 8 elements.

rvecs — Output vector of rotation vectors (see Rodrigues()) estimated for each pattern
view. That is, each k-th rotation vector together with the corresponding k-th translation
vector (see the next output parameter description) brings the calibration pattern from the
model coordinate space (in which object points are specified) to the world coordinate space,
that is, a real position of the calibration pattern in the k-th pattern view (k=0.. M -1).

tvecs — Output vector of translation vectors estimated for each pattern view.
flags — Different flags that may be zero or a combination of the following values:

— CV_CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the
image center (imageSize is used), and focal distances are computed in a least-squares
fashion. Note, that if intrinsic parameters are known, there is no need to use this function
just to estimate extrinsic parameters. Use solvePnP () instead.

— CV_CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the
global optimization. It stays at the center or at a different location specified when
CV_CALIB_USE_INTRINSIC_GUESS is set too.

— CV_CALIB_FIX_ASPECT_RATIO The functions considers only fy as a free pa-
rameter. The ratio fx/fy stays the same as in the input cameraMatrix . When

6.1. Camera Calibration and 3D Reconstruction 349

The OpenCV Reference Manual, Release 2.4.2

CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.

— CV_CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients (p1,p2) are
set to zeros and stay zero.

— CV_CALIB_FIX_K1,...,CV_CALIB_FIX_KG6 The corresponding radial distortion co-
efficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to
0.

— CV_CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To pro-
vide the backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients. If the flag is not set,
the function computes and returns only 5 distortion coefficients.

criteria — Termination criteria for the iterative optimization algorithm.
term_crit — same as criteria.

The function estimates the intrinsic camera parameters and extrinsic parameters for each of the views. The algorithm
is based on [Zhang2000] and [BouguetMCT]. The coordinates of 3D object points and their corresponding 2D pro-
jections in each view must be specified. That may be achieved by using an object with a known geometry and easily
detectable feature points. Such an object is called a calibration rig or calibration pattern, and OpenCV has built-in
support for a chessboard as a calibration rig (see findChessboardCorners()). Currently, initialization of intrinsic
parameters (when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration patterns
(where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also be used as long as initial
cameraMatrix is provided.

The algorithm performs the following steps:

1. Compute the initial intrinsic parameters (the option only available for planar calibration patterns) or read
them from the input parameters. The distortion coefficients are all set to zeros initially unless some of
CV_CALIB_FIX_K? are specified.

2. Estimate the initial camera pose as if the intrinsic parameters have been already known. This is done using
solvePnP() .

3. Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error, that is, the
total sum of squared distances between the observed feature points imagePoints and the projected (using the
current estimates for camera parameters and the poses) object points objectPoints. See projectPoints()
for details.

The function returns the final re-projection error.

Note: If you use a non-square (=non-NxN) grid and findChessboardCorners() for calibration,
and calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
(w/2-0.5,h/2-0.5), and/or large differences between f, and fy (ratios of 10:1 or more)), then you
have probably used patternSize=cvSize(rows,cols) instead of using patternSize=cvSize(cols, rows) in
findChessboardCorners() .

See Also:

findChessboardCorners(), solvePnP (), initCameraMatrix2D(), stereoCalibrate(), undistort()

350 Chapter 6. calib3d. Camera Calibration and 3D Reconstruction

The OpenCV Reference Manual, Release 2.4.2

calibrationMatrixValues

Computes useful camera characteristics from the camera matrix.

C++: void calibrationMatrixValues (InputArray cameraMatrix, Size imageSize, double apertureWidth,
double apertureHeight, double& fovx, double& fovy, double& fo-
calLength, Point2d& principalPoint, double& aspectRatio)

Python: cv2.calibrationMatrixValues (cameraMatrix, imageSize, apertureWidth, apertureHeight) —
fovx, fovy, focalLength, principalPoint, aspectRatio

Parameters

cameraMatrix — Input camera matrix that can be estimated by calibrateCamera() or
stereoCalibrate() .

imageSize — Input image size in pixels.

apertureWidth — Physical width of the sensor.

apertureHeight — Physical height of the sensor.

fovx — Output field of view in degrees along the horizontal sensor axis.
fovy — Output field of view in degrees along the vertical sensor axis.
focalLength — Focal length of the lens in mm.

principalPoint — Principal point in pixels.

aspectRatio — f, /f,

The function computes various useful camera characteristics from the previously estimated camera matrix.

composeRT

Combines two rotation-and-shift transformations.

C++: void composeRT (InputArray rvecl, InputArray tvecl, InputArray rvec2, InputArray tvec2, Out-
putArray rvec3, OutputArray tvec3, OutputArray dr3drl=noArray(), OutputArray
dr3dtl=noArray(), OutputArray dr3dr2=noArray(), OutputArray dr3dt2=noArray(),
OutputArray dt3drl=noArray(), OutputArray dt3dtl=noArray(), OutputArray
dt3dr2=noArray(), OutputArray dt3dt2=noArray())

Python: cv2.composeRT(rvecl, tvecl, rvec2, tvec2[, rvec3[, tvec3[, dr3drl [, dr3dtl [, dr3dr2[, dr3dt2[,
di3dr1[, de3del[, d3dr2[, d3d2 | | 1111111 — rvec3, tvec3, dr3drl, dr3dtl,
dr3dr2, dr3dt2, dt3drl, dt3dtl, dt3dr2, dt3dt2

Parameters
rvecl — First rotation vector.
tvecl — First translation vector.
rvec2 — Second rotation vector.
tvec2 — Second translation vector.
rvec3 — Output rotation vector of the superposition.
tvec3 — Output translation vector of the superposition.

d*d* — Optional output derivatives of rvec3 or tvec3 with regard to rvecl, rvec2, tvecl
and tvec?2, respectively.

6.1. Camera Calibration and 3D Reconstruction 351

The OpenCV Reference Manual, Release 2.4.2

The functions compute:

rvec3 = rodriguesf1 (rodrigues(rvec?) - rodrigues(rvecl))

tvec3 = rodrigues(rvec2) - tvecl + tvec2 ’

where rodrigues denotes a rotation vector to a rotation matrix transformation, and rodrigues_1 denotes the inverse
transformation. See Rodrigues () for details.

Also, the functions can compute the derivatives of the output vectors with regards to the input vectors (see
matMulDeriv ()). The functions are used inside stereoCalibrate() but can also be used in your own code where
Levenberg-Marquardt or another gradient-based solver is used to optimize a function that contains a matrix multipli-
cation.

computeCorrespondEpilines

For points in an image of a stereo pair, computes the corresponding epilines in the other image.

C++: void computeCorrespondEpilines (InputArray points, int whichImage, InputArray F, OutputArray
lines)

C: void cvComputeCorrespondEpilines (const CvMat* points, int which_image, const CvMat* funda-
mental_matrix, CvMat* correspondent_lines)

Python: cv.ComputeCorrespondEpilines (points, whichImage, F, lines) — None
Parameters
points — Input points. N x 1 or 1 x N matrix of type CV_32FC2 or vector<Point2f>.
whichImage — Index of the image (1 or 2) that contains the points .

F - Fundamental matrix that can be estimated using findFundamentalMat() or
stereoRectify() .

lines — Output vector of the epipolar lines corresponding to the points in the other image.
Each line ax + by + ¢ = 0 is encoded by 3 numbers (a, b, c) .

For every point in one of the two images of a stereo pair, the function finds the equation of the corresponding epipolar
line in the other image.

From the fundamental matrix definition (see findFundamentalMat()), line lgz) in the second image for the point

pg) in the first image (when whichImage=1) is computed as:

(2) (1)
- =Fp;
And vice versa, when whichImage=2, l?) is computed from p{z) as:
(1) T..(2)
L =Fp;

Line coefficients are defined up to a scale. They are normalized so that a? + b? = 1.

convertPointsToHomogeneous

Converts points from Euclidean to homogeneous space.
C++: void convertPointsToHomogeneous (InputArray sre, OutputArray dst)
Python: cv2. convertPointsToHomogeneous(src[, dst]) — dst

Parameters

352 Chapter 6. calib3d. Camera Calibration and 3D Reconstruction

The OpenCV Reference Manual, Release 2.4.2

src — Input vector of N-dimensional points.
dst — Output vector of N+1-dimensional points.

The function converts points from Euclidean to homogeneous space by appending 1’s to the tuple of point coordinates.
That is, each point (x1, x2, ..., xn) isconvertedto (x1, x2, ..., xn, 1).

convertPointsFromHomogeneous

Converts points from homogeneous to Euclidean space.
C++: void convertPointsFromHomogeneous (InputArray sre, OutputArray dst)
Python: cv2. convertPointsFromHomogeneous(src[, dst]) — dst
Parameters
src — Input vector of N-dimensional points.
dst — Output vector of N- 1-dimensional points.

The function converts points homogeneous to Euclidean space using perspective projection. That is, each point (x1,
X2, ... x(n-1), xn)isconvertedto (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the output point coordi-
nates will be (0,0,0,...).

convertPointsHomogeneous

Converts points to/from homogeneous coordinates.
C++: void convertPointsHomogeneous (InputArray sre, OutputArray dst)
C: void cvConvertPointsHomogeneous (const CvMat* src, CvMat* dst)
Python: cv.ConvertPointsHomogeneous (src, dst) — None
Parameters
src — Input array or vector of 2D, 3D, or 4D points.
dst — Output vector of 2D, 3D, or 4D points.

The function converts 2D or 3D points from/to homogeneous coordinates by calling either
convertPointsToHomogeneous () or convertPointsFromHomogeneous().

Note: The function is obsolete. Use one of the previous two functions instead.

correctMatches

Refines coordinates of corresponding points.

C++: void correctMatches (InputArray F, InputArray pointsl, InputArray points2, OutputArray new-
Points1, OutputArray newPoints2)

Python: cv2.correctMatches(F, pointsl, points2[, newPointsl[, newPointsZ]]) — newPoints1, new-
Points2

C: void cvCorrectMatches (CvMat* F, CvMat* pointsl, CvMat* points2, CvMat* new_pointsl, CvMat*
new_points2)

Parameters

6.1. Camera Calibration and 3D Reconstruction 353

The OpenCV Reference Manual, Release 2.4.2

F — 3x3 fundamental matrix.

points1 — 1xN array containing the first set of points.
points2 — 1xN array containing the second set of points.
newPoints1 — The optimized points].

newPoints2 — The optimized points2.

The function implements the Optimal Triangulation Method (see Multiple View Geometry for details). For each
given point correspondence points1[i] <-> points2[i], and a fundamental matrix F, it computes the corrected corre-
spondences newPoints1[i] <-> newPoints2[i] that minimize the geometric error d(points1[i], newPointsl [ﬂ)z +
d(points2[i], newPoints2[i])? (where d(a,b) is the geometric distance between points a and b) subject to the
epipolar constraint newPoints2" x F x* newPoints1 = 0.

decomposeProjectionMatrix

Decomposes a projection matrix into a rotation matrix and a camera matrix.

C++: void decomposeProjectionMatrix (InputArray projMatrix, OutputArray cameraMatrix, Out-
putArray rotMatrix, OutputArray transVect, OutputArray
rotMatrixX=noArray(), OutputArray rotMatrixY=noArray(),
OutputArray rotMatrixZ=noArray(), OutputArray eulerAn-
gles=noArray())

Python: cv2.decomposeProjectionMatrix(projMatrix[, cameraMatrix[, rotMatrix[, transVect[, rotMa-
trixX[, rotMatrixY[, rotMatrixZ[, eulerAngles]]]]]]]) —
cameraMatrix, rotMatrix, transVect, rotMatrixX, rotMatrixY,
rotMatrixZ, eulerAngles

C: void cvDecomposeProjectionMatrix(const CvMat* projMatr, CvMat* calibMatr, CvMat* rot-
Matr, CvMat* posVect, CvMat* rotMatrX=NULL, CvMat* rot-
MatrY=NULL, CvMat* rotMatrZ=NULL, CvPoint3D64f* eu-
lerAngles=NULL)

Python: cv.DecomposeProjectionMatrix(projMatrix, cameraMatrix, rotMatrix, transVect, rotMa-
trX=None, rotMatrY=None, rotMatrZ=None) — eulerAngles

Parameters
projMatrix — 3x4 input projection matrix P.
cameraMatrix — Output 3x3 camera matrix K.
rotMatrix — Output 3x3 external rotation matrix R.
transVect — Output 4x1 translation vector T.
rotMatrX — Optional 3x3 rotation matrix around x-axis.
rotMatrY — Optional 3x3 rotation matrix around y-axis.
rotMatrZ — Optional 3x3 rotation matrix around z-axis.
eulerAngles — Optional three-element vector containing three Euler angles of rotation.

The function computes a decomposition of a projection matrix into a calibration and a rotation matrix and the position
of a camera.

It optionally returns three rotation matrices, one for each axis, and three Euler angles that could be used in OpenGL.

The function is based on RQDecomp3x3() .

354 Chapter 6. calib3d. Camera Calibration and 3D Reconstruction

The OpenCV Reference Manual, Release 2.4.2

drawChessboardCorners

Renders the detected chessboard corners.

C++: void drawChessboardCorners (InputOutputArray image, Size patternSize, InputArray corners, bool
patternWasFound)

Python: cv2.drawChessboardCorners (image, patternSize, corners, patternWasFound) — None

C: void cvDrawChesshoardCorners (CvArr* image, CvSize pattern_size, CvPoint2D32f* corners, int
count, int pattern_was_found)

Python: cv.DrawChessboardCorners (image, patternSize, corners, patternWasFound) — None
Parameters
image — Destination image. It must be an 8-bit color image.

patternSize — Number of inner corners per a chessboard row and column (patternSize =
cv::Size(points_per_row,points_per_column)).

corners — Array of detected corners, the output of findChessboardCorners.

patternWasFound — Parameter indicating whether the complete board was found or not.
The return value of findChessboardCorners () should be passed here.

The function draws individual chessboard corners detected either as red circles if the board was not found, or as
colored corners connected with lines if the board was found.

findChessboardCorners

Finds the positions of internal corners of the chessboard.
C++: bool findChessboardCorners (InputArray image, Size patternSize, OutputArray corners, int

flags=CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE
)

Python: cv2.findChessboardCorners (image, patternSize[, corners[, flags]]) — retval, corners

C: int cvFindChessboardCorners (const void* image, CvSize pattern_size, Cv-
Point2D32f* corners, int* corner_count=NULL, int
flags=CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE
)

Python: cv.FindChessboardCorners (image, patternSize, flags=CV_CALIB_CB_ADAPTIVE_THRESH)
— corners

Parameters
image — Source chessboard view. It must be an 8-bit grayscale or color image.

patternSize — Number of inner corners per a chessboard row and column (patternSize
= cvSize(points_per_row,points_per_colum) = cvSize(columns,rows)).

corners — Output array of detected corners.
flags — Various operation flags that can be zero or a combination of the following values:

— CV_CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the im-
age to black and white, rather than a fixed threshold level (computed from the average
image brightness).

— CV_CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with
equalizeHist() before applying fixed or adaptive thresholding.

6.1. Camera Calibration and 3D Reconstruction 355

The OpenCV Reference Manual, Release 2.4.2

— CV_CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perime-
ter, square-like shape) to filter out false quads extracted at the contour retrieval stage.

— CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard
corners, and shortcut the call if none is found. This can drastically speed up the call in
the degenerate condition when no chessboard is observed.

The function attempts to determine whether the input image is a view of the chessboard pattern and locate the internal
chessboard corners. The function returns a non-zero value if all of the corners are found and they are placed in a
certain order (row by row, left to right in every row). Otherwise, if the function fails to find all the corners or reorder
them, it returns 0. For example, a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points
where the black squares touch each other. The detected coordinates are approximate, and to determine their positions
more accurately, the function calls cornerSubPix (). You also may use the function cornerSubPix () with different
parameters if returned coordinates are not accurate enough.

Sample usage of detecting and drawing chessboard corners:

Size patternsize(8,6); //interior number of corners
Mat gray =; //source image
vector<Point2f> corners; //this will be filled by the detected corners

//CALIB_CB_FAST_CHECK saves a lot of time on images

//that do not contain any chessboard corners

bool pat