Feature Detection and Description
=================================

.. highlight:: cpp

RandomizedTree
--------------
.. ocv:class:: RandomizedTree

Class containing a base structure for ``RTreeClassifier``. ::

    class CV_EXPORTS RandomizedTree
    {
    public:
            friend class RTreeClassifier;

            RandomizedTree();
            ~RandomizedTree();

            void train(std::vector<BaseKeypoint> const& base_set,
                     RNG &rng, int depth, int views,
                     size_t reduced_num_dim, int num_quant_bits);
            void train(std::vector<BaseKeypoint> const& base_set,
                     RNG &rng, PatchGenerator &make_patch, int depth,
                     int views, size_t reduced_num_dim, int num_quant_bits);

            // next two functions are EXPERIMENTAL
            //(do not use unless you know exactly what you do)
            static void quantizeVector(float *vec, int dim, int N, float bnds[2],
                     int clamp_mode=0);
            static void quantizeVector(float *src, int dim, int N, float bnds[2],
                     uchar *dst);

            // patch_data must be a 32x32 array (no row padding)
            float* getPosterior(uchar* patch_data);
            const float* getPosterior(uchar* patch_data) const;
            uchar* getPosterior2(uchar* patch_data);

            void read(const char* file_name, int num_quant_bits);
            void read(std::istream &is, int num_quant_bits);
            void write(const char* file_name) const;
            void write(std::ostream &os) const;

            int classes() { return classes_; }
            int depth() { return depth_; }

            void discardFloatPosteriors() { freePosteriors(1); }

            inline void applyQuantization(int num_quant_bits)
                     { makePosteriors2(num_quant_bits); }

    private:
            int classes_;
            int depth_;
            int num_leaves_;
            std::vector<RTreeNode> nodes_;
            float **posteriors_;        // 16-byte aligned posteriors
            uchar **posteriors2_;     // 16-byte aligned posteriors
            std::vector<int> leaf_counts_;

            void createNodes(int num_nodes, RNG &rng);
            void allocPosteriorsAligned(int num_leaves, int num_classes);
            void freePosteriors(int which);
                     // which: 1=posteriors_, 2=posteriors2_, 3=both
            void init(int classes, int depth, RNG &rng);
            void addExample(int class_id, uchar* patch_data);
            void finalize(size_t reduced_num_dim, int num_quant_bits);
            int getIndex(uchar* patch_data) const;
            inline float* getPosteriorByIndex(int index);
            inline uchar* getPosteriorByIndex2(int index);
            inline const float* getPosteriorByIndex(int index) const;
            void convertPosteriorsToChar();
            void makePosteriors2(int num_quant_bits);
            void compressLeaves(size_t reduced_num_dim);
            void estimateQuantPercForPosteriors(float perc[2]);
    };

.. note::

   * : PYTHON : An example using Randomized Tree training for letter recognition can be found at opencv_source_code/samples/python2/letter_recog.py

RandomizedTree::train
-------------------------
Trains a randomized tree using an input set of keypoints.

.. ocv:function:: void RandomizedTree::train( vector<BaseKeypoint> const& base_set, RNG & rng, int depth, int views, size_t reduced_num_dim, int num_quant_bits )

.. ocv:function:: void RandomizedTree::train( vector<BaseKeypoint> const& base_set, RNG & rng, PatchGenerator & make_patch, int depth, int views, size_t reduced_num_dim, int num_quant_bits )

    :param base_set: Vector of the ``BaseKeypoint`` type. It contains image keypoints used for training.

    :param rng: Random-number generator used for training.

    :param make_patch: Patch generator used for training.

    :param depth: Maximum tree depth.

    :param views: Number of random views of each keypoint neighborhood to generate.

    :param reduced_num_dim: Number of dimensions used in the compressed signature.

    :param num_quant_bits: Number of bits used for quantization.

.. note::

   * : An example on training a Random Tree Classifier for letter recognition can be found at opencv_source_code\samples\cpp\letter_recog.cpp

RandomizedTree::read
------------------------
Reads a pre-saved randomized tree from a file or stream.

.. ocv:function:: RandomizedTree::read(const char* file_name, int num_quant_bits)

.. ocv:function:: RandomizedTree::read(std::istream &is, int num_quant_bits)

    :param file_name: Name of the file that contains randomized tree data.

    :param is: Input stream associated with the file that contains randomized tree data.

    :param num_quant_bits: Number of bits used for quantization.



RandomizedTree::write
-------------------------
Writes the current randomized tree to a file or stream.

.. ocv:function:: void RandomizedTree::write(const char* file_name) const

.. ocv:function:: void RandomizedTree::write(std::ostream &os) const

    :param file_name: Name of the file where randomized tree data is stored.

    :param os: Output stream associated with the file where randomized tree data is stored.



RandomizedTree::applyQuantization
-------------------------------------
.. ocv:function:: void RandomizedTree::applyQuantization(int num_quant_bits)

    Applies quantization to the current randomized tree.

    :param num_quant_bits: Number of bits used for quantization.


RTreeNode
---------
.. ocv:struct:: RTreeNode

Class containing a base structure for ``RandomizedTree``. ::

    struct RTreeNode
    {
            short offset1, offset2;

            RTreeNode() {}

            RTreeNode(uchar x1, uchar y1, uchar x2, uchar y2)
                    : offset1(y1*PATCH_SIZE + x1),
                    offset2(y2*PATCH_SIZE + x2)
            {}

            //! Left child on 0, right child on 1
            inline bool operator() (uchar* patch_data) const
            {
                    return patch_data[offset1] > patch_data[offset2];
            }
    };



RTreeClassifier
---------------
.. ocv:class:: RTreeClassifier

Class containing ``RTreeClassifier``. It represents the Calonder descriptor originally introduced by Michael Calonder. ::

    class CV_EXPORTS RTreeClassifier
    {
    public:
            static const int DEFAULT_TREES = 48;
            static const size_t DEFAULT_NUM_QUANT_BITS = 4;

            RTreeClassifier();

            void train(std::vector<BaseKeypoint> const& base_set,
                    RNG &rng,
                    int num_trees = RTreeClassifier::DEFAULT_TREES,
                    int depth = DEFAULT_DEPTH,
                    int views = DEFAULT_VIEWS,
                    size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
                    int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
                             bool print_status = true);
            void train(std::vector<BaseKeypoint> const& base_set,
                    RNG &rng,
                    PatchGenerator &make_patch,
                    int num_trees = RTreeClassifier::DEFAULT_TREES,
                    int depth = DEFAULT_DEPTH,
                    int views = DEFAULT_VIEWS,
                    size_t reduced_num_dim = DEFAULT_REDUCED_NUM_DIM,
                    int num_quant_bits = DEFAULT_NUM_QUANT_BITS,
                     bool print_status = true);

            // sig must point to a memory block of at least
            //classes()*sizeof(float|uchar) bytes
            void getSignature(IplImage *patch, uchar *sig);
            void getSignature(IplImage *patch, float *sig);
            void getSparseSignature(IplImage *patch, float *sig,
                     float thresh);

            static int countNonZeroElements(float *vec, int n, double tol=1e-10);
            static inline void safeSignatureAlloc(uchar **sig, int num_sig=1,
                            int sig_len=176);
            static inline uchar* safeSignatureAlloc(int num_sig=1,
                             int sig_len=176);

            inline int classes() { return classes_; }
            inline int original_num_classes()
                     { return original_num_classes_; }

            void setQuantization(int num_quant_bits);
            void discardFloatPosteriors();

            void read(const char* file_name);
            void read(std::istream &is);
            void write(const char* file_name) const;
            void write(std::ostream &os) const;

            std::vector<RandomizedTree> trees_;

    private:
            int classes_;
            int num_quant_bits_;
            uchar **posteriors_;
            ushort *ptemp_;
            int original_num_classes_;
            bool keep_floats_;
    };



RTreeClassifier::train
--------------------------
Trains a randomized tree classifier using an input set of keypoints.

.. ocv:function:: void RTreeClassifier::train( vector<BaseKeypoint> const& base_set, RNG & rng, int num_trees=RTreeClassifier::DEFAULT_TREES, int depth=RandomizedTree::DEFAULT_DEPTH, int views=RandomizedTree::DEFAULT_VIEWS, size_t reduced_num_dim=RandomizedTree::DEFAULT_REDUCED_NUM_DIM, int num_quant_bits=DEFAULT_NUM_QUANT_BITS )

.. ocv:function:: void RTreeClassifier::train( vector<BaseKeypoint> const& base_set, RNG & rng, PatchGenerator & make_patch, int num_trees=RTreeClassifier::DEFAULT_TREES, int depth=RandomizedTree::DEFAULT_DEPTH, int views=RandomizedTree::DEFAULT_VIEWS, size_t reduced_num_dim=RandomizedTree::DEFAULT_REDUCED_NUM_DIM, int num_quant_bits=DEFAULT_NUM_QUANT_BITS )

    :param base_set: Vector of the ``BaseKeypoint``  type. It contains image keypoints used for training.

    :param rng: Random-number generator used for training.

    :param make_patch: Patch generator used for training.

    :param num_trees: Number of randomized trees used in ``RTreeClassificator`` .

    :param depth: Maximum tree depth.

    :param views: Number of random views of each keypoint neighborhood to generate.

    :param reduced_num_dim: Number of dimensions used in the compressed signature.

    :param num_quant_bits: Number of bits used for quantization.


RTreeClassifier::getSignature
---------------------------------
Returns a signature for an image patch.

.. ocv:function:: void RTreeClassifier::getSignature(IplImage *patch, uchar *sig)

.. ocv:function:: void RTreeClassifier::getSignature(IplImage *patch, float *sig)

    :param patch: Image patch to calculate the signature for.
    :param sig: Output signature (array dimension is ``reduced_num_dim)`` .



RTreeClassifier::getSparseSignature
---------------------------------------
Returns a sparse signature for an image patch

.. ocv:function:: void RTreeClassifier::getSparseSignature(IplImage *patch, float *sig, float thresh)

    :param patch: Image patch to calculate the signature for.

    :param sig: Output signature (array dimension is ``reduced_num_dim)`` .

    :param thresh: Threshold used for compressing the signature.

    Returns a signature for an image patch similarly to ``getSignature``  but uses a threshold for removing all signature elements below the threshold so that the signature is compressed.


RTreeClassifier::countNonZeroElements
-----------------------------------------
Returns the number of non-zero elements in an input array.

.. ocv:function:: static int RTreeClassifier::countNonZeroElements(float *vec, int n, double tol=1e-10)

    :param vec: Input vector containing float elements.

    :param n: Input vector size.

    :param tol: Threshold used for counting elements. All elements less than ``tol``  are considered as zero elements.



RTreeClassifier::read
-------------------------
Reads a pre-saved ``RTreeClassifier`` from a file or stream.

.. ocv:function:: void RTreeClassifier::read(const char* file_name)

.. ocv:function:: void RTreeClassifier::read( std::istream & is )

    :param file_name: Name of the file that contains randomized tree data.

    :param is: Input stream associated with the file that contains randomized tree data.



RTreeClassifier::write
--------------------------
Writes the current ``RTreeClassifier`` to a file or stream.

.. ocv:function:: void RTreeClassifier::write(const char* file_name) const

.. ocv:function:: void RTreeClassifier::write(std::ostream &os) const

    :param file_name: Name of the file where randomized tree data is stored.

    :param os: Output stream associated with the file where randomized tree data is stored.



RTreeClassifier::setQuantization
------------------------------------
Applies quantization to the current randomized tree.

.. ocv:function:: void RTreeClassifier::setQuantization(int num_quant_bits)

    :param num_quant_bits: Number of bits used for quantization.

The example below demonstrates the usage of ``RTreeClassifier`` for matching the features. The features are extracted from the test and train images with SURF. Output is
:math:`best\_corr` and
:math:`best\_corr\_idx` arrays that keep the best probabilities and corresponding features indices for every train feature. ::

    CvMemStorage* storage = cvCreateMemStorage(0);
    CvSeq *objectKeypoints = 0, *objectDescriptors = 0;
    CvSeq *imageKeypoints = 0, *imageDescriptors = 0;
    CvSURFParams params = cvSURFParams(500, 1);
    cvExtractSURF( test_image, 0, &imageKeypoints, &imageDescriptors,
                     storage, params );
    cvExtractSURF( train_image, 0, &objectKeypoints, &objectDescriptors,
                     storage, params );

    RTreeClassifier detector;
    int patch_width = PATCH_SIZE;
    iint patch_height = PATCH_SIZE;
    vector<BaseKeypoint> base_set;
    int i=0;
    CvSURFPoint* point;
    for (i=0;i<(n_points > 0 ? n_points : objectKeypoints->total);i++)
    {
            point=(CvSURFPoint*)cvGetSeqElem(objectKeypoints,i);
            base_set.push_back(
                    BaseKeypoint(point->pt.x,point->pt.y,train_image));
    }

            //Detector training
     RNG rng( cvGetTickCount() );
    PatchGenerator gen(0,255,2,false,0.7,1.3,-CV_PI/3,CV_PI/3,
                            -CV_PI/3,CV_PI/3);

    printf("RTree Classifier training...n");
    detector.train(base_set,rng,gen,24,DEFAULT_DEPTH,2000,
            (int)base_set.size(), detector.DEFAULT_NUM_QUANT_BITS);
    printf("Donen");

    float* signature = new float[detector.original_num_classes()];
    float* best_corr;
    int* best_corr_idx;
    if (imageKeypoints->total > 0)
    {
            best_corr = new float[imageKeypoints->total];
            best_corr_idx = new int[imageKeypoints->total];
    }

    for(i=0; i < imageKeypoints->total; i++)
    {
            point=(CvSURFPoint*)cvGetSeqElem(imageKeypoints,i);
            int part_idx = -1;
            float prob = 0.0f;

            CvRect roi = cvRect((int)(point->pt.x) - patch_width/2,
                    (int)(point->pt.y) - patch_height/2,
                     patch_width, patch_height);
            cvSetImageROI(test_image, roi);
            roi = cvGetImageROI(test_image);
            if(roi.width != patch_width || roi.height != patch_height)
            {
                    best_corr_idx[i] = part_idx;
                    best_corr[i] = prob;
            }
            else
            {
                    cvSetImageROI(test_image, roi);
                    IplImage* roi_image =
                             cvCreateImage(cvSize(roi.width, roi.height),
                             test_image->depth, test_image->nChannels);
                    cvCopy(test_image,roi_image);

                    detector.getSignature(roi_image, signature);
                    for (int j = 0; j< detector.original_num_classes();j++)
                    {
                            if (prob < signature[j])
                            {
                                    part_idx = j;
                                    prob = signature[j];
                            }
                    }

                    best_corr_idx[i] = part_idx;
                    best_corr[i] = prob;

                    if (roi_image)
                            cvReleaseImage(&roi_image);
            }
            cvResetImageROI(test_image);
    }

..