#include "perf_cpu_precomp.hpp" #ifdef HAVE_CUDA ////////////////////////////////////////////////////// // GoodFeaturesToTrack IMPLEMENT_PARAM_CLASS(MinDistance, double) GPU_PERF_TEST(GoodFeaturesToTrack, cv::gpu::DeviceInfo, MinDistance) { double minDistance = GET_PARAM(1); cv::Mat image = readImage("gpu/perf/aloe.jpg", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); cv::Mat corners; cv::goodFeaturesToTrack(image, corners, 8000, 0.01, minDistance); TEST_CYCLE() { cv::goodFeaturesToTrack(image, corners, 8000, 0.01, minDistance); } } INSTANTIATE_TEST_CASE_P(Video, GoodFeaturesToTrack, testing::Combine( ALL_DEVICES, testing::Values(MinDistance(0.0), MinDistance(3.0)))); ////////////////////////////////////////////////////// // PyrLKOpticalFlowSparse IMPLEMENT_PARAM_CLASS(GraySource, bool) IMPLEMENT_PARAM_CLASS(Points, int) IMPLEMENT_PARAM_CLASS(WinSize, int) IMPLEMENT_PARAM_CLASS(Levels, int) IMPLEMENT_PARAM_CLASS(Iters, int) GPU_PERF_TEST(PyrLKOpticalFlowSparse, cv::gpu::DeviceInfo, GraySource, Points, WinSize, Levels, Iters) { bool useGray = GET_PARAM(1); int points = GET_PARAM(2); int win_size = GET_PARAM(3); int levels = GET_PARAM(4); int iters = GET_PARAM(5); cv::Mat frame0 = readImage("gpu/opticalflow/frame0.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("gpu/opticalflow/frame1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR); ASSERT_FALSE(frame1.empty()); cv::Mat gray_frame; if (useGray) gray_frame = frame0; else cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY); cv::Mat pts; cv::goodFeaturesToTrack(gray_frame, pts, points, 0.01, 0.0); cv::Mat nextPts; cv::Mat status; cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(), cv::Size(win_size, win_size), levels - 1, cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01)); declare.time(20.0); TEST_CYCLE() { cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, cv::noArray(), cv::Size(win_size, win_size), levels - 1, cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, iters, 0.01)); } } INSTANTIATE_TEST_CASE_P(Video, PyrLKOpticalFlowSparse, testing::Combine( ALL_DEVICES, testing::Values(GraySource(true), GraySource(false)), testing::Values(Points(1000), Points(2000), Points(4000), Points(8000)), testing::Values(WinSize(9), WinSize(13), WinSize(17), WinSize(21)), testing::Values(Levels(1), Levels(2), Levels(3)), testing::Values(Iters(1), Iters(10), Iters(30)))); ////////////////////////////////////////////////////// // FarnebackOpticalFlowTest GPU_PERF_TEST_1(FarnebackOpticalFlowTest, cv::gpu::DeviceInfo) { cv::Mat frame0 = readImage("gpu/opticalflow/frame0.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame0.empty()); cv::Mat frame1 = readImage("gpu/opticalflow/frame1.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(frame1.empty()); cv::Mat flow; int numLevels = 5; double pyrScale = 0.5; int winSize = 13; int numIters = 10; int polyN = 5; double polySigma = 1.1; int flags = 0; cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); declare.time(10); TEST_CYCLE() { cv::calcOpticalFlowFarneback(frame0, frame1, flow, pyrScale, numLevels, winSize, numIters, polyN, polySigma, flags); } } INSTANTIATE_TEST_CASE_P(Video, FarnebackOpticalFlowTest, ALL_DEVICES); ////////////////////////////////////////////////////// // FGDStatModel namespace cv { template<> void Ptr::delete_obj() { cvReleaseBGStatModel(&obj); } } GPU_PERF_TEST(FGDStatModel, cv::gpu::DeviceInfo, std::string) { std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); cv::VideoCapture cap(inputFile); ASSERT_TRUE(cap.isOpened()); cv::Mat frame; cap >> frame; ASSERT_FALSE(frame.empty()); IplImage ipl_frame = frame; cv::Ptr model(cvCreateFGDStatModel(&ipl_frame)); declare.time(60); for (int i = 0; i < 10; ++i) { cap >> frame; ASSERT_FALSE(frame.empty()); ipl_frame = frame; startTimer(); next(); cvUpdateBGStatModel(&ipl_frame, model); stopTimer(); } } INSTANTIATE_TEST_CASE_P(Video, FGDStatModel, testing::Combine( ALL_DEVICES, testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); ////////////////////////////////////////////////////// // VideoWriter #ifdef WIN32 GPU_PERF_TEST(VideoWriter, cv::gpu::DeviceInfo, std::string) { const double FPS = 25.0; std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); std::string outputFile = inputFile.substr(0, inputFile.find('.')) + "_test.avi"; cv::VideoCapture reader(inputFile); ASSERT_TRUE( reader.isOpened() ); cv::VideoWriter writer; cv::Mat frame; declare.time(30); for (int i = 0; i < 10; ++i) { reader >> frame; ASSERT_FALSE(frame.empty()); if (!writer.isOpened()) writer.open(outputFile, CV_FOURCC('X', 'V', 'I', 'D'), FPS, frame.size()); startTimer(); next(); writer.write(frame); stopTimer(); } } INSTANTIATE_TEST_CASE_P(Video, VideoWriter, testing::Combine( ALL_DEVICES, testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); #endif // WIN32 ////////////////////////////////////////////////////// // VideoReader GPU_PERF_TEST(VideoReader, cv::gpu::DeviceInfo, std::string) { std::string inputFile = perf::TestBase::getDataPath(std::string("gpu/video/") + GET_PARAM(1)); cv::VideoCapture reader(inputFile); ASSERT_TRUE( reader.isOpened() ); cv::Mat frame; reader >> frame; declare.time(20); TEST_CYCLE_N(10) { reader >> frame; } } INSTANTIATE_TEST_CASE_P(Video, VideoReader, testing::Combine( ALL_DEVICES, testing::Values(std::string("768x576.avi"), std::string("1920x1080.avi")))); #endif