namespace { #if defined(HAVE_CUDA) && !defined(DYNAMIC_CUDA_SUPPORT) #define cudaSafeCall(expr) ___cudaSafeCall(expr, __FILE__, __LINE__, CV_Func) #define nppSafeCall(expr) ___nppSafeCall(expr, __FILE__, __LINE__, CV_Func) inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "") { if (cudaSuccess != err) cv::gpu::error(cudaGetErrorString(err), file, line, func); } inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "") { if (err < 0) { std::ostringstream msg; msg << "NPP API Call Error: " << err; cv::gpu::error(msg.str().c_str(), file, line, func); } } #endif } namespace { class GpuFuncTable { public: virtual ~GpuFuncTable() {} // DeviceInfo routines virtual int getCudaEnabledDeviceCount() const = 0; virtual void setDevice(int) const = 0; virtual int getDevice() const = 0; virtual void resetDevice() const = 0; virtual bool deviceSupports(FeatureSet) const = 0; virtual bool builtWith(FeatureSet) const = 0; virtual bool has(int, int) const = 0; virtual bool hasPtx(int, int) const = 0; virtual bool hasBin(int, int) const = 0; virtual bool hasEqualOrLessPtx(int, int) const = 0; virtual bool hasEqualOrGreater(int, int) const = 0; virtual bool hasEqualOrGreaterPtx(int, int) const = 0; virtual bool hasEqualOrGreaterBin(int, int) const = 0; virtual size_t sharedMemPerBlock() const = 0; virtual void queryMemory(size_t&, size_t&) const = 0; virtual size_t freeMemory() const = 0; virtual size_t totalMemory() const = 0; virtual bool supports(FeatureSet) const = 0; virtual bool isCompatible() const = 0; virtual void query() const = 0; virtual void printCudaDeviceInfo(int) const = 0; virtual void printShortCudaDeviceInfo(int) const = 0; // GpuMat routines virtual void copy(const Mat& src, GpuMat& dst) const = 0; virtual void copy(const GpuMat& src, Mat& dst) const = 0; virtual void copy(const GpuMat& src, GpuMat& dst) const = 0; virtual void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const = 0; // gpu::device::convertTo funcs virtual void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0) const = 0; virtual void convert(const GpuMat& src, GpuMat& dst) const = 0; // for gpu::device::setTo funcs virtual void setTo(cv::gpu::GpuMat&, cv::Scalar, CUstream_st*) const = 0; virtual void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, CUstream_st*) const = 0; virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0; virtual void free(void* devPtr) const = 0; }; } #if !defined(HAVE_CUDA) || defined(DYNAMIC_CUDA_SUPPORT) namespace { class EmptyFuncTable : public GpuFuncTable { public: // DeviceInfo routines int getCudaEnabledDeviceCount() const { return 0; } void setDevice(int) const { throw_nogpu; } int getDevice() const { throw_nogpu; return 0; } void resetDevice() const { throw_nogpu; } bool deviceSupports(FeatureSet) const { throw_nogpu; return false; } bool builtWith(FeatureSet) const { throw_nogpu; return false; } bool has(int, int) const { throw_nogpu; return false; } bool hasPtx(int, int) const { throw_nogpu; return false; } bool hasBin(int, int) const { throw_nogpu; return false; } bool hasEqualOrLessPtx(int, int) const { throw_nogpu; return false; } bool hasEqualOrGreater(int, int) const { throw_nogpu; return false; } bool hasEqualOrGreaterPtx(int, int) const { throw_nogpu; return false; } bool hasEqualOrGreaterBin(int, int) const { throw_nogpu; return false; } size_t sharedMemPerBlock() const { throw_nogpu; return 0; } void queryMemory(size_t&, size_t&) const { throw_nogpu; } size_t freeMemory() const { throw_nogpu; return 0; } size_t totalMemory() const { throw_nogpu; return 0; } bool supports(FeatureSet) const { throw_nogpu; return false; } bool isCompatible() const { throw_nogpu; return false; } void query() const { throw_nogpu; } void printCudaDeviceInfo(int) const { throw_nogpu; } void printShortCudaDeviceInfo(int) const { throw_nogpu; } void copy(const Mat&, GpuMat&) const { throw_nogpu; } void copy(const GpuMat&, Mat&) const { throw_nogpu; } void copy(const GpuMat&, GpuMat&) const { throw_nogpu; } void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { throw_nogpu; } void convert(const GpuMat&, GpuMat&) const { throw_nogpu; } void convert(const GpuMat&, GpuMat&, double, double, cudaStream_t stream = 0) const { (void)stream; throw_nogpu; } virtual void setTo(cv::gpu::GpuMat&, cv::Scalar, CUstream_st*) const { throw_nogpu; } virtual void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, CUstream_st*) const { throw_nogpu; } void mallocPitch(void**, size_t*, size_t, size_t) const { throw_nogpu; } void free(void*) const {} }; } #else namespace cv { namespace gpu { namespace device { void copyToWithMask_gpu(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream); template void set_to_gpu(PtrStepSzb mat, const T* scalar, int channels, cudaStream_t stream); template void set_to_gpu(PtrStepSzb mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); void convert_gpu(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream); }}} namespace { template void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream) { Scalar_ sf = s; cv::gpu::device::set_to_gpu(src, sf.val, src.channels(), stream); } template void kernelSetCaller(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { Scalar_ sf = s; cv::gpu::device::set_to_gpu(src, sf.val, mask, src.channels(), stream); } } namespace { template struct NPPTypeTraits; template<> struct NPPTypeTraits { typedef Npp8u npp_type; }; template<> struct NPPTypeTraits { typedef Npp8s npp_type; }; template<> struct NPPTypeTraits { typedef Npp16u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32f npp_type; }; template<> struct NPPTypeTraits { typedef Npp64f npp_type; }; ////////////////////////////////////////////////////////////////////////// // Convert template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI); }; template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode); }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; static void call(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type dst_t; static void call(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, NPP_RND_NEAR) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; ////////////////////////////////////////////////////////////////////////// // Set template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); }; template<> struct NppSetFunc { typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; ////////////////////////////////////////////////////////////////////////// // CopyMasked template struct NppCopyMaskedFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppCopyMasked { typedef typename NPPTypeTraits::npp_type src_t; static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template static inline bool isAligned(const T* ptr, size_t size) { return reinterpret_cast(ptr) % size == 0; } } namespace cv { namespace gpu { namespace devices { void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0) { CV_Assert(src.size() == dst.size() && src.type() == dst.type()); CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels())); cv::gpu::device::copyToWithMask_gpu(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream); } void convertTo(const GpuMat& src, GpuMat& dst) { cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0); } void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0) { cv::gpu::device::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream); } void setTo(GpuMat& src, Scalar s, cudaStream_t stream) { typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream); static const caller_t callers[] = { kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller }; callers[src.depth()](src, s, stream); } void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream); static const caller_t callers[] = { kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller }; callers[src.depth()](src, s, mask, stream); } void setTo(GpuMat& src, Scalar s) { setTo(src, s, 0); } void setTo(GpuMat& src, Scalar s, const GpuMat& mask) { setTo(src, s, mask, 0); } }} namespace { class CudaFuncTable : public GpuFuncTable { protected: class CudaArch { public: CudaArch(); bool builtWith(FeatureSet feature_set) const; bool hasPtx(int major, int minor) const; bool hasBin(int major, int minor) const; bool hasEqualOrLessPtx(int major, int minor) const; bool hasEqualOrGreaterPtx(int major, int minor) const; bool hasEqualOrGreaterBin(int major, int minor) const; private: static void fromStr(const string& set_as_str, vector& arr); vector bin; vector ptx; vector features; }; const CudaArch cudaArch; CudaArch::CudaArch() { fromStr(CUDA_ARCH_BIN, bin); fromStr(CUDA_ARCH_PTX, ptx); fromStr(CUDA_ARCH_FEATURES, features); } bool CudaArch::builtWith(FeatureSet feature_set) const { return !features.empty() && (features.back() >= feature_set); } bool CudaArch::hasPtx(int major, int minor) const { return find(ptx.begin(), ptx.end(), major * 10 + minor) != ptx.end(); } bool CudaArch::hasBin(int major, int minor) const { return find(bin.begin(), bin.end(), major * 10 + minor) != bin.end(); } bool CudaArch::hasEqualOrLessPtx(int major, int minor) const { return !ptx.empty() && (ptx.front() <= major * 10 + minor); } bool CudaArch::hasEqualOrGreaterPtx(int major, int minor) const { return !ptx.empty() && (ptx.back() >= major * 10 + minor); } bool CudaArch::hasEqualOrGreaterBin(int major, int minor) const { return !bin.empty() && (bin.back() >= major * 10 + minor); } void CudaArch::fromStr(const string& set_as_str, vector& arr) { if (set_as_str.find_first_not_of(" ") == string::npos) return; istringstream stream(set_as_str); int cur_value; while (!stream.eof()) { stream >> cur_value; arr.push_back(cur_value); } sort(arr.begin(), arr.end()); } class DeviceProps { public: DeviceProps(); ~DeviceProps(); cudaDeviceProp* get(int devID); private: std::vector props_; }; DeviceProps::DeviceProps() { props_.resize(10, 0); } DeviceProps::~DeviceProps() { for (size_t i = 0; i < props_.size(); ++i) { if (props_[i]) delete props_[i]; } props_.clear(); } cudaDeviceProp* DeviceProps::get(int devID) { if (devID >= (int) props_.size()) props_.resize(devID + 5, 0); if (!props_[devID]) { props_[devID] = new cudaDeviceProp; cudaSafeCall( cudaGetDeviceProperties(props_[devID], devID) ); } return props_[devID]; } DeviceProps deviceProps; int convertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine the # of cores per SM typedef struct { int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version int Cores; } SMtoCores; SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, {0x35, 192}, { -1, -1 } }; int index = 0; while (gpuArchCoresPerSM[index].SM != -1) { if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) return gpuArchCoresPerSM[index].Cores; index++; } return -1; } public: int getCudaEnabledDeviceCount() const { int count; cudaError_t error = cudaGetDeviceCount( &count ); if (error == cudaErrorInsufficientDriver) return -1; if (error == cudaErrorNoDevice) return 0; cudaSafeCall( error ); return count; } void setDevice(int device) const { cudaSafeCall( cudaSetDevice( device ) ); } int getDevice() const { int device; cudaSafeCall( cudaGetDevice( &device ) ); return device; } void resetDevice() const { cudaSafeCall( cudaDeviceReset() ); } bool TargetArchs::builtWith(FeatureSet feature_set) const { return cudaArch.builtWith(feature_set); } bool TargetArchs::has(int major, int minor) const { return hasPtx(major, minor) || hasBin(major, minor); } bool TargetArchs::hasPtx(int major, int minor) const { return cudaArch.hasPtx(major, minor); } bool TargetArchs::hasBin(int major, int minor) const { return cudaArch.hasBin(major, minor); } bool TargetArchs::hasEqualOrLessPtx(int major, int minor) const { return cudaArch.hasEqualOrLessPtx(major, minor); } bool TargetArchs::hasEqualOrGreater(int major, int minor) const { return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor); } bool TargetArchs::hasEqualOrGreaterPtx(int major, int minor) const { return cudaArch.hasEqualOrGreaterPtx(major, minor); } bool TargetArchs::hasEqualOrGreaterBin(int major, int minor) const { return cudaArch.hasEqualOrGreaterBin(major, minor); } bool deviceSupports(FeatureSet feature_set) const { static int versions[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const int cache_size = static_cast(sizeof(versions) / sizeof(versions[0])); const int devId = getDevice(); int version; if (devId < cache_size && versions[devId] >= 0) version = versions[devId]; else { DeviceInfo dev(devId); version = dev.majorVersion() * 10 + dev.minorVersion(); if (devId < cache_size) versions[devId] = version; } return TargetArchs::builtWith(feature_set) && (version >= feature_set); } size_t sharedMemPerBlock() const { return deviceProps.get(device_id_)->sharedMemPerBlock; } void queryMemory(size_t& _totalMemory, size_t& _freeMemory) const { int prevDeviceID = getDevice(); if (prevDeviceID != device_id_) setDevice(device_id_); cudaSafeCall( cudaMemGetInfo(&_freeMemory, &_totalMemory) ); if (prevDeviceID != device_id_) setDevice(prevDeviceID); } size_t freeMemory() const { size_t _totalMemory, _freeMemory; queryMemory(_totalMemory, _freeMemory); return _freeMemory; } size_t totalMemory() const { size_t _totalMemory, _freeMemory; queryMemory(_totalMemory, _freeMemory); return _totalMemory; } bool supports(FeatureSet feature_set) const { int version = majorVersion() * 10 + minorVersion(); return version >= feature_set; } bool isCompatible() const { // Check PTX compatibility if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion())) return true; // Check BIN compatibility for (int i = minorVersion(); i >= 0; --i) if (TargetArchs::hasBin(majorVersion(), i)) return true; return false; } void query() const { const cudaDeviceProp* prop = deviceProps.get(device_id_); name_ = prop->name; multi_processor_count_ = prop->multiProcessorCount; majorVersion_ = prop->major; minorVersion_ = prop->minor; } void printCudaDeviceInfo(int device) const { int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n"); printf("Device count: %d\n", count); int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); const char *computeMode[] = { "Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)", "Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)", "Prohibited (no host thread can use ::cudaSetDevice() with this device)", "Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)", "Unknown", NULL }; for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); printf("\nDevice %d: \"%s\"\n", dev, prop.name); printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor); printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem); int cores = convertSMVer2Cores(prop.major, prop.minor); if (cores > 0) printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n", prop.multiProcessorCount, cores, cores * prop.multiProcessorCount); printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f); printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n", prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1], prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]); printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n", prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1], prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]); printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem); printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock); printf(" Total number of registers available per block: %d\n", prop.regsPerBlock); printf(" Warp size: %d\n", prop.warpSize); printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock); printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]); printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]); printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch); printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment); printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount); printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No"); printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No"); printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No"); printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No"); printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No"); printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No"); printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No"); printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No"); printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID ); printf(" Compute Mode:\n"); printf(" %s \n", computeMode[prop.computeMode]); } printf("\n"); printf("deviceQuery, CUDA Driver = CUDART"); printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100); printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100); printf(", NumDevs = %d\n\n", count); fflush(stdout); } void printShortCudaDeviceInfo(int device) const { int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); const char *arch_str = prop.major < 2 ? " (not Fermi)" : ""; printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f); printf(", sm_%d%d%s", prop.major, prop.minor, arch_str); int cores = convertSMVer2Cores(prop.major, prop.minor); if (cores > 0) printf(", %d cores", cores * prop.multiProcessorCount); printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); } fflush(stdout); } void copy(const Mat& src, GpuMat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) ); } void copy(const GpuMat& src, Mat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost) ); } void copy(const GpuMat& src, GpuMat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToDevice) ); } void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const { CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(src.size() == dst.size() && src.type() == dst.type()); CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels())); if (src.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream); static const func_t funcs[7][4] = { /* 8U */ {NppCopyMasked::call, cv::gpu::details::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 8S */ {cv::gpu::details::copyWithMask , cv::gpu::details::copyWithMask, cv::gpu::details::copyWithMask , cv::gpu::details::copyWithMask }, /* 16U */ {NppCopyMasked::call, cv::gpu::details::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 16S */ {NppCopyMasked::call, cv::gpu::details::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 32S */ {NppCopyMasked::call, cv::gpu::details::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 32F */ {NppCopyMasked::call, cv::gpu::details::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 64F */ {cv::gpu::details::copyWithMask , cv::gpu::details::copyWithMask, cv::gpu::details::copyWithMask , cv::gpu::details::copyWithMask } }; const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::details::copyWithMask; func(src, dst, mask, 0); } void convert(const GpuMat& src, GpuMat& dst) const { typedef void (*func_t)(const GpuMat& src, GpuMat& dst); static const func_t funcs[7][7][4] = { { /* 8U -> 8U */ {0, 0, 0, 0}, /* 8U -> 8S */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 8U -> 16U */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, NppCvt::call}, /* 8U -> 16S */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, NppCvt::call}, /* 8U -> 32S */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 8U -> 32F */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 8U -> 64F */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo } }, { /* 8S -> 8U */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 8S -> 8S */ {0,0,0,0}, /* 8S -> 16U */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 8S -> 16S */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 8S -> 32S */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 8S -> 32F */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 8S -> 64F */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo} }, { /* 16U -> 8U */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, NppCvt::call}, /* 16U -> 8S */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 16U -> 16U */ {0,0,0,0}, /* 16U -> 16S */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 16U -> 32S */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 16U -> 32F */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 16U -> 64F */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo } }, { /* 16S -> 8U */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, NppCvt::call}, /* 16S -> 8S */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 16S -> 16U */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 16S -> 16S */ {0,0,0,0}, /* 16S -> 32S */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 16S -> 32F */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo }, /* 16S -> 64F */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo } }, { /* 32S -> 8U */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32S -> 8S */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32S -> 16U */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32S -> 16S */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32S -> 32S */ {0,0,0,0}, /* 32S -> 32F */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32S -> 64F */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo} }, { /* 32F -> 8U */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32F -> 8S */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32F -> 16U */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32F -> 16S */ {NppCvt::call, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32F -> 32S */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 32F -> 32F */ {0,0,0,0}, /* 32F -> 64F */ {cv::gpu::device::convertTo , cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo} }, { /* 64F -> 8U */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 64F -> 8S */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 64F -> 16U */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 64F -> 16S */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 64F -> 32S */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 64F -> 32F */ {cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo, cv::gpu::device::convertTo}, /* 64F -> 64F */ {0,0,0,0} } }; CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(dst.depth() <= CV_64F); CV_Assert(src.size() == dst.size() && src.channels() == dst.channels()); if (src.depth() == CV_64F || dst.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16); if (!aligned) { cv::gpu::device::convertTo(src, dst); return; } const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1]; CV_DbgAssert(func != 0); func(src, dst); } void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const { CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(dst.depth() <= CV_64F); if (src.depth() == CV_64F || dst.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } cv::gpu::device::convertTo(src, dst, alpha, beta); } void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const { if (mask.empty()) { if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0) { cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) ); return; } if (m.depth() == CV_8U) { int cn = m.channels(); if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3])) { int val = saturate_cast(s[0]); cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) ); return; } } typedef void (*func_t)(GpuMat& src, Scalar s); static const func_t funcs[7][4] = { {NppSet::call, cv::gpu::device::setTo , cv::gpu::device::setTo , NppSet::call}, {cv::gpu::device::setTo , cv::gpu::device::setTo , cv::gpu::device::setTo , cv::gpu::device::setTo }, {NppSet::call, NppSet::call, cv::gpu::device::setTo , NppSet::call}, {NppSet::call, NppSet::call, cv::gpu::device::setTo , NppSet::call}, {NppSet::call, cv::gpu::device::setTo , cv::gpu::device::setTo , NppSet::call}, {NppSet::call, cv::gpu::device::setTo , cv::gpu::device::setTo , NppSet::call}, {cv::gpu::device::setTo , cv::gpu::device::setTo , cv::gpu::device::setTo , cv::gpu::device::setTo } }; CV_Assert(m.depth() <= CV_64F && m.channels() <= 4); if (m.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } funcs[m.depth()][m.channels() - 1](m, s); } else { typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask); static const func_t funcs[7][4] = { {NppSetMask::call, cv::gpu::device::setTo, cv::gpu::device::setTo, NppSetMask::call}, {cv::gpu::device::setTo , cv::gpu::device::setTo, cv::gpu::device::setTo, cv::gpu::device::setTo }, {NppSetMask::call, cv::gpu::device::setTo, cv::gpu::device::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::device::setTo, cv::gpu::device::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::device::setTo, cv::gpu::device::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::device::setTo, cv::gpu::device::setTo, NppSetMask::call}, {cv::gpu::device::setTo , cv::gpu::device::setTo, cv::gpu::device::setTo, cv::gpu::device::setTo } }; CV_Assert(m.depth() <= CV_64F && m.channels() <= 4); if (m.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } funcs[m.depth()][m.channels() - 1](m, s, mask); } } void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const { cudaSafeCall( cudaMallocPitch(devPtr, step, width, height) ); } void free(void* devPtr) const { cudaFree(devPtr); } }; } #endif