/*#****************************************************************************** ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. ** ** By downloading, copying, installing or using the software you agree to this license. ** If you do not agree to this license, do not download, install, ** copy or use the software. ** ** ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) ** ** Creation - enhancement process 2007-2011 ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France ** ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). ** Refer to the following research paper for more information: ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. ** ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author : ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper: ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. ** ====> more informations in the above cited Jeanny Heraults's book. ** ** License Agreement ** For Open Source Computer Vision Library ** ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** ** For Human Visual System tools (hvstools) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. ** ** Redistribution and use in source and binary forms, with or without modification, ** are permitted provided that the following conditions are met: ** ** * Redistributions of source code must retain the above copyright notice, ** this list of conditions and the following disclaimer. ** ** * Redistributions in binary form must reproduce the above copyright notice, ** this list of conditions and the following disclaimer in the documentation ** and/or other materials provided with the distribution. ** ** * The name of the copyright holders may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** This software is provided by the copyright holders and contributors "as is" and ** any express or implied warranties, including, but not limited to, the implied ** warranties of merchantability and fitness for a particular purpose are disclaimed. ** In no event shall the Intel Corporation or contributors be liable for any direct, ** indirect, incidental, special, exemplary, or consequential damages ** (including, but not limited to, procurement of substitute goods or services; ** loss of use, data, or profits; or business interruption) however caused ** and on any theory of liability, whether in contract, strict liability, ** or tort (including negligence or otherwise) arising in any way out of ** the use of this software, even if advised of the possibility of such damage. *******************************************************************************/ #include "precomp.hpp" #include "retinacolor.hpp" // @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC : www.listic.univ-savoie.fr, Gipsa-Lab, France: www.gipsa-lab.inpg.fr/ #include #include namespace cv { // init static values static float _LMStoACr1Cr2[]={1.0, 1.0, 0.0, 1.0, -1.0, 0.0, -0.5, -0.5, 1.0}; //static double _ACr1Cr2toLMS[]={0.5, 0.5, 0.0, 0.5, -0.5, 0.0, 0.5, 0.0, 1.0}; static float _LMStoLab[]={0.5774, 0.5774, 0.5774, 0.4082, 0.4082, -0.8165, 0.7071, -0.7071, 0.0}; // constructor/desctructor RetinaColor::RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const RETINA_COLORSAMPLINGMETHOD samplingMethod) :BasicRetinaFilter(NBrows, NBcolumns, 3), _colorSampling(NBrows*NBcolumns), _RGBmosaic(NBrows*NBcolumns*3), _tempMultiplexedFrame(NBrows*NBcolumns), _demultiplexedTempBuffer(NBrows*NBcolumns*3), _demultiplexedColorFrame(NBrows*NBcolumns*3), _chrominance(NBrows*NBcolumns*3), _colorLocalDensity(NBrows*NBcolumns*3), _imageGradient(NBrows*NBcolumns*3) { // link to parent buffers (let's recycle !) _luminance=&_filterOutput; _multiplexedFrame=&_localBuffer; _objectInit=false; _samplingMethod=samplingMethod; _saturateColors=false; _colorSaturationValue=4.0; // set default spatio-temporal filter parameters setLPfilterParameters(0.0, 0.0, 1.5); setLPfilterParameters(0.0, 0.0, 10.5, 1);// for the low pass filter dedicated to contours energy extraction (demultiplexing process) setLPfilterParameters(0.0, 0.0, 0.9, 2); // init default value on image Gradient _imageGradient=0.57; // init color sampling map _initColorSampling(); // flush all buffers clearAllBuffers(); } RetinaColor::~RetinaColor() { } /** * function that clears all buffers of the object */ void RetinaColor::clearAllBuffers() { BasicRetinaFilter::clearAllBuffers(); _tempMultiplexedFrame=0; _demultiplexedTempBuffer=0; _demultiplexedColorFrame=0; _chrominance=0; _imageGradient=1; } /** * resize retina color filter object (resize all allocated buffers) * @param NBrows: the new height size * @param NBcolumns: the new width size */ void RetinaColor::resize(const unsigned int NBrows, const unsigned int NBcolumns) { BasicRetinaFilter::clearAllBuffers(); _colorSampling.resize(NBrows*NBcolumns); _RGBmosaic.resize(NBrows*NBcolumns*3); _tempMultiplexedFrame.resize(NBrows*NBcolumns); _demultiplexedTempBuffer.resize(NBrows*NBcolumns*3); _demultiplexedColorFrame.resize(NBrows*NBcolumns*3); _chrominance.resize(NBrows*NBcolumns*3); _colorLocalDensity.resize(NBrows*NBcolumns*3); _imageGradient.resize(NBrows*NBcolumns*3); // link to parent buffers (let's recycle !) _luminance=&_filterOutput; _multiplexedFrame=&_localBuffer; // init color sampling map _initColorSampling(); // clean buffers clearAllBuffers(); } void RetinaColor::_initColorSampling() { // filling the conversion table for multiplexed <=> demultiplexed frame srand(time(NULL)); // preInit cones probabilities _pR=_pB=_pG=0; switch (_samplingMethod) { case RETINA_COLOR_RANDOM: for (unsigned int index=0 ; indexgetNBpixels(); ++index) { // random RGB sampling unsigned int colorIndex=rand()%24; if (colorIndex<8){ colorIndex=0; ++_pR; }else { if (colorIndex<21){ colorIndex=1; ++_pG; }else{ colorIndex=2; ++_pB; } } _colorSampling[index] = colorIndex*this->getNBpixels()+index; } _pR/=(float)this->getNBpixels(); _pG/=(float)this->getNBpixels(); _pB/=(float)this->getNBpixels(); std::cout<<"Color channels proportions: pR, pG, pB= "<<_pR<<", "<<_pG<<", "<<_pB<<", "<getNBpixels(); ++index) { _colorSampling[index] = index+((index%3+(index%_filterOutput.getNBcolumns()))%3)*_filterOutput.getNBpixels(); } _pR=_pB=_pG=1.0/3.0; break; case RETINA_COLOR_BAYER: // default sets bayer sampling for (unsigned int index=0 ; index<_filterOutput.getNBpixels(); ++index) { //First line: R G R G _colorSampling[index] = index+((index/_filterOutput.getNBcolumns())%2)*_filterOutput.getNBpixels()+((index%_filterOutput.getNBcolumns())%2)*_filterOutput.getNBpixels(); //First line: G R G R //_colorSampling[index] = 3*index+((index/_filterOutput.getNBcolumns())%2)+((index%_filterOutput.getNBcolumns()+1)%2); } _pR=_pB=0.25; _pG=0.5; break; default: #ifdef RETINACOLORDEBUG std::cerr<<"RetinaColor::No or wrong color sampling method, skeeping"< &multiplexedColorFrame, const bool adaptiveFiltering, const float maxInputValue) { // demultiplex the grey frame to RGB frame // -> first set demultiplexed frame to 0 _demultiplexedTempBuffer=0; // -> demultiplex process register unsigned int *colorSamplingPRT=&_colorSampling[0]; register const float *multiplexedColorFramePTR=get_data(multiplexedColorFrame); for (unsigned int indexa=0; indexa<_filterOutput.getNBpixels() ; ++indexa) _demultiplexedTempBuffer[*(colorSamplingPRT++)]=*(multiplexedColorFramePTR++); // interpolate the demultiplexed frame depending on the color sampling method if (!adaptiveFiltering) _interpolateImageDemultiplexedImage(&_demultiplexedTempBuffer[0]); // low pass filtering the demultiplexed frame _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0], &_chrominance[0]); _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_chrominance[0]+_filterOutput.getNBpixels()); _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_chrominance[0]+_filterOutput.getDoubleNBpixels()); /*if (_samplingMethod=BAYER) { _applyRIFfilter(_chrominance, _chrominance); _applyRIFfilter(_chrominance+_filterOutput.getNBpixels(), _chrominance+_filterOutput.getNBpixels()); _applyRIFfilter(_chrominance+_filterOutput.getDoubleNBpixels(), _chrominance+_filterOutput.getDoubleNBpixels()); }*/ // normalize by the photoreceptors local density and retrieve the local luminance register float *chrominancePTR= &_chrominance[0]; register float *colorLocalDensityPTR= &_colorLocalDensity[0]; register float *luminance= &(*_luminance)[0]; if (!adaptiveFiltering)// compute the gradient on the luminance { if (_samplingMethod==RETINA_COLOR_RANDOM) for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance) { // normalize by photoreceptors density float Cr=*(chrominancePTR)*_colorLocalDensity[indexc]; float Cg=*(chrominancePTR+_filterOutput.getNBpixels())*_colorLocalDensity[indexc+_filterOutput.getNBpixels()]; float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels())*_colorLocalDensity[indexc+_filterOutput.getDoubleNBpixels()]; *luminance=(Cr+Cg+Cb)*_pG; *(chrominancePTR)=Cr-*luminance; *(chrominancePTR+_filterOutput.getNBpixels())=Cg-*luminance; *(chrominancePTR+_filterOutput.getDoubleNBpixels())=Cb-*luminance; } else for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance) { float Cr=*(chrominancePTR); float Cg=*(chrominancePTR+_filterOutput.getNBpixels()); float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels()); *luminance=_pR*Cr+_pG*Cg+_pB*Cb; *(chrominancePTR)=Cr-*luminance; *(chrominancePTR+_filterOutput.getNBpixels())=Cg-*luminance; *(chrominancePTR+_filterOutput.getDoubleNBpixels())=Cb-*luminance; } // in order to get the color image, each colored map needs to be added the luminance // -> to do so, compute: multiplexedColorFrame - remultiplexed chrominances runColorMultiplexing(_chrominance, _tempMultiplexedFrame); //lum = 1/3((f*(ImR))/(f*mR) + (f*(ImG))/(f*mG) + (f*(ImB))/(f*mB)); float *luminancePTR= &(*_luminance)[0]; chrominancePTR= &_chrominance[0]; float *demultiplexedColorFramePTR= &_demultiplexedColorFrame[0]; for (unsigned int indexp=0; indexp<_filterOutput.getNBpixels() ; ++indexp, ++luminancePTR, ++chrominancePTR, ++demultiplexedColorFramePTR) { *luminancePTR=(multiplexedColorFrame[indexp]-_tempMultiplexedFrame[indexp]); *(demultiplexedColorFramePTR)=*(chrominancePTR)+*luminancePTR; *(demultiplexedColorFramePTR+_filterOutput.getNBpixels())=*(chrominancePTR+_filterOutput.getNBpixels())+*luminancePTR; *(demultiplexedColorFramePTR+_filterOutput.getDoubleNBpixels())=*(chrominancePTR+_filterOutput.getDoubleNBpixels())+*luminancePTR; } }else { register const float *multiplexedColorFramePTR= get_data(multiplexedColorFrame); for (unsigned int indexc=0; indexc<_filterOutput.getNBpixels() ; ++indexc, ++chrominancePTR, ++colorLocalDensityPTR, ++luminance, ++multiplexedColorFramePTR) { // normalize by photoreceptors density float Cr=*(chrominancePTR)*_colorLocalDensity[indexc]; float Cg=*(chrominancePTR+_filterOutput.getNBpixels())*_colorLocalDensity[indexc+_filterOutput.getNBpixels()]; float Cb=*(chrominancePTR+_filterOutput.getDoubleNBpixels())*_colorLocalDensity[indexc+_filterOutput.getDoubleNBpixels()]; *luminance=(Cr+Cg+Cb)*_pG; _demultiplexedTempBuffer[_colorSampling[indexc]] = *multiplexedColorFramePTR - *luminance; } // compute the gradient of the luminance _computeGradient(&(*_luminance)[0]); // adaptively filter the submosaics to get the adaptive densities, here the buffer _chrominance is used as a temp buffer _adaptiveSpatialLPfilter(&_RGBmosaic[0], &_chrominance[0]); _adaptiveSpatialLPfilter(&_RGBmosaic[0]+_filterOutput.getNBpixels(), &_chrominance[0]+_filterOutput.getNBpixels()); _adaptiveSpatialLPfilter(&_RGBmosaic[0]+_filterOutput.getDoubleNBpixels(), &_chrominance[0]+_filterOutput.getDoubleNBpixels()); _adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0], &_demultiplexedColorFrame[0]); _adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels()); _adaptiveSpatialLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getDoubleNBpixels()); for (unsigned int index=0; index<_filterOutput.getNBpixels()*3 ; ++index) // cette boucle pourrait �tre supprimee en passant la densit� � la fonction de filtrage _demultiplexedColorFrame[index] /= _chrominance[index]; // compute and substract the residual luminance for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index) { float residu = _pR*_demultiplexedColorFrame[index] + _pG*_demultiplexedColorFrame[index+_filterOutput.getNBpixels()] + _pB*_demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()]; _demultiplexedColorFrame[index] = _demultiplexedColorFrame[index] - residu; _demultiplexedColorFrame[index+_filterOutput.getNBpixels()] = _demultiplexedColorFrame[index+_filterOutput.getNBpixels()] - residu; _demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] = _demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] - residu; } // multiplex the obtained chrominance runColorMultiplexing(_demultiplexedColorFrame, _tempMultiplexedFrame); _demultiplexedTempBuffer=0; // get the luminance, et and add it to each chrominance for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index) { (*_luminance)[index]=multiplexedColorFrame[index]-_tempMultiplexedFrame[index]; _demultiplexedTempBuffer[_colorSampling[index]] = _demultiplexedColorFrame[_colorSampling[index]];//multiplexedColorFrame[index] - (*_luminance)[index]; } _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0], &_demultiplexedTempBuffer[0]); _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels(), &_demultiplexedTempBuffer[0]+_filterOutput.getNBpixels()); _spatiotemporalLPfilter(&_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels(), &_demultiplexedTempBuffer[0]+_filterOutput.getDoubleNBpixels()); // get the luminance and add it to each chrominance for (unsigned int index=0; index<_filterOutput.getNBpixels() ; ++index) { _demultiplexedColorFrame[index] = _demultiplexedTempBuffer[index]*_colorLocalDensity[index]+ (*_luminance)[index]; _demultiplexedColorFrame[index+_filterOutput.getNBpixels()] = _demultiplexedTempBuffer[index+_filterOutput.getNBpixels()]*_colorLocalDensity[index+_filterOutput.getNBpixels()]+ (*_luminance)[index]; _demultiplexedColorFrame[index+_filterOutput.getDoubleNBpixels()] = _demultiplexedTempBuffer[index+_filterOutput.getDoubleNBpixels()]*_colorLocalDensity[index+_filterOutput.getDoubleNBpixels()]+ (*_luminance)[index]; } } // eliminate saturated colors by simple clipping values to the input range clipRGBOutput_0_maxInputValue(NULL, maxInputValue); /* transfert image gradient in order to check validity memcpy((*_luminance), _imageGradient, sizeof(float)*_filterOutput.getNBpixels()); memcpy(_demultiplexedColorFrame, _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels()); memcpy(_demultiplexedColorFrame+_filterOutput.getNBpixels(), _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels()); memcpy(_demultiplexedColorFrame+2*_filterOutput.getNBpixels(), _imageGradient+_filterOutput.getNBpixels(), sizeof(float)*_filterOutput.getNBpixels()); */ if (_saturateColors) { TemplateBuffer::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0], &_demultiplexedColorFrame[0], _filterOutput.getNBpixels()); TemplateBuffer::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels(), &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels(), _filterOutput.getNBpixels()); TemplateBuffer::normalizeGrayOutputCentredSigmoide(128, _colorSaturationValue, maxInputValue, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels()*2, &_demultiplexedColorFrame[0]+_filterOutput.getNBpixels()*2, _filterOutput.getNBpixels()); } } // color multiplexing: input frame size=_NBrows*_filterOutput.getNBcolumns()*3, multiplexedFrame output size=_NBrows*_filterOutput.getNBcolumns() void RetinaColor::runColorMultiplexing(const std::valarray &demultiplexedInputFrame, std::valarray &multiplexedFrame) { // multiply each color layer by its bayer mask register unsigned int *colorSamplingPTR= &_colorSampling[0]; register float *multiplexedFramePTR= &multiplexedFrame[0]; for (unsigned int indexp=0; indexp<_filterOutput.getNBpixels(); ++indexp) *(multiplexedFramePTR++)=demultiplexedInputFrame[*(colorSamplingPTR++)]; } void RetinaColor::normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue) { //normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance); TemplateBuffer::normalizeGrayOutput_0_maxOutputValue(&_demultiplexedColorFrame[0], 3*_filterOutput.getNBpixels(), maxOutputValue); //normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance+_filterOutput.getNBpixels()); //normalizeGrayOutput_0_maxOutputValue(_demultiplexedColorFrame+_filterOutput.getNBpixels(), _filterOutput.getNBpixels(), maxOutputValue); //normalizeGrayOutputCentredSigmoide(0.0, 2, _chrominance+2*_filterOutput.getNBpixels()); //normalizeGrayOutput_0_maxOutputValue(_demultiplexedColorFrame+_filterOutput.getDoubleNBpixels(), _filterOutput.getNBpixels(), maxOutputValue); TemplateBuffer::normalizeGrayOutput_0_maxOutputValue(&(*_luminance)[0], _filterOutput.getNBpixels(), maxOutputValue); } /// normalize output between 0 and maxOutputValue; void RetinaColor::clipRGBOutput_0_maxInputValue(float *inputOutputBuffer, const float maxInputValue) { //std::cout<<"RetinaColor::normalizing RGB frame..."<maxInputValue) *inputOutputBufferPTR=maxInputValue; else if (*inputOutputBufferPTR<0) *inputOutputBufferPTR=0; } //std::cout<<"RetinaColor::...normalizing RGB frame OK"<maxValue) maxValue=outputFrame[index]; } } normalisationFactor=1.0/maxValue; // normalisation [0, 1] for (unsigned int indexp=1 ; indexp<_filterOutput.getNBrows()-1; ++indexp) outputFrame[indexp]=outputFrame[indexp]*normalisationFactor; } ////////////////////////////////////////////////////////// // ADAPTIVE BASIC RETINA FILTER ////////////////////////////////////////////////////////// // run LP filter for a new frame input and save result at a specific output adress void RetinaColor::_adaptiveSpatialLPfilter(const float *inputFrame, float *outputFrame) { /**********/ _gain = (1-0.57)*(1-0.57)*(1-0.06)*(1-0.06); // launch the serie of 1D directional filters in order to compute the 2D low pass filter _adaptiveHorizontalCausalFilter_addInput(inputFrame, outputFrame, 0, _filterOutput.getNBrows()); _adaptiveHorizontalAnticausalFilter(outputFrame, 0, _filterOutput.getNBrows()); _adaptiveVerticalCausalFilter(outputFrame, 0, _filterOutput.getNBcolumns()); _adaptiveVerticalAnticausalFilter_multGain(outputFrame, 0, _filterOutput.getNBcolumns()); } // horizontal causal filter which adds the input inside void RetinaColor::_adaptiveHorizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, unsigned int IDrowStart, unsigned int IDrowEnd) { register float* outputPTR=outputFrame+IDrowStart*_filterOutput.getNBcolumns(); register const float* inputPTR=inputFrame+IDrowStart*_filterOutput.getNBcolumns(); register float *imageGradientPTR= &_imageGradient[0]+IDrowStart*_filterOutput.getNBcolumns(); for (unsigned int IDrow=IDrowStart; IDrow &result) { bool processSuccess=true; // basic preliminary error check if (result.size()!=_demultiplexedColorFrame.size()) { std::cerr<<"RetinaColor::applyKrauskopfLMS2Acr1cr2Transform: input buffer does not match retina buffer size, conversion aborted"< &result) { bool processSuccess=true; // basic preliminary error check if (result.size()!=_demultiplexedColorFrame.size()) { std::cerr<<"RetinaColor::applyKrauskopfLMS2Acr1cr2Transform: input buffer does not match retina buffer size, conversion aborted"< &inputFrameBuffer, std::valarray &outputFrameBuffer, const float *transformTable) { // two step methods in order to allow inputFrame and outputFrame to be the same unsigned int nbPixels=(unsigned int)(inputFrameBuffer.size()/3), dbpixels=(unsigned int)(2*inputFrameBuffer.size()/3); const float *inputFrame=get_data(inputFrameBuffer); float *outputFrame= &outputFrameBuffer[0]; for (unsigned int dataIndex=0; dataIndex