/* * Copyright (c) 2011. Philipp Wagner . * Released to public domain under terms of the BSD Simplified license. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the organization nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * See */ #include "opencv2/core/core.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/contrib/contrib.hpp" #include #include #include using namespace cv; using namespace std; static Mat toGrayscale(InputArray _src) { Mat src = _src.getMat(); // only allow one channel if(src.channels() != 1) CV_Error(CV_StsBadArg, "Only Matrices with one channel are supported"); // create and return normalized image Mat dst; cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1); return dst; } static void read_csv(const string& filename, vector& images, vector& labels, char separator = ';') { std::ifstream file(filename.c_str(), ifstream::in); if (!file) { string error_message = "No valid input file was given, please check the given filename."; CV_Error(CV_StsBadArg, error_message); } string line, path, classlabel; while (getline(file, line)) { stringstream liness(line); getline(liness, path, separator); getline(liness, classlabel); if(!path.empty() && !classlabel.empty()) { images.push_back(imread(path, 0)); labels.push_back(atoi(classlabel.c_str())); } } } int main(int argc, const char *argv[]) { // Check for valid command line arguments, print usage // if no arguments were given. if (argc != 2) { cout << "usage: " << argv[0] << " " << endl; exit(1); } // Get the path to your CSV. string fn_csv = string(argv[1]); // These vectors hold the images and corresponding labels. vector images; vector labels; // Read in the data. This can fail if no valid // input filename is given. try { read_csv(fn_csv, images, labels); } catch (cv::Exception& e) { cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl; // nothing more we can do exit(1); } // Quit if there are not enough images for this demo. if(images.size() <= 1) { string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!"; CV_Error(CV_StsError, error_message); } // Get the height from the first image. We'll need this // later in code to reshape the images to their original // size: int height = images[0].rows; // The following lines simply get the last images from // your dataset and remove it from the vector. This is // done, so that the training data (which we learn the // cv::FaceRecognizer on) and the test data we test // the model with, do not overlap. Mat testSample = images[images.size() - 1]; int testLabel = labels[labels.size() - 1]; images.pop_back(); labels.pop_back(); // The following lines create an Eigenfaces model for // face recognition and train it with the images and // labels read from the given CSV file. // This here is a full PCA, if you just want to keep // 10 principal components (read Eigenfaces), then call // the factory method like this: // // cv::createEigenFaceRecognizer(10); // // If you want to create a FaceRecognizer with a // confidennce threshold, call it with: // // cv::createEigenFaceRecognizer(10, 123.0); // Ptr model = createEigenFaceRecognizer(); model->train(images, labels); // The following line predicts the label of a given // test image: int predictedLabel = model->predict(testSample); // // To get the confidence of a prediction call it with: // // model with: // int predictedLabel = -1; // double confidence = 0.0; // model->predict(testSample, predictedLabel, confidence); // string result_message = format("Predicted class = %d / Actual class = %d.", predictedLabel, testLabel); cout << result_message << endl; // Sometimes you'll need to get/set internal model data, // which isn't exposed by the public cv::FaceRecognizer. // Since each cv::FaceRecognizer is derived from a // cv::Algorithm, you can query the data. // // First we'll use it to set the threshold of the FaceRecognizer // without retraining the model: // model->set("threshold", 0.0); // Now the threshold is of this model is 0.0. A prediction // now returns -1, as it's impossible to have a distance // below it // predictedLabel = model->predict(testSample); cout << "Predicted class = " << predictedLabel << endl; // Now here is how to get the eigenvalues of this Eigenfaces model: Mat eigenvalues = model->getMat("eigenvalues"); // And we can do the same to display the Eigenvectors (read Eigenfaces): Mat W = model->getMat("eigenvectors"); // From this we will display the (at most) first 10 Eigenfaces: for (int i = 0; i < min(10, W.cols); i++) { string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at(i)); cout << msg << endl; // get eigenvector #i Mat ev = W.col(i).clone(); // Reshape to original size & normalize to [0...255] for imshow. Mat grayscale = toGrayscale(ev.reshape(1, height)); // Show the image & apply a Jet colormap for better sensing. Mat cgrayscale; applyColorMap(grayscale, cgrayscale, COLORMAP_JET); imshow(format("%d", i), cgrayscale); } waitKey(0); return 0; }