/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ /****************************************************************************************\ Contour-based face feature tracking The code was created by Tatiana Cherepanova (tata@sl.iae.nsk.su) \****************************************************************************************/ #include "precomp.hpp" #include "_vectrack.h" #define NUM_FACE_ELEMENTS 3 enum { MOUTH = 0, LEYE = 1, REYE = 2, }; #define MAX_LAYERS 64 const double pi = 3.1415926535; struct CvFaceTracker; struct CvTrackingRect; class CvFaceElement; void ThresholdingParam(IplImage *imgGray, int iNumLayers, int &iMinLevel, int &iMaxLevel, float &step, float& power, int iHistMin /*= HIST_MIN*/); int ChoiceTrackingFace3(CvFaceTracker* pTF, const int nElements, const CvFaceElement* big_face, CvTrackingRect* face, int& new_energy); int ChoiceTrackingFace2(CvFaceTracker* pTF, const int nElements, const CvFaceElement* big_face, CvTrackingRect* face, int& new_energy, int noel); inline int GetEnergy(CvTrackingRect** ppNew, const CvTrackingRect* pPrev, CvPoint* ptTempl, CvRect* rTempl); inline int GetEnergy2(CvTrackingRect** ppNew, const CvTrackingRect* pPrev, CvPoint* ptTempl, CvRect* rTempl, int* element); inline double CalculateTransformationLMS3_0( CvPoint* pTemplPoints, CvPoint* pSrcPoints); inline double CalculateTransformationLMS3( CvPoint* pTemplPoints, CvPoint* pSrcPoints, double* pdbAverageScale, double* pdbAverageRotate, double* pdbAverageShiftX, double* pdbAverageShiftY ); struct CvTrackingRect { CvRect r; CvPoint ptCenter; int iColor; int iEnergy; int nRectsInThis; int nRectsOnLeft; int nRectsOnRight; int nRectsOnTop; int nRectsOnBottom; CvTrackingRect() { memset(this, 0, sizeof(CvTrackingRect)); }; int Energy(const CvTrackingRect& prev) { int prev_color = 0 == prev.iColor ? iColor : prev.iColor; iEnergy = 1 * pow2(r.width - prev.r.width) + 1 * pow2(r.height - prev.r.height) + 1 * pow2(iColor - prev_color) / 4 + - 1 * nRectsInThis + - 0 * nRectsOnTop + + 0 * nRectsOnLeft + + 0 * nRectsOnRight + + 0 * nRectsOnBottom; return iEnergy; } }; struct CvFaceTracker { CvTrackingRect face[NUM_FACE_ELEMENTS]; int iTrackingFaceType; double dbRotateDelta; double dbRotateAngle; CvPoint ptRotate; CvPoint ptTempl[NUM_FACE_ELEMENTS]; CvRect rTempl[NUM_FACE_ELEMENTS]; IplImage* imgGray; IplImage* imgThresh; CvMemStorage* mstgContours; CvFaceTracker() { ptRotate.x = 0; ptRotate.y = 0; dbRotateDelta = 0; dbRotateAngle = 0; iTrackingFaceType = -1; imgThresh = NULL; imgGray = NULL; mstgContours = NULL; }; ~CvFaceTracker() { if (NULL != imgGray) delete imgGray; if (NULL != imgThresh) delete imgThresh; if (NULL != mstgContours) cvReleaseMemStorage(&mstgContours); }; int Init(CvRect* pRects, IplImage* imgray) { for (int i = 0; i < NUM_FACE_ELEMENTS; i++) { face[i].r = pRects[i]; face[i].ptCenter = Center(face[i].r); ptTempl[i] = face[i].ptCenter; rTempl[i] = face[i].r; } imgray = cvCreateImage(cvSize(imgray->width, imgray->height), 8, 1); imgThresh = cvCreateImage(cvSize(imgray->width, imgray->height), 8, 1); mstgContours = cvCreateMemStorage(); if ((NULL == imgray) || (NULL == imgThresh) || (NULL == mstgContours)) return FALSE; return TRUE; }; int InitNextImage(IplImage* img) { CvSize sz = {img->width, img->height}; ReallocImage(&imgGray, sz, 1); ReallocImage(&imgThresh, sz, 1); ptRotate = face[MOUTH].ptCenter; float m[6]; CvMat mat = cvMat( 2, 3, CV_32FC1, m ); if (NULL == imgGray || NULL == imgThresh) return FALSE; /*m[0] = (float)cos(-dbRotateAngle*CV_PI/180.); m[1] = (float)sin(-dbRotateAngle*CV_PI/180.); m[2] = (float)ptRotate.x; m[3] = -m[1]; m[4] = m[0]; m[5] = (float)ptRotate.y;*/ cv2DRotationMatrix( cvPointTo32f(ptRotate), -dbRotateAngle, 1., &mat ); cvWarpAffine( img, imgGray, &mat ); if (NULL == mstgContours) mstgContours = cvCreateMemStorage(); else cvClearMemStorage(mstgContours); if (NULL == mstgContours) return FALSE; return TRUE; } }; class CvFaceElement { public: CvSeq* m_seqRects; CvMemStorage* m_mstgRects; CvRect m_rROI; CvTrackingRect m_trPrev; inline CvFaceElement() { m_seqRects = NULL; m_mstgRects = NULL; m_rROI.x = 0; m_rROI.y = 0; m_rROI.width = 0; m_rROI.height = 0; }; inline int Init(const CvRect& roi, const CvTrackingRect& prev, CvMemStorage* mstg = NULL) { m_rROI = roi; m_trPrev = prev; if (NULL != mstg) m_mstgRects = mstg; if (NULL == m_mstgRects) return FALSE; if (NULL == m_seqRects) m_seqRects = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvTrackingRect), m_mstgRects); else cvClearSeq(m_seqRects); if (NULL == m_seqRects) return FALSE; return TRUE; }; void FindRects(IplImage* img, IplImage* thresh, int nLayers, int dMinSize); protected: void FindContours(IplImage* img, IplImage* thresh, int nLayers, int dMinSize); void MergeRects(int d); void Energy(); }; //class CvFaceElement inline int CV_CDECL CompareEnergy(const void* el1, const void* el2, void*) { return ((CvTrackingRect*)el1)->iEnergy - ((CvTrackingRect*)el2)->iEnergy; }// int CV_CDECL CompareEnergy(const void* el1, const void* el2, void*) void CvFaceElement::FindRects(IplImage* img, IplImage* thresh, int nLayers, int dMinSize) { FindContours(img, thresh, nLayers, dMinSize / 4); if (0 == m_seqRects->total) return; Energy(); cvSeqSort(m_seqRects, CompareEnergy, NULL); CvTrackingRect* pR = (CvTrackingRect*)cvGetSeqElem(m_seqRects, 0); if (m_seqRects->total < 32) { MergeRects(dMinSize / 8); Energy(); cvSeqSort(m_seqRects, CompareEnergy, NULL); } pR = (CvTrackingRect*)cvGetSeqElem(m_seqRects, 0); if ((pR->iEnergy > 100 && m_seqRects->total < 32) || (m_seqRects->total < 16)) { MergeRects(dMinSize / 4); Energy(); cvSeqSort(m_seqRects, CompareEnergy, NULL); } pR = (CvTrackingRect*)cvGetSeqElem(m_seqRects, 0); if ((pR->iEnergy > 100 && m_seqRects->total < 16) || (pR->iEnergy > 200 && m_seqRects->total < 32)) { MergeRects(dMinSize / 2); Energy(); cvSeqSort(m_seqRects, CompareEnergy, NULL); } }// void CvFaceElement::FindRects(IplImage* img, IplImage* thresh, int nLayers, int dMinSize) void CvFaceElement::FindContours(IplImage* img, IplImage* thresh, int nLayers, int dMinSize) { CvSeq* seq; CvRect roi = m_rROI; Extend(roi, 1); cvSetImageROI(img, roi); cvSetImageROI(thresh, roi); // layers int colors[MAX_LAYERS] = {0}; int iMinLevel = 0, iMaxLevel = 255; float step, power; ThresholdingParam(img, nLayers / 2, iMinLevel, iMaxLevel, step, power, 4); int iMinLevelPrev = iMinLevel; int iMaxLevelPrev = iMinLevel; if (m_trPrev.iColor != 0) { iMinLevelPrev = m_trPrev.iColor - nLayers / 2; iMaxLevelPrev = m_trPrev.iColor + nLayers / 2; } if (iMinLevelPrev < iMinLevel) { iMaxLevelPrev += iMinLevel - iMinLevelPrev; iMinLevelPrev = iMinLevel; } if (iMaxLevelPrev > iMaxLevel) { iMinLevelPrev -= iMaxLevelPrev - iMaxLevel; if (iMinLevelPrev < iMinLevel) iMinLevelPrev = iMinLevel; iMaxLevelPrev = iMaxLevel; } int n = nLayers; n -= (iMaxLevelPrev - iMinLevelPrev + 1) / 2; step = float(iMinLevelPrev - iMinLevel + iMaxLevel - iMaxLevelPrev) / float(n); int j = 0; float level; for (level = (float)iMinLevel; level < iMinLevelPrev && j < nLayers; level += step, j++) colors[j] = int(level + 0.5); for (level = (float)iMinLevelPrev; level < iMaxLevelPrev && j < nLayers; level += 2.0, j++) colors[j] = int(level + 0.5); for (level = (float)iMaxLevelPrev; level < iMaxLevel && j < nLayers; level += step, j++) colors[j] = int(level + 0.5); // for (int i = 0; i < nLayers; i++) { cvThreshold(img, thresh, colors[i], 255.0, CV_THRESH_BINARY); if (cvFindContours(thresh, m_mstgRects, &seq, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE)) { CvTrackingRect cr; for (CvSeq* external = seq; external; external = external->h_next) { cr.r = cvContourBoundingRect(external); Move(cr.r, roi.x, roi.y); if (RectInRect(cr.r, m_rROI) && cr.r.width > dMinSize && cr.r.height > dMinSize) { cr.ptCenter = Center(cr.r); cr.iColor = colors[i]; cvSeqPush(m_seqRects, &cr); } for (CvSeq* internal = external->v_next; internal; internal = internal->h_next) { cr.r = cvContourBoundingRect(internal); Move(cr.r, roi.x, roi.y); if (RectInRect(cr.r, m_rROI) && cr.r.width > dMinSize && cr.r.height > dMinSize) { cr.ptCenter = Center(cr.r); cr.iColor = colors[i]; cvSeqPush(m_seqRects, &cr); } } } cvClearSeq(seq); } } cvResetImageROI(img); cvResetImageROI(thresh); }//void CvFaceElement::FindContours(IplImage* img, IplImage* thresh, int nLayers) void CvFaceElement::MergeRects(int d) { int nRects = m_seqRects->total; CvSeqReader reader, reader2; cvStartReadSeq( m_seqRects, &reader ); int i, j; for (i = 0; i < nRects; i++) { CvTrackingRect* pRect1 = (CvTrackingRect*)(reader.ptr); cvStartReadSeq( m_seqRects, &reader2 ); cvSetSeqReaderPos(&reader2, i + 1); for (j = i + 1; j < nRects; j++) { CvTrackingRect* pRect2 = (CvTrackingRect*)(reader2.ptr); if (abs(pRect1->ptCenter.y - pRect2->ptCenter.y) < d && abs(pRect1->r.height - pRect2->r.height) < d) { CvTrackingRect rNew; rNew.iColor = (pRect1->iColor + pRect2->iColor + 1) / 2; rNew.r.x = min(pRect1->r.x, pRect2->r.x); rNew.r.y = min(pRect1->r.y, pRect2->r.y); rNew.r.width = max(pRect1->r.x + pRect1->r.width, pRect2->r.x + pRect2->r.width) - rNew.r.x; rNew.r.height = min(pRect1->r.y + pRect1->r.height, pRect2->r.y + pRect2->r.height) - rNew.r.y; if (rNew.r != pRect1->r && rNew.r != pRect2->r) { rNew.ptCenter = Center(rNew.r); cvSeqPush(m_seqRects, &rNew); } } CV_NEXT_SEQ_ELEM( sizeof(CvTrackingRect), reader2 ); } CV_NEXT_SEQ_ELEM( sizeof(CvTrackingRect), reader ); } // delete equal rects for (i = 0; i < m_seqRects->total; i++) { CvTrackingRect* pRect1 = (CvTrackingRect*)cvGetSeqElem(m_seqRects, i); int j_begin = i + 1; for (j = j_begin; j < m_seqRects->total;) { CvTrackingRect* pRect2 = (CvTrackingRect*)cvGetSeqElem(m_seqRects, j); if (pRect1->r == pRect2->r) cvSeqRemove(m_seqRects, j); else j++; } } }//void CvFaceElement::MergeRects(int d) void CvFaceElement::Energy() { CvSeqReader reader, reader2; cvStartReadSeq( m_seqRects, &reader ); for (int i = 0; i < m_seqRects->total; i++) { CvTrackingRect* pRect = (CvTrackingRect*)(reader.ptr); // outside and inside rects cvStartReadSeq( m_seqRects, &reader2 ); for (int j = 0; j < m_seqRects->total; j++) { CvTrackingRect* pRect2 = (CvTrackingRect*)(reader2.ptr); if (i != j) { if (RectInRect(pRect2->r, pRect->r)) pRect->nRectsInThis ++; else if (pRect2->r.y + pRect2->r.height <= pRect->r.y) pRect->nRectsOnTop ++; else if (pRect2->r.y >= pRect->r.y + pRect->r.height) pRect->nRectsOnBottom ++; else if (pRect2->r.x + pRect2->r.width <= pRect->r.x) pRect->nRectsOnLeft ++; else if (pRect2->r.x >= pRect->r.x + pRect->r.width) pRect->nRectsOnRight ++; } CV_NEXT_SEQ_ELEM( sizeof(CvTrackingRect), reader2 ); } // energy pRect->Energy(m_trPrev); CV_NEXT_SEQ_ELEM( sizeof(CvTrackingRect), reader ); } }//void CvFaceElement::Energy() CV_IMPL CvFaceTracker* cvInitFaceTracker(CvFaceTracker* pFaceTracker, const IplImage* imgGray, CvRect* pRects, int nRects) { assert(NULL != imgGray); assert(NULL != pRects); assert(nRects >= NUM_FACE_ELEMENTS); if ((NULL == imgGray) || (NULL == pRects) || (nRects < NUM_FACE_ELEMENTS)) return NULL; //int new_face = FALSE; CvFaceTracker* pFace = pFaceTracker; if (NULL == pFace) { pFace = new CvFaceTracker; if (NULL == pFace) return NULL; //new_face = TRUE; } pFace->Init(pRects, (IplImage*)imgGray); return pFace; }//CvFaceTracker* InitFaceTracker(IplImage* imgGray, CvRect* pRects, int nRects) CV_IMPL void cvReleaseFaceTracker(CvFaceTracker** ppFaceTracker) { if (NULL == *ppFaceTracker) return; delete *ppFaceTracker; *ppFaceTracker = NULL; }//void ReleaseFaceTracker(CvFaceTracker** ppFaceTracker) CV_IMPL int cvTrackFace(CvFaceTracker* pFaceTracker, IplImage* imgGray, CvRect* pRects, int nRects, CvPoint* ptRotate, double* dbAngleRotate) { assert(NULL != pFaceTracker); assert(NULL != imgGray); assert(NULL != pRects && nRects >= NUM_FACE_ELEMENTS); if ((NULL == pFaceTracker) || (NULL == imgGray)) return FALSE; pFaceTracker->InitNextImage(imgGray); *ptRotate = pFaceTracker->ptRotate; *dbAngleRotate = pFaceTracker->dbRotateAngle; int nElements = 16; double dx = pFaceTracker->face[LEYE].ptCenter.x - pFaceTracker->face[REYE].ptCenter.x; double dy = pFaceTracker->face[LEYE].ptCenter.y - pFaceTracker->face[REYE].ptCenter.y; double d_eyes = sqrt(dx*dx + dy*dy); int d = cvRound(0.25 * d_eyes); int dMinSize = d; int nRestarts = 0; int elem; CvFaceElement big_face[NUM_FACE_ELEMENTS]; START: // init for (elem = 0; elem < NUM_FACE_ELEMENTS; elem++) { CvRect r = pFaceTracker->face[elem].r; Extend(r, d); if (r.width < 4*d) { r.x -= (4*d - r.width) / 2; r.width += 4*d - r.width; } if (r.height < 3*d) { r.y -= (3*d - r.height) / 2; r.height += 3*d - r.height; } if (r.x < 1) r.x = 1; if (r.y < 1) r.y = 1; if (r.x + r.width > pFaceTracker->imgGray->width - 2) r.width = pFaceTracker->imgGray->width - 2 - r.x; if (r.y + r.height > pFaceTracker->imgGray->height - 2) r.height = pFaceTracker->imgGray->height - 2 - r.y; if (!big_face[elem].Init(r, pFaceTracker->face[elem], pFaceTracker->mstgContours)) return FALSE; } // find contours for (elem = 0; elem < NUM_FACE_ELEMENTS; elem++) big_face[elem].FindRects(pFaceTracker->imgGray, pFaceTracker->imgThresh, 32, dMinSize); // candidats CvTrackingRect new_face[NUM_FACE_ELEMENTS]; int new_energy = 0; int found = ChoiceTrackingFace3(pFaceTracker, nElements, big_face, new_face, new_energy); int restart = FALSE; int find2 = FALSE; int noel = -1; if (found) { if (new_energy > 100000 && -1 != pFaceTracker->iTrackingFaceType) find2 = TRUE; else if (new_energy > 150000) { int elements = 0; for (int el = 0; el < NUM_FACE_ELEMENTS; el++) { if (big_face[el].m_seqRects->total > 16 || (big_face[el].m_seqRects->total > 8 && new_face[el].iEnergy < 100)) elements++; else noel = el; } if (2 == elements) find2 = TRUE; else restart = TRUE; } } else { if (-1 != pFaceTracker->iTrackingFaceType) find2 = TRUE; else restart = TRUE; } RESTART: if (restart) { if (nRestarts++ < 2) { d = d + d/4; goto START; } } else if (find2) { if (-1 != pFaceTracker->iTrackingFaceType) noel = pFaceTracker->iTrackingFaceType; int found2 = ChoiceTrackingFace2(pFaceTracker, nElements, big_face, new_face, new_energy, noel); if (found2 && new_energy < 100000) { pFaceTracker->iTrackingFaceType = noel; found = TRUE; } else { restart = TRUE; goto RESTART; } } if (found) { // angle by mouth & eyes double vx_prev = double(pFaceTracker->face[LEYE].ptCenter.x + pFaceTracker->face[REYE].ptCenter.x) / 2.0 - pFaceTracker->face[MOUTH].ptCenter.x; double vy_prev = double(pFaceTracker->face[LEYE].ptCenter.y + pFaceTracker->face[REYE].ptCenter.y) / 2.0 - pFaceTracker->face[MOUTH].ptCenter.y; double vx_prev1 = vx_prev * cos(pFaceTracker->dbRotateDelta) - vy_prev * sin(pFaceTracker->dbRotateDelta); double vy_prev1 = vx_prev * sin(pFaceTracker->dbRotateDelta) + vy_prev * cos(pFaceTracker->dbRotateDelta); vx_prev = vx_prev1; vy_prev = vy_prev1; for (elem = 0; elem < NUM_FACE_ELEMENTS; elem++) pFaceTracker->face[elem] = new_face[elem]; double vx = double(pFaceTracker->face[LEYE].ptCenter.x + pFaceTracker->face[REYE].ptCenter.x) / 2.0 - pFaceTracker->face[MOUTH].ptCenter.x; double vy = double(pFaceTracker->face[LEYE].ptCenter.y + pFaceTracker->face[REYE].ptCenter.y) / 2.0 - pFaceTracker->face[MOUTH].ptCenter.y; pFaceTracker->dbRotateDelta = 0; double n1_n2 = (vx * vx + vy * vy) * (vx_prev * vx_prev + vy_prev * vy_prev); if (n1_n2 != 0) pFaceTracker->dbRotateDelta = asin((vx * vy_prev - vx_prev * vy) / sqrt(n1_n2)); pFaceTracker->dbRotateAngle -= pFaceTracker->dbRotateDelta; } else { pFaceTracker->dbRotateDelta = 0; pFaceTracker->dbRotateAngle = 0; } if ((pFaceTracker->dbRotateAngle >= pi/2 && pFaceTracker->dbRotateAngle > 0) || (pFaceTracker->dbRotateAngle <= -pi/2 && pFaceTracker->dbRotateAngle < 0)) { pFaceTracker->dbRotateDelta = 0; pFaceTracker->dbRotateAngle = 0; found = FALSE; } if (found) { for (int i = 0; i < NUM_FACE_ELEMENTS && i < nRects; i++) pRects[i] = pFaceTracker->face[i].r; } return found; }//int FindFaceTracker(CvFaceTracker* pFaceTracker, IplImage* imgGray, CvRect* pRects, int nRects, CvPoint& ptRotate, double& dbAngleRotate) void ThresholdingParam(IplImage *imgGray, int iNumLayers, int &iMinLevel, int &iMaxLevel, float &step, float& power, int iHistMin /*= HIST_MIN*/) { assert(imgGray != NULL); assert(imgGray->nChannels == 1); int i, j; // create histogram int histImg[256] = {0}; uchar* buffImg = (uchar*)imgGray->imageData; CvRect rROI = cvGetImageROI(imgGray); buffImg += rROI.y * imgGray->widthStep + rROI.x; for (j = 0; j < rROI.height; j++) { for (i = 0; i < rROI.width; i++) histImg[buffImg[i]] ++; buffImg += imgGray->widthStep; } // params for (i = 0; i < 256; i++) { if (histImg[i] > iHistMin) break; } iMinLevel = i; for (i = 255; i >= 0; i--) { if (histImg[i] > iHistMin) break; } iMaxLevel = i; if (iMaxLevel <= iMinLevel) { iMaxLevel = 255; iMinLevel = 0; } // power double black = 1; double white = 1; for (i = iMinLevel; i < (iMinLevel + iMaxLevel) / 2; i++) black += histImg[i]; for (i = (iMinLevel + iMaxLevel) / 2; i < iMaxLevel; i++) white += histImg[i]; power = float(black) / float(2 * white); // step = float(iMaxLevel - iMinLevel) / float(iNumLayers); if (step < 1.0) step = 1.0; }// void ThresholdingParam(IplImage *imgGray, int iNumLayers, int &iMinLevel, int &iMaxLevel, int &iStep) int ChoiceTrackingFace3(CvFaceTracker* pTF, const int nElements, const CvFaceElement* big_face, CvTrackingRect* face, int& new_energy) { CvTrackingRect* curr_face[NUM_FACE_ELEMENTS] = {NULL}; CvTrackingRect* new_face[NUM_FACE_ELEMENTS] = {NULL}; new_energy = 0x7fffffff; int curr_energy = 0x7fffffff; int found = FALSE; int N = 0; CvSeqReader reader_m, reader_l, reader_r; cvStartReadSeq( big_face[MOUTH].m_seqRects, &reader_m ); for (int i_mouth = 0; i_mouth < big_face[MOUTH].m_seqRects->total && i_mouth < nElements; i_mouth++) { curr_face[MOUTH] = (CvTrackingRect*)(reader_m.ptr); cvStartReadSeq( big_face[LEYE].m_seqRects, &reader_l ); for (int i_left = 0; i_left < big_face[LEYE].m_seqRects->total && i_left < nElements; i_left++) { curr_face[LEYE] = (CvTrackingRect*)(reader_l.ptr); if (curr_face[LEYE]->r.y + curr_face[LEYE]->r.height < curr_face[MOUTH]->r.y) { cvStartReadSeq( big_face[REYE].m_seqRects, &reader_r ); for (int i_right = 0; i_right < big_face[REYE].m_seqRects->total && i_right < nElements; i_right++) { curr_face[REYE] = (CvTrackingRect*)(reader_r.ptr); if (curr_face[REYE]->r.y + curr_face[REYE]->r.height < curr_face[MOUTH]->r.y && curr_face[REYE]->r.x > curr_face[LEYE]->r.x + curr_face[LEYE]->r.width) { curr_energy = GetEnergy(curr_face, pTF->face, pTF->ptTempl, pTF->rTempl); if (curr_energy < new_energy) { for (int elem = 0; elem < NUM_FACE_ELEMENTS; elem++) new_face[elem] = curr_face[elem]; new_energy = curr_energy; found = TRUE; } N++; } } } } } if (found) { for (int elem = 0; elem < NUM_FACE_ELEMENTS; elem++) face[elem] = *(new_face[elem]); } return found; } // int ChoiceTrackingFace3(const CvTrackingRect* tr_face, CvTrackingRect* new_face, int& new_energy) int ChoiceTrackingFace2(CvFaceTracker* pTF, const int nElements, const CvFaceElement* big_face, CvTrackingRect* face, int& new_energy, int noel) { int element[NUM_FACE_ELEMENTS]; for (int i = 0, elem = 0; i < NUM_FACE_ELEMENTS; i++) { if (i != noel) { element[elem] = i; elem ++; } else element[2] = i; } CvTrackingRect* curr_face[NUM_FACE_ELEMENTS] = {NULL}; CvTrackingRect* new_face[NUM_FACE_ELEMENTS] = {NULL}; new_energy = 0x7fffffff; int curr_energy = 0x7fffffff; int found = FALSE; int N = 0; CvSeqReader reader0, reader1; cvStartReadSeq( big_face[element[0]].m_seqRects, &reader0 ); for (int i0 = 0; i0 < big_face[element[0]].m_seqRects->total && i0 < nElements; i0++) { curr_face[element[0]] = (CvTrackingRect*)(reader0.ptr); cvStartReadSeq( big_face[element[1]].m_seqRects, &reader1 ); for (int i1 = 0; i1 < big_face[element[1]].m_seqRects->total && i1 < nElements; i1++) { curr_face[element[1]] = (CvTrackingRect*)(reader1.ptr); curr_energy = GetEnergy2(curr_face, pTF->face, pTF->ptTempl, pTF->rTempl, element); if (curr_energy < new_energy) { for (int elem = 0; elem < NUM_FACE_ELEMENTS; elem++) new_face[elem] = curr_face[elem]; new_energy = curr_energy; found = TRUE; } N++; } } if (found) { face[element[0]] = *(new_face[element[0]]); face[element[1]] = *(new_face[element[1]]); // 3 element find by template CvPoint templ_v01 = {pTF->ptTempl[element[1]].x - pTF->ptTempl[element[0]].x, pTF->ptTempl[element[1]].y - pTF->ptTempl[element[0]].y}; CvPoint templ_v02 = {pTF->ptTempl[element[2]].x - pTF->ptTempl[element[0]].x, pTF->ptTempl[element[2]].y - pTF->ptTempl[element[0]].y}; CvPoint prev_v01 = {pTF->face[element[1]].ptCenter.x - pTF->face[element[0]].ptCenter.x, pTF->face[element[1]].ptCenter.y - pTF->face[element[0]].ptCenter.y}; CvPoint prev_v02 = {pTF->face[element[2]].ptCenter.x - pTF->face[element[0]].ptCenter.x, pTF->face[element[2]].ptCenter.y - pTF->face[element[0]].ptCenter.y}; CvPoint new_v01 = {new_face[element[1]]->ptCenter.x - new_face[element[0]]->ptCenter.x, new_face[element[1]]->ptCenter.y - new_face[element[0]]->ptCenter.y}; double templ_d01 = sqrt((double)templ_v01.x*templ_v01.x + templ_v01.y*templ_v01.y); double templ_d02 = sqrt((double)templ_v02.x*templ_v02.x + templ_v02.y*templ_v02.y); double prev_d01 = sqrt((double)prev_v01.x*prev_v01.x + prev_v01.y*prev_v01.y); double prev_d02 = sqrt((double)prev_v02.x*prev_v02.x + prev_v02.y*prev_v02.y); double new_d01 = sqrt((double)new_v01.x*new_v01.x + new_v01.y*new_v01.y); double scale = templ_d01 / new_d01; double new_d02 = templ_d02 / scale; double sin_a = double(prev_v01.x * prev_v02.y - prev_v01.y * prev_v02.x) / (prev_d01 * prev_d02); double cos_a = cos(asin(sin_a)); double x = double(new_v01.x) * cos_a - double(new_v01.y) * sin_a; double y = double(new_v01.x) * sin_a + double(new_v01.y) * cos_a; x = x * new_d02 / new_d01; y = y * new_d02 / new_d01; CvPoint new_v02 = {int(x + 0.5), int(y + 0.5)}; face[element[2]].iColor = 0; face[element[2]].iEnergy = 0; face[element[2]].nRectsInThis = 0; face[element[2]].nRectsOnBottom = 0; face[element[2]].nRectsOnLeft = 0; face[element[2]].nRectsOnRight = 0; face[element[2]].nRectsOnTop = 0; face[element[2]].ptCenter.x = new_v02.x + new_face[element[0]]->ptCenter.x; face[element[2]].ptCenter.y = new_v02.y + new_face[element[0]]->ptCenter.y; face[element[2]].r.width = int(double(pTF->rTempl[element[2]].width) / (scale) + 0.5); face[element[2]].r.height = int(double(pTF->rTempl[element[2]].height) / (scale) + 0.5); face[element[2]].r.x = face[element[2]].ptCenter.x - (face[element[2]].r.width + 1) / 2; face[element[2]].r.y = face[element[2]].ptCenter.y - (face[element[2]].r.height + 1) / 2; assert(face[LEYE].r.x + face[LEYE].r.width <= face[REYE].r.x); } return found; } // int ChoiceTrackingFace3(const CvTrackingRect* tr_face, CvTrackingRect* new_face, int& new_energy) inline int GetEnergy(CvTrackingRect** ppNew, const CvTrackingRect* pPrev, CvPoint* ptTempl, CvRect* rTempl) { int energy = 0; CvPoint ptNew[NUM_FACE_ELEMENTS]; CvPoint ptPrev[NUM_FACE_ELEMENTS]; for (int i = 0; i < NUM_FACE_ELEMENTS; i++) { ptNew[i] = ppNew[i]->ptCenter; ptPrev[i] = pPrev[i].ptCenter; energy += ppNew[i]->iEnergy - 2 * ppNew[i]->nRectsInThis; } double dx = 0, dy = 0, scale = 1, rotate = 0; double e_templ = CalculateTransformationLMS3(ptTempl, ptNew, &scale, &rotate, &dx, &dy); double e_prev = CalculateTransformationLMS3_0(ptPrev, ptNew); double w_eye = double(ppNew[LEYE]->r.width + ppNew[REYE]->r.width) * scale / 2.0; double h_eye = double(ppNew[LEYE]->r.height + ppNew[REYE]->r.height) * scale / 2.0; double w_mouth = double(ppNew[MOUTH]->r.width) * scale; double h_mouth = double(ppNew[MOUTH]->r.height) * scale; energy += int(512.0 * (e_prev + 16.0 * e_templ)) + 4 * pow2(ppNew[LEYE]->r.width - ppNew[REYE]->r.width) + 4 * pow2(ppNew[LEYE]->r.height - ppNew[REYE]->r.height) + 4 * (int)pow(w_eye - double(rTempl[LEYE].width + rTempl[REYE].width) / 2.0, 2) + 2 * (int)pow(h_eye - double(rTempl[LEYE].height + rTempl[REYE].height) / 2.0, 2) + 1 * (int)pow(w_mouth - double(rTempl[MOUTH].width), 2) + 1 * (int)pow(h_mouth - double(rTempl[MOUTH].height), 2) + 0; return energy; } inline int GetEnergy2(CvTrackingRect** ppNew, const CvTrackingRect* pPrev, CvPoint* ptTempl, CvRect* rTempl, int* element) { CvPoint new_v = {ppNew[element[0]]->ptCenter.x - ppNew[element[1]]->ptCenter.x, ppNew[element[0]]->ptCenter.y - ppNew[element[1]]->ptCenter.y}; CvPoint prev_v = {pPrev[element[0]].ptCenter.x - pPrev[element[1]].ptCenter.x, pPrev[element[0]].ptCenter.y - pPrev[element[1]].ptCenter.y}; double new_d = sqrt((double)new_v.x*new_v.x + new_v.y*new_v.y); double prev_d = sqrt((double)prev_v.x*prev_v.x + prev_v.y*prev_v.y); double dx = ptTempl[element[0]].x - ptTempl[element[1]].x; double dy = ptTempl[element[0]].y - ptTempl[element[1]].y; double templ_d = sqrt(dx*dx + dy*dy); double scale_templ = new_d / templ_d; double w0 = (double)ppNew[element[0]]->r.width * scale_templ; double h0 = (double)ppNew[element[0]]->r.height * scale_templ; double w1 = (double)ppNew[element[1]]->r.width * scale_templ; double h1 = (double)ppNew[element[1]]->r.height * scale_templ; int energy = ppNew[element[0]]->iEnergy + ppNew[element[1]]->iEnergy + - 2 * (ppNew[element[0]]->nRectsInThis - ppNew[element[1]]->nRectsInThis) + (int)pow(w0 - (double)rTempl[element[0]].width, 2) + (int)pow(h0 - (double)rTempl[element[0]].height, 2) + (int)pow(w1 - (double)rTempl[element[1]].width, 2) + (int)pow(h1 - (double)rTempl[element[1]].height, 2) + (int)pow(new_d - prev_d, 2) + 0; return energy; } inline double CalculateTransformationLMS3( CvPoint* pTemplPoints, CvPoint* pSrcPoints, double* pdbAverageScale, double* pdbAverageRotate, double* pdbAverageShiftX, double* pdbAverageShiftY ) { // double WS = 0; double dbAverageScale = 1; double dbAverageRotate = 0; double dbAverageShiftX = 0; double dbAverageShiftY = 0; double dbLMS = 0; assert( NULL != pTemplPoints); assert( NULL != pSrcPoints); double dbXt = double(pTemplPoints[0].x + pTemplPoints[1].x + pTemplPoints[2].x) / 3.0; double dbYt = double(pTemplPoints[0].y + pTemplPoints[1].y + pTemplPoints[2].y ) / 3.0; double dbXs = double(pSrcPoints[0].x + pSrcPoints[1].x + pSrcPoints[2].x) / 3.0; double dbYs = double(pSrcPoints[0].y + pSrcPoints[1].y + pSrcPoints[2].y) / 3.0; double dbXtXt = double(pow2(pTemplPoints[0].x) + pow2(pTemplPoints[1].x) + pow2(pTemplPoints[2].x)) / 3.0; double dbYtYt = double(pow2(pTemplPoints[0].y) + pow2(pTemplPoints[1].y) + pow2(pTemplPoints[2].y)) / 3.0; double dbXsXs = double(pow2(pSrcPoints[0].x) + pow2(pSrcPoints[1].x) + pow2(pSrcPoints[2].x)) / 3.0; double dbYsYs = double(pow2(pSrcPoints[0].y) + pow2(pSrcPoints[1].y) + pow2(pSrcPoints[2].y)) / 3.0; double dbXtXs = double(pTemplPoints[0].x * pSrcPoints[0].x + pTemplPoints[1].x * pSrcPoints[1].x + pTemplPoints[2].x * pSrcPoints[2].x) / 3.0; double dbYtYs = double(pTemplPoints[0].y * pSrcPoints[0].y + pTemplPoints[1].y * pSrcPoints[1].y + pTemplPoints[2].y * pSrcPoints[2].y) / 3.0; double dbXtYs = double(pTemplPoints[0].x * pSrcPoints[0].y + pTemplPoints[1].x * pSrcPoints[1].y + pTemplPoints[2].x * pSrcPoints[2].y) / 3.0; double dbYtXs = double(pTemplPoints[0].y * pSrcPoints[0].x + pTemplPoints[1].y * pSrcPoints[1].x + pTemplPoints[2].y * pSrcPoints[2].x ) / 3.0; dbXtXt -= dbXt * dbXt; dbYtYt -= dbYt * dbYt; dbXsXs -= dbXs * dbXs; dbYsYs -= dbYs * dbYs; dbXtXs -= dbXt * dbXs; dbYtYs -= dbYt * dbYs; dbXtYs -= dbXt * dbYs; dbYtXs -= dbYt * dbXs; dbAverageRotate = atan2( dbXtYs - dbYtXs, dbXtXs + dbYtYs ); double cosR = cos(dbAverageRotate); double sinR = sin(dbAverageRotate); double del = dbXsXs + dbYsYs; if( del != 0 ) { dbAverageScale = (double(dbXtXs + dbYtYs) * cosR + double(dbXtYs - dbYtXs) * sinR) / del; dbLMS = dbXtXt + dbYtYt - ((double)pow(dbXtXs + dbYtYs,2) + (double)pow(dbXtYs - dbYtXs,2)) / del; } dbAverageShiftX = double(dbXt) - dbAverageScale * (double(dbXs) * cosR + double(dbYs) * sinR); dbAverageShiftY = double(dbYt) - dbAverageScale * (double(dbYs) * cosR - double(dbXs) * sinR); if( pdbAverageScale != NULL ) *pdbAverageScale = dbAverageScale; if( pdbAverageRotate != NULL ) *pdbAverageRotate = dbAverageRotate; if( pdbAverageShiftX != NULL ) *pdbAverageShiftX = dbAverageShiftX; if( pdbAverageShiftY != NULL ) *pdbAverageShiftY = dbAverageShiftY; assert(dbLMS >= 0); return dbLMS; } inline double CalculateTransformationLMS3_0( CvPoint* pTemplPoints, CvPoint* pSrcPoints) { double dbLMS = 0; assert( NULL != pTemplPoints); assert( NULL != pSrcPoints); double dbXt = double(pTemplPoints[0].x + pTemplPoints[1].x + pTemplPoints[2].x) / 3.0; double dbYt = double(pTemplPoints[0].y + pTemplPoints[1].y + pTemplPoints[2].y ) / 3.0; double dbXs = double(pSrcPoints[0].x + pSrcPoints[1].x + pSrcPoints[2].x) / 3.0; double dbYs = double(pSrcPoints[0].y + pSrcPoints[1].y + pSrcPoints[2].y) / 3.0; double dbXtXt = double(pow2(pTemplPoints[0].x) + pow2(pTemplPoints[1].x) + pow2(pTemplPoints[2].x)) / 3.0; double dbYtYt = double(pow2(pTemplPoints[0].y) + pow2(pTemplPoints[1].y) + pow2(pTemplPoints[2].y)) / 3.0; double dbXsXs = double(pow2(pSrcPoints[0].x) + pow2(pSrcPoints[1].x) + pow2(pSrcPoints[2].x)) / 3.0; double dbYsYs = double(pow2(pSrcPoints[0].y) + pow2(pSrcPoints[1].y) + pow2(pSrcPoints[2].y)) / 3.0; double dbXtXs = double(pTemplPoints[0].x * pSrcPoints[0].x + pTemplPoints[1].x * pSrcPoints[1].x + pTemplPoints[2].x * pSrcPoints[2].x) / 3.0; double dbYtYs = double(pTemplPoints[0].y * pSrcPoints[0].y + pTemplPoints[1].y * pSrcPoints[1].y + pTemplPoints[2].y * pSrcPoints[2].y) / 3.0; double dbXtYs = double(pTemplPoints[0].x * pSrcPoints[0].y + pTemplPoints[1].x * pSrcPoints[1].y + pTemplPoints[2].x * pSrcPoints[2].y) / 3.0; double dbYtXs = double(pTemplPoints[0].y * pSrcPoints[0].x + pTemplPoints[1].y * pSrcPoints[1].x + pTemplPoints[2].y * pSrcPoints[2].x ) / 3.0; dbXtXt -= dbXt * dbXt; dbYtYt -= dbYt * dbYt; dbXsXs -= dbXs * dbXs; dbYsYs -= dbYs * dbYs; dbXtXs -= dbXt * dbXs; dbYtYs -= dbYt * dbYs; dbXtYs -= dbXt * dbYs; dbYtXs -= dbYt * dbXs; double del = dbXsXs + dbYsYs; if( del != 0 ) dbLMS = dbXtXt + dbYtYt - ((double)pow(dbXtXs + dbYtYs,2) + (double)pow(dbXtYs - dbYtXs,2)) / del; return dbLMS; }