/*#****************************************************************************** ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. ** ** By downloading, copying, installing or using the software you agree to this license. ** If you do not agree to this license, do not download, install, ** copy or use the software. ** ** ** HVStools : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. ** ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) ** ** Creation - enhancement process 2007-2011 ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France ** ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). ** Refer to the following research paper for more information: ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. ** ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author : ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper: ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. ** ====> more informations in the above cited Jeanny Heraults's book. ** ** License Agreement ** For Open Source Computer Vision Library ** ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. ** ** For Human Visual System tools (hvstools) ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. ** ** Third party copyrights are property of their respective owners. ** ** Redistribution and use in source and binary forms, with or without modification, ** are permitted provided that the following conditions are met: ** ** * Redistributions of source code must retain the above copyright notice, ** this list of conditions and the following disclaimer. ** ** * Redistributions in binary form must reproduce the above copyright notice, ** this list of conditions and the following disclaimer in the documentation ** and/or other materials provided with the distribution. ** ** * The name of the copyright holders may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** This software is provided by the copyright holders and contributors "as is" and ** any express or implied warranties, including, but not limited to, the implied ** warranties of merchantability and fitness for a particular purpose are disclaimed. ** In no event shall the Intel Corporation or contributors be liable for any direct, ** indirect, incidental, special, exemplary, or consequential damages ** (including, but not limited to, procurement of substitute goods or services; ** loss of use, data, or profits; or business interruption) however caused ** and on any theory of liability, whether in contract, strict liability, ** or tort (including negligence or otherwise) arising in any way out of ** the use of this software, even if advised of the possibility of such damage. *******************************************************************************/ /** * @class RetinaColor a color multilexing/demultiplexing (demosaicing) based on a human vision inspiration. Different mosaicing strategies can be used, included random sampling ! * => please take a look at the nice and efficient demosaicing strategy introduced by B.Chaix de Lavarene, take a look at the cited paper for more mathematical details * @brief Retina color sampling model which allows classical bayer sampling, random and potentially several other method ! Low color errors on corners ! * -> Based on the research of: * .Brice Chaix Lavarene (chaix@lis.inpg.fr) * .Jeanny Herault (herault@lis.inpg.fr) * .David Alleyson (david.alleyson@upmf-grenoble.fr) * .collaboration: alexandre benoit (benoit.alexandre.vision@gmail.com or benoit@lis.inpg.fr) * Please cite: B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 * @author Alexandre BENOIT, benoit.alexandre.vision@gmail.com, LISTIC / Gipsa-Lab, France: www.gipsa-lab.inpg.fr/ * Creation date 2007 */ #ifndef RETINACOLOR_HPP_ #define RETINACOLOR_HPP_ #include "basicretinafilter.hpp" //#define __RETINACOLORDEBUG //define RETINACOLORDEBUG in order to display debug data namespace cv { class RetinaColor: public BasicRetinaFilter { public: /** * @typedef which allows to select the type of photoreceptors color sampling */ /** * constructor of the retina color processing model * @param NBrows: number of rows of the input image * @param NBcolumns: number of columns of the input image * @param samplingMethod: the chosen color sampling method */ RetinaColor(const unsigned int NBrows, const unsigned int NBcolumns, const RETINA_COLORSAMPLINGMETHOD samplingMethod=RETINA_COLOR_DIAGONAL); /** * standard destructor */ virtual ~RetinaColor(); /** * function that clears all buffers of the object */ void clearAllBuffers(); /** * resize retina color filter object (resize all allocated buffers) * @param NBrows: the new height size * @param NBcolumns: the new width size */ void resize(const unsigned int NBrows, const unsigned int NBcolumns); /** * color multiplexing function: a demultiplexed RGB frame of size M*N*3 is transformed into a multiplexed M*N*1 pixels frame where each pixel is either Red, or Green or Blue * @param inputRGBFrame: the input RGB frame to be processed * @return, nothing but the multiplexed frame is available by the use of the getMultiplexedFrame() function */ inline void runColorMultiplexing(const std::valarray &inputRGBFrame){runColorMultiplexing(inputRGBFrame, *_multiplexedFrame);}; /** * color multiplexing function: a demultipleed RGB frame of size M*N*3 is transformed into a multiplexed M*N*1 pixels frame where each pixel is either Red, or Green or Blue if using RGB images * @param demultiplexedInputFrame: the demultiplexed input frame to be processed of size M*N*3 * @param multiplexedFrame: the resulting multiplexed frame */ void runColorMultiplexing(const std::valarray &demultiplexedInputFrame, std::valarray &multiplexedFrame); /** * color demultiplexing function: a multiplexed frame of size M*N*1 pixels is transformed into a RGB demultiplexed M*N*3 pixels frame * @param multiplexedColorFrame: the input multiplexed frame to be processed * @param adaptiveFiltering: specifies if an adaptive filtering has to be perform rather than standard filtering (adaptive filtering allows a better rendering) * @param maxInputValue: the maximum input data value (should be 255 for 8 bits images but it can change in the case of High Dynamic Range Images (HDRI) * @return, nothing but the output demultiplexed frame is available by the use of the getDemultiplexedColorFrame() function, also use getLuminance() and getChrominance() in order to retreive either luminance or chrominance */ void runColorDemultiplexing(const std::valarray &multiplexedColorFrame, const bool adaptiveFiltering=false, const float maxInputValue=255.0); /** * activate color saturation as the final step of the color demultiplexing process * -> this saturation is a sigmoide function applied to each channel of the demultiplexed image. * @param saturateColors: boolean that activates color saturation (if true) or desactivate (if false) * @param colorSaturationValue: the saturation factor * */ void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0){_saturateColors=saturateColors; _colorSaturationValue=colorSaturationValue;}; /** * set parameters of the low pass spatio-temporal filter used to retreive the low chrominance * @param beta: gain of the filter (generally set to zero) * @param tau: time constant of the filter (unit is frame for video processing), typically 0 when considering static processing, 1 or more if a temporal smoothing effect is required * @param k: spatial constant of the filter (unit is pixels), typical value is 2.5 */ void setChrominanceLPfilterParameters(const float beta, const float tau, const float k){setLPfilterParameters(beta, tau, k);}; /** * apply to the retina color output the Krauskopf transformation which leads to an opponent color system: output colorspace if Acr1cr2 if input of the retina was LMS color space * @param result: the input buffer to fill with the transformed colorspace retina output * @return true if process ended successfully */ bool applyKrauskopfLMS2Acr1cr2Transform(std::valarray &result); /** * apply to the retina color output the CIE Lab color transformation * @param result: the input buffer to fill with the transformed colorspace retina output * @return true if process ended successfully */ bool applyLMS2LabTransform(std::valarray &result); /** * @return the multiplexed frame result (use this after function runColorMultiplexing) */ inline const std::valarray &getMultiplexedFrame() const {return *_multiplexedFrame;}; /** * @return the demultiplexed frame result (use this after function runColorDemultiplexing) */ inline const std::valarray &getDemultiplexedColorFrame() const {return _demultiplexedColorFrame;}; /** * @return the luminance of the processed frame (use this after function runColorDemultiplexing) */ inline const std::valarray &getLuminance() const {return *_luminance;}; /** * @return the chrominance of the processed frame (use this after function runColorDemultiplexing) */ inline const std::valarray &getChrominance() const {return _chrominance;}; /** * standard 0 to 255 image clipping function appled to RGB images (of size M*N*3 pixels) * @param inputOutputBuffer: the image to be normalized (rewrites the input), if no parameter, then, the built in buffer reachable by getOutput() function is normalized * @param maxOutputValue: the maximum value allowed at the output (values superior to it would be clipped */ void clipRGBOutput_0_maxInputValue(float *inputOutputBuffer, const float maxOutputValue=255.0); /** * standard 0 to 255 image normalization function appled to RGB images (of size M*N*3 pixels) * @param maxOutputValue: the maximum value allowed at the output (values superior to it would be clipped */ void normalizeRGBOutput_0_maxOutputValue(const float maxOutputValue=255.0); /** * return the color sampling map: a Nrows*Mcolumns image in which each pixel value is the ofsset adress which gives the adress of the sampled pixel on an Nrows*Mcolumns*3 color image ordered by layers: layer1, layer2, layer3 */ inline const std::valarray &getSamplingMap() const {return _colorSampling;}; /** * function used (to bypass processing) to manually set the color output * @param demultiplexedImage: the color image (luminance+chrominance) which has to be written in the object buffer */ inline void setDemultiplexedColorFrame(const std::valarray &demultiplexedImage){_demultiplexedColorFrame=demultiplexedImage;}; protected: // private functions RETINA_COLORSAMPLINGMETHOD _samplingMethod; bool _saturateColors; float _colorSaturationValue; // links to parent buffers (more convienient names TemplateBuffer *_luminance; std::valarray *_multiplexedFrame; // instance buffers std::valarray _colorSampling; // table (size (_nbRows*_nbColumns) which specifies the color of each pixel std::valarray _RGBmosaic; std::valarray _tempMultiplexedFrame; std::valarray _demultiplexedTempBuffer; std::valarray _demultiplexedColorFrame; std::valarray _chrominance; std::valarray _colorLocalDensity;// buffer which contains the local density of the R, G and B photoreceptors for a normalization use std::valarray _imageGradient; // variables float _pR, _pG, _pB; // probabilities of color R, G and B bool _objectInit; // protected functions void _initColorSampling(); void _interpolateImageDemultiplexedImage(float *inputOutputBuffer); void _interpolateSingleChannelImage111(float *inputOutputBuffer); void _interpolateBayerRGBchannels(float *inputOutputBuffer); void _applyRIFfilter(const float *sourceBuffer, float *destinationBuffer); void _getNormalizedContoursImage(const float *inputFrame, float *outputFrame); // -> special adaptive filters dedicated to low pass filtering on the chrominance (skeeps filtering on the edges) void _adaptiveSpatialLPfilter(const float *inputFrame, float *outputFrame); void _adaptiveHorizontalCausalFilter_addInput(const float *inputFrame, float *outputFrame, const unsigned int IDrowStart, const unsigned int IDrowEnd); void _adaptiveHorizontalAnticausalFilter(float *outputFrame, const unsigned int IDrowStart, const unsigned int IDrowEnd); void _adaptiveVerticalCausalFilter(float *outputFrame, const unsigned int IDcolumnStart, const unsigned int IDcolumnEnd); void _adaptiveVerticalAnticausalFilter_multGain(float *outputFrame, const unsigned int IDcolumnStart, const unsigned int IDcolumnEnd); void _computeGradient(const float *luminance); void _normalizeOutputs_0_maxOutputValue(void); // color space transform void _applyImageColorSpaceConversion(const std::valarray &inputFrame, std::valarray &outputFrame, const float *transformTable); }; } #endif /*RETINACOLOR_HPP_*/