/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include using namespace cv; using namespace cv::gpu; //////////////////////////////// Initialization & Info //////////////////////// #ifndef HAVE_CUDA int cv::gpu::getCudaEnabledDeviceCount() { return 0; } void cv::gpu::setDevice(int) { throw_no_cuda(); } int cv::gpu::getDevice() { throw_no_cuda(); return 0; } void cv::gpu::resetDevice() { throw_no_cuda(); } bool cv::gpu::deviceSupports(FeatureSet) { throw_no_cuda(); return false; } bool cv::gpu::TargetArchs::builtWith(FeatureSet) { throw_no_cuda(); return false; } bool cv::gpu::TargetArchs::has(int, int) { throw_no_cuda(); return false; } bool cv::gpu::TargetArchs::hasPtx(int, int) { throw_no_cuda(); return false; } bool cv::gpu::TargetArchs::hasBin(int, int) { throw_no_cuda(); return false; } bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int, int) { throw_no_cuda(); return false; } bool cv::gpu::TargetArchs::hasEqualOrGreater(int, int) { throw_no_cuda(); return false; } bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int, int) { throw_no_cuda(); return false; } bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int, int) { throw_no_cuda(); return false; } size_t cv::gpu::DeviceInfo::sharedMemPerBlock() const { throw_no_cuda(); return 0; } void cv::gpu::DeviceInfo::queryMemory(size_t&, size_t&) const { throw_no_cuda(); } size_t cv::gpu::DeviceInfo::freeMemory() const { throw_no_cuda(); return 0; } size_t cv::gpu::DeviceInfo::totalMemory() const { throw_no_cuda(); return 0; } bool cv::gpu::DeviceInfo::supports(FeatureSet) const { throw_no_cuda(); return false; } bool cv::gpu::DeviceInfo::isCompatible() const { throw_no_cuda(); return false; } void cv::gpu::DeviceInfo::query() { throw_no_cuda(); } void cv::gpu::printCudaDeviceInfo(int) { throw_no_cuda(); } void cv::gpu::printShortCudaDeviceInfo(int) { throw_no_cuda(); } #else // HAVE_CUDA int cv::gpu::getCudaEnabledDeviceCount() { int count; cudaError_t error = cudaGetDeviceCount( &count ); if (error == cudaErrorInsufficientDriver) return -1; if (error == cudaErrorNoDevice) return 0; cudaSafeCall( error ); return count; } void cv::gpu::setDevice(int device) { cudaSafeCall( cudaSetDevice( device ) ); } int cv::gpu::getDevice() { int device; cudaSafeCall( cudaGetDevice( &device ) ); return device; } void cv::gpu::resetDevice() { cudaSafeCall( cudaDeviceReset() ); } namespace { class CudaArch { public: CudaArch(); bool builtWith(FeatureSet feature_set) const; bool hasPtx(int major, int minor) const; bool hasBin(int major, int minor) const; bool hasEqualOrLessPtx(int major, int minor) const; bool hasEqualOrGreaterPtx(int major, int minor) const; bool hasEqualOrGreaterBin(int major, int minor) const; private: static void fromStr(const String& set_as_str, std::vector& arr); std::vector bin; std::vector ptx; std::vector features; }; const CudaArch cudaArch; CudaArch::CudaArch() { fromStr(CUDA_ARCH_BIN, bin); fromStr(CUDA_ARCH_PTX, ptx); fromStr(CUDA_ARCH_FEATURES, features); } bool CudaArch::builtWith(FeatureSet feature_set) const { return !features.empty() && (features.back() >= feature_set); } bool CudaArch::hasPtx(int major, int minor) const { return std::find(ptx.begin(), ptx.end(), major * 10 + minor) != ptx.end(); } bool CudaArch::hasBin(int major, int minor) const { return std::find(bin.begin(), bin.end(), major * 10 + minor) != bin.end(); } bool CudaArch::hasEqualOrLessPtx(int major, int minor) const { return !ptx.empty() && (ptx.front() <= major * 10 + minor); } bool CudaArch::hasEqualOrGreaterPtx(int major, int minor) const { return !ptx.empty() && (ptx.back() >= major * 10 + minor); } bool CudaArch::hasEqualOrGreaterBin(int major, int minor) const { return !bin.empty() && (bin.back() >= major * 10 + minor); } void CudaArch::fromStr(const String& set_as_str, std::vector& arr) { arr.clear(); size_t pos = 0; while (pos < set_as_str.size()) { if (isspace(set_as_str[pos])) { ++pos; } else { int cur_value; int chars_read; int args_read = sscanf(set_as_str.c_str() + pos, "%d%n", &cur_value, &chars_read); CV_Assert(args_read == 1); arr.push_back(cur_value); pos += chars_read; } } std::sort(arr.begin(), arr.end()); } } bool cv::gpu::TargetArchs::builtWith(cv::gpu::FeatureSet feature_set) { return cudaArch.builtWith(feature_set); } bool cv::gpu::TargetArchs::has(int major, int minor) { return hasPtx(major, minor) || hasBin(major, minor); } bool cv::gpu::TargetArchs::hasPtx(int major, int minor) { return cudaArch.hasPtx(major, minor); } bool cv::gpu::TargetArchs::hasBin(int major, int minor) { return cudaArch.hasBin(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrLessPtx(int major, int minor) { return cudaArch.hasEqualOrLessPtx(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrGreater(int major, int minor) { return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrGreaterPtx(int major, int minor) { return cudaArch.hasEqualOrGreaterPtx(major, minor); } bool cv::gpu::TargetArchs::hasEqualOrGreaterBin(int major, int minor) { return cudaArch.hasEqualOrGreaterBin(major, minor); } bool cv::gpu::deviceSupports(FeatureSet feature_set) { static int versions[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const int cache_size = static_cast(sizeof(versions) / sizeof(versions[0])); const int devId = getDevice(); int version; if (devId < cache_size && versions[devId] >= 0) version = versions[devId]; else { DeviceInfo dev(devId); version = dev.majorVersion() * 10 + dev.minorVersion(); if (devId < cache_size) versions[devId] = version; } return TargetArchs::builtWith(feature_set) && (version >= feature_set); } namespace { class DeviceProps { public: DeviceProps(); ~DeviceProps(); cudaDeviceProp* get(int devID); private: std::vector props_; }; DeviceProps::DeviceProps() { props_.resize(10, 0); } DeviceProps::~DeviceProps() { for (size_t i = 0; i < props_.size(); ++i) { if (props_[i]) delete props_[i]; } props_.clear(); } cudaDeviceProp* DeviceProps::get(int devID) { if (devID >= (int) props_.size()) props_.resize(devID + 5, 0); if (!props_[devID]) { props_[devID] = new cudaDeviceProp; cudaSafeCall( cudaGetDeviceProperties(props_[devID], devID) ); } return props_[devID]; } DeviceProps deviceProps; } size_t cv::gpu::DeviceInfo::sharedMemPerBlock() const { return deviceProps.get(device_id_)->sharedMemPerBlock; } void cv::gpu::DeviceInfo::queryMemory(size_t& _totalMemory, size_t& _freeMemory) const { int prevDeviceID = getDevice(); if (prevDeviceID != device_id_) setDevice(device_id_); cudaSafeCall( cudaMemGetInfo(&_freeMemory, &_totalMemory) ); if (prevDeviceID != device_id_) setDevice(prevDeviceID); } size_t cv::gpu::DeviceInfo::freeMemory() const { size_t _totalMemory, _freeMemory; queryMemory(_totalMemory, _freeMemory); return _freeMemory; } size_t cv::gpu::DeviceInfo::totalMemory() const { size_t _totalMemory, _freeMemory; queryMemory(_totalMemory, _freeMemory); return _totalMemory; } bool cv::gpu::DeviceInfo::supports(FeatureSet feature_set) const { int version = majorVersion() * 10 + minorVersion(); return version >= feature_set; } bool cv::gpu::DeviceInfo::isCompatible() const { // Check PTX compatibility if (TargetArchs::hasEqualOrLessPtx(majorVersion(), minorVersion())) return true; // Check BIN compatibility for (int i = minorVersion(); i >= 0; --i) if (TargetArchs::hasBin(majorVersion(), i)) return true; return false; } void cv::gpu::DeviceInfo::query() { const cudaDeviceProp* prop = deviceProps.get(device_id_); name_ = prop->name; multi_processor_count_ = prop->multiProcessorCount; majorVersion_ = prop->major; minorVersion_ = prop->minor; } namespace { int convertSMVer2Cores(int major, int minor) { // Defines for GPU Architecture types (using the SM version to determine the # of cores per SM typedef struct { int SM; // 0xMm (hexidecimal notation), M = SM Major version, and m = SM minor version int Cores; } SMtoCores; SMtoCores gpuArchCoresPerSM[] = { { 0x10, 8 }, { 0x11, 8 }, { 0x12, 8 }, { 0x13, 8 }, { 0x20, 32 }, { 0x21, 48 }, {0x30, 192}, {0x35, 192}, { -1, -1 } }; int index = 0; while (gpuArchCoresPerSM[index].SM != -1) { if (gpuArchCoresPerSM[index].SM == ((major << 4) + minor) ) return gpuArchCoresPerSM[index].Cores; index++; } return -1; } } void cv::gpu::printCudaDeviceInfo(int device) { int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; printf("*** CUDA Device Query (Runtime API) version (CUDART static linking) *** \n\n"); printf("Device count: %d\n", count); int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); const char *computeMode[] = { "Default (multiple host threads can use ::cudaSetDevice() with device simultaneously)", "Exclusive (only one host thread in one process is able to use ::cudaSetDevice() with this device)", "Prohibited (no host thread can use ::cudaSetDevice() with this device)", "Exclusive Process (many threads in one process is able to use ::cudaSetDevice() with this device)", "Unknown", NULL }; for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); printf("\nDevice %d: \"%s\"\n", dev, prop.name); printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); printf(" CUDA Capability Major/Minor version number: %d.%d\n", prop.major, prop.minor); printf(" Total amount of global memory: %.0f MBytes (%llu bytes)\n", (float)prop.totalGlobalMem/1048576.0f, (unsigned long long) prop.totalGlobalMem); int cores = convertSMVer2Cores(prop.major, prop.minor); if (cores > 0) printf(" (%2d) Multiprocessors x (%2d) CUDA Cores/MP: %d CUDA Cores\n", prop.multiProcessorCount, cores, cores * prop.multiProcessorCount); printf(" GPU Clock Speed: %.2f GHz\n", prop.clockRate * 1e-6f); printf(" Max Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d,%d), 3D=(%d,%d,%d)\n", prop.maxTexture1D, prop.maxTexture2D[0], prop.maxTexture2D[1], prop.maxTexture3D[0], prop.maxTexture3D[1], prop.maxTexture3D[2]); printf(" Max Layered Texture Size (dim) x layers 1D=(%d) x %d, 2D=(%d,%d) x %d\n", prop.maxTexture1DLayered[0], prop.maxTexture1DLayered[1], prop.maxTexture2DLayered[0], prop.maxTexture2DLayered[1], prop.maxTexture2DLayered[2]); printf(" Total amount of constant memory: %u bytes\n", (int)prop.totalConstMem); printf(" Total amount of shared memory per block: %u bytes\n", (int)prop.sharedMemPerBlock); printf(" Total number of registers available per block: %d\n", prop.regsPerBlock); printf(" Warp size: %d\n", prop.warpSize); printf(" Maximum number of threads per block: %d\n", prop.maxThreadsPerBlock); printf(" Maximum sizes of each dimension of a block: %d x %d x %d\n", prop.maxThreadsDim[0], prop.maxThreadsDim[1], prop.maxThreadsDim[2]); printf(" Maximum sizes of each dimension of a grid: %d x %d x %d\n", prop.maxGridSize[0], prop.maxGridSize[1], prop.maxGridSize[2]); printf(" Maximum memory pitch: %u bytes\n", (int)prop.memPitch); printf(" Texture alignment: %u bytes\n", (int)prop.textureAlignment); printf(" Concurrent copy and execution: %s with %d copy engine(s)\n", (prop.deviceOverlap ? "Yes" : "No"), prop.asyncEngineCount); printf(" Run time limit on kernels: %s\n", prop.kernelExecTimeoutEnabled ? "Yes" : "No"); printf(" Integrated GPU sharing Host Memory: %s\n", prop.integrated ? "Yes" : "No"); printf(" Support host page-locked memory mapping: %s\n", prop.canMapHostMemory ? "Yes" : "No"); printf(" Concurrent kernel execution: %s\n", prop.concurrentKernels ? "Yes" : "No"); printf(" Alignment requirement for Surfaces: %s\n", prop.surfaceAlignment ? "Yes" : "No"); printf(" Device has ECC support enabled: %s\n", prop.ECCEnabled ? "Yes" : "No"); printf(" Device is using TCC driver mode: %s\n", prop.tccDriver ? "Yes" : "No"); printf(" Device supports Unified Addressing (UVA): %s\n", prop.unifiedAddressing ? "Yes" : "No"); printf(" Device PCI Bus ID / PCI location ID: %d / %d\n", prop.pciBusID, prop.pciDeviceID ); printf(" Compute Mode:\n"); printf(" %s \n", computeMode[prop.computeMode]); } printf("\n"); printf("deviceQuery, CUDA Driver = CUDART"); printf(", CUDA Driver Version = %d.%d", driverVersion / 1000, driverVersion % 100); printf(", CUDA Runtime Version = %d.%d", runtimeVersion/1000, runtimeVersion%100); printf(", NumDevs = %d\n\n", count); fflush(stdout); } void cv::gpu::printShortCudaDeviceInfo(int device) { int count = getCudaEnabledDeviceCount(); bool valid = (device >= 0) && (device < count); int beg = valid ? device : 0; int end = valid ? device+1 : count; int driverVersion = 0, runtimeVersion = 0; cudaSafeCall( cudaDriverGetVersion(&driverVersion) ); cudaSafeCall( cudaRuntimeGetVersion(&runtimeVersion) ); for(int dev = beg; dev < end; ++dev) { cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, dev) ); const char *arch_str = prop.major < 2 ? " (not Fermi)" : ""; printf("Device %d: \"%s\" %.0fMb", dev, prop.name, (float)prop.totalGlobalMem/1048576.0f); printf(", sm_%d%d%s", prop.major, prop.minor, arch_str); int cores = convertSMVer2Cores(prop.major, prop.minor); if (cores > 0) printf(", %d cores", cores * prop.multiProcessorCount); printf(", Driver/Runtime ver.%d.%d/%d.%d\n", driverVersion/1000, driverVersion%100, runtimeVersion/1000, runtimeVersion%100); } fflush(stdout); } #endif // HAVE_CUDA //////////////////////////////// GpuMat /////////////////////////////// cv::gpu::GpuMat::GpuMat(const GpuMat& m) : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { if (refcount) CV_XADD(refcount, 1); } cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert(step >= minstep); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert(step >= minstep); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range _rowRange, Range _colRange) { flags = m.flags; step = m.step; refcount = m.refcount; data = m.data; datastart = m.datastart; dataend = m.dataend; if (_rowRange == Range::all()) rows = m.rows; else { CV_Assert(0 <= _rowRange.start && _rowRange.start <= _rowRange.end && _rowRange.end <= m.rows); rows = _rowRange.size(); data += step*_rowRange.start; } if (_colRange == Range::all()) cols = m.cols; else { CV_Assert(0 <= _colRange.start && _colRange.start <= _colRange.end && _colRange.end <= m.cols); cols = _colRange.size(); data += _colRange.start*elemSize(); flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; } if (rows == 1) flags |= Mat::CONTINUOUS_FLAG; if (refcount) CV_XADD(refcount, 1); if (rows <= 0 || cols <= 0) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) : flags(m.flags), rows(roi.height), cols(roi.width), step(m.step), data(m.data + roi.y*step), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; data += roi.x * elemSize(); CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows); if (refcount) CV_XADD(refcount, 1); if (rows <= 0 || cols <= 0) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const Mat& m) : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0) { upload(m); } GpuMat& cv::gpu::GpuMat::operator = (const GpuMat& m) { if (this != &m) { GpuMat temp(m); swap(temp); } return *this; } void cv::gpu::GpuMat::swap(GpuMat& b) { std::swap(flags, b.flags); std::swap(rows, b.rows); std::swap(cols, b.cols); std::swap(step, b.step); std::swap(data, b.data); std::swap(datastart, b.datastart); std::swap(dataend, b.dataend); std::swap(refcount, b.refcount); } void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const { size_t esz = elemSize(); ptrdiff_t delta1 = data - datastart; ptrdiff_t delta2 = dataend - datastart; CV_DbgAssert(step > 0); if (delta1 == 0) ofs.x = ofs.y = 0; else { ofs.y = static_cast(delta1 / step); ofs.x = static_cast((delta1 - step * ofs.y) / esz); CV_DbgAssert(data == datastart + ofs.y * step + ofs.x * esz); } size_t minstep = (ofs.x + cols) * esz; wholeSize.height = std::max(static_cast((delta2 - minstep) / step + 1), ofs.y + rows); wholeSize.width = std::max(static_cast((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols); } GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright) { Size wholeSize; Point ofs; locateROI(wholeSize, ofs); size_t esz = elemSize(); int row1 = std::max(ofs.y - dtop, 0); int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height); int col1 = std::max(ofs.x - dleft, 0); int col2 = std::min(ofs.x + cols + dright, wholeSize.width); data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz; rows = row2 - row1; cols = col2 - col1; if (esz * cols == step || rows == 1) flags |= Mat::CONTINUOUS_FLAG; else flags &= ~Mat::CONTINUOUS_FLAG; return *this; } GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const { GpuMat hdr = *this; int cn = channels(); if (new_cn == 0) new_cn = cn; int total_width = cols * cn; if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0) new_rows = rows * total_width / new_cn; if (new_rows != 0 && new_rows != rows) { int total_size = total_width * rows; if (!isContinuous()) CV_Error(CV_BadStep, "The matrix is not continuous, thus its number of rows can not be changed"); if ((unsigned)new_rows > (unsigned)total_size) CV_Error(CV_StsOutOfRange, "Bad new number of rows"); total_width = total_size / new_rows; if (total_width * new_rows != total_size) CV_Error(CV_StsBadArg, "The total number of matrix elements is not divisible by the new number of rows"); hdr.rows = new_rows; hdr.step = total_width * elemSize1(); } int new_width = total_width / new_cn; if (new_width * new_cn != total_width) CV_Error(CV_BadNumChannels, "The total width is not divisible by the new number of channels"); hdr.cols = new_width; hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT); return hdr; } cv::Mat::Mat(const GpuMat& m) : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows) { m.download(*this); } void cv::gpu::createContinuous(int rows, int cols, int type, GpuMat& m) { int area = rows * cols; if (m.empty() || m.type() != type || !m.isContinuous() || m.size().area() < area) m.create(1, area, type); m.cols = cols; m.rows = rows; m.step = m.elemSize() * cols; m.flags |= Mat::CONTINUOUS_FLAG; } void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, GpuMat& m) { if (m.empty() || m.type() != type || m.data != m.datastart) m.create(rows, cols, type); else { const size_t esz = m.elemSize(); const ptrdiff_t delta2 = m.dataend - m.datastart; const size_t minstep = m.cols * esz; Size wholeSize; wholeSize.height = std::max(static_cast((delta2 - minstep) / m.step + 1), m.rows); wholeSize.width = std::max(static_cast((delta2 - m.step * (wholeSize.height - 1)) / esz), m.cols); if (wholeSize.height < rows || wholeSize.width < cols) m.create(rows, cols, type); else { m.cols = cols; m.rows = rows; } } } GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat &mat) { if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols) return mat(Rect(0, 0, cols, rows)); return mat = GpuMat(rows, cols, type); } namespace { class GpuFuncTable { public: virtual ~GpuFuncTable() {} virtual void copy(const Mat& src, GpuMat& dst) const = 0; virtual void copy(const GpuMat& src, Mat& dst) const = 0; virtual void copy(const GpuMat& src, GpuMat& dst) const = 0; virtual void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const = 0; virtual void convert(const GpuMat& src, GpuMat& dst) const = 0; virtual void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const = 0; virtual void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const = 0; virtual void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const = 0; virtual void free(void* devPtr) const = 0; }; } #ifndef HAVE_CUDA namespace { class EmptyFuncTable : public GpuFuncTable { public: void copy(const Mat&, GpuMat&) const { throw_no_cuda(); } void copy(const GpuMat&, Mat&) const { throw_no_cuda(); } void copy(const GpuMat&, GpuMat&) const { throw_no_cuda(); } void copyWithMask(const GpuMat&, GpuMat&, const GpuMat&) const { throw_no_cuda(); } void convert(const GpuMat&, GpuMat&) const { throw_no_cuda(); } void convert(const GpuMat&, GpuMat&, double, double) const { throw_no_cuda(); } void setTo(GpuMat&, Scalar, const GpuMat&) const { throw_no_cuda(); } void mallocPitch(void**, size_t*, size_t, size_t) const { throw_no_cuda(); } void free(void*) const {} }; const GpuFuncTable* gpuFuncTable() { static EmptyFuncTable empty; return ∅ } } #else // HAVE_CUDA namespace cv { namespace gpu { namespace cudev { void copyToWithMask_gpu(PtrStepSzb src, PtrStepSzb dst, size_t elemSize1, int cn, PtrStepSzb mask, bool colorMask, cudaStream_t stream); template void set_to_gpu(PtrStepSzb mat, const T* scalar, int channels, cudaStream_t stream); template void set_to_gpu(PtrStepSzb mat, const T* scalar, PtrStepSzb mask, int channels, cudaStream_t stream); void convert_gpu(PtrStepSzb src, int sdepth, PtrStepSzb dst, int ddepth, double alpha, double beta, cudaStream_t stream); }}} namespace { template void kernelSetCaller(GpuMat& src, Scalar s, cudaStream_t stream) { Scalar_ sf = s; cv::gpu::cudev::set_to_gpu(src, sf.val, src.channels(), stream); } template void kernelSetCaller(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { Scalar_ sf = s; cv::gpu::cudev::set_to_gpu(src, sf.val, mask, src.channels(), stream); } } namespace cv { namespace gpu { CV_EXPORTS void copyWithMask(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, const cv::gpu::GpuMat&, CUstream_st*); CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&); CV_EXPORTS void convertTo(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, double, double, CUstream_st*); CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, CUstream_st*); CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&, CUstream_st*); CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar); CV_EXPORTS void setTo(cv::gpu::GpuMat&, cv::Scalar, const cv::gpu::GpuMat&); }} namespace cv { namespace gpu { void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0) { CV_Assert(src.size() == dst.size() && src.type() == dst.type()); CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels())); cv::gpu::cudev::copyToWithMask_gpu(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream); } void convertTo(const GpuMat& src, GpuMat& dst) { cv::gpu::cudev::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, 0); } void convertTo(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0) { cv::gpu::cudev::convert_gpu(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream); } void setTo(GpuMat& src, Scalar s, cudaStream_t stream) { typedef void (*caller_t)(GpuMat& src, Scalar s, cudaStream_t stream); static const caller_t callers[] = { kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller }; callers[src.depth()](src, s, stream); } void setTo(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { typedef void (*caller_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream); static const caller_t callers[] = { kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller, kernelSetCaller }; callers[src.depth()](src, s, mask, stream); } void setTo(GpuMat& src, Scalar s) { setTo(src, s, 0); } void setTo(GpuMat& src, Scalar s, const GpuMat& mask) { setTo(src, s, mask, 0); } }} namespace { template struct NPPTypeTraits; template<> struct NPPTypeTraits { typedef Npp8u npp_type; }; template<> struct NPPTypeTraits { typedef Npp8s npp_type; }; template<> struct NPPTypeTraits { typedef Npp16u npp_type; }; template<> struct NPPTypeTraits { typedef Npp16s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32s npp_type; }; template<> struct NPPTypeTraits { typedef Npp32f npp_type; }; template<> struct NPPTypeTraits { typedef Npp64f npp_type; }; ////////////////////////////////////////////////////////////////////////// // Convert template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI); }; template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode); }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; static void call(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type dst_t; static void call(const GpuMat& src, GpuMat& dst) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, NPP_RND_NEAR) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; ////////////////////////////////////////////////////////////////////////// // Set template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); }; template<> struct NppSetFunc { typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, const GpuMat& mask) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; ////////////////////////////////////////////////////////////////////////// // CopyMasked template struct NppCopyMaskedFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppCopyMasked { typedef typename NPPTypeTraits::npp_type src_t; static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t /*stream*/) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, mask.ptr(), static_cast(mask.step)) ); cudaSafeCall( cudaDeviceSynchronize() ); } }; template static inline bool isAligned(const T* ptr, size_t size) { return reinterpret_cast(ptr) % size == 0; } ////////////////////////////////////////////////////////////////////////// // CudaFuncTable class CudaFuncTable : public GpuFuncTable { public: void copy(const Mat& src, GpuMat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyHostToDevice) ); } void copy(const GpuMat& src, Mat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToHost) ); } void copy(const GpuMat& src, GpuMat& dst) const { cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, src.data, src.step, src.cols * src.elemSize(), src.rows, cudaMemcpyDeviceToDevice) ); } void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask) const { CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(src.size() == dst.size() && src.type() == dst.type()); CV_Assert(src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels())); if (src.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream); static const func_t funcs[7][4] = { /* 8U */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 8S */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask }, /* 16U */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 16S */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 32S */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 32F */ {NppCopyMasked::call, cv::gpu::copyWithMask, NppCopyMasked::call, NppCopyMasked::call}, /* 64F */ {cv::gpu::copyWithMask , cv::gpu::copyWithMask, cv::gpu::copyWithMask , cv::gpu::copyWithMask } }; const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cv::gpu::copyWithMask; func(src, dst, mask, 0); } void convert(const GpuMat& src, GpuMat& dst) const { typedef void (*func_t)(const GpuMat& src, GpuMat& dst); static const func_t funcs[7][7][4] = { { /* 8U -> 8U */ {0, 0, 0, 0}, /* 8U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 8U -> 16U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt::call}, /* 8U -> 16S */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt::call}, /* 8U -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 8U -> 32F */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 8U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } }, { /* 8S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 8S */ {0,0,0,0}, /* 8S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 8S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} }, { /* 16U -> 8U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt::call}, /* 16U -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16U -> 16U */ {0,0,0,0}, /* 16U -> 16S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16U -> 32S */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16U -> 32F */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16U -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } }, { /* 16S -> 8U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, NppCvt::call}, /* 16S -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16S -> 16U */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16S -> 16S */ {0,0,0,0}, /* 16S -> 32S */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16S -> 32F */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo }, /* 16S -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo } }, { /* 32S -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 32S */ {0,0,0,0}, /* 32S -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32S -> 64F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} }, { /* 32F -> 8U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 8S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 16U */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 16S */ {NppCvt::call, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 32S */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 32F -> 32F */ {0,0,0,0}, /* 32F -> 64F */ {cv::gpu::convertTo , cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo} }, { /* 64F -> 8U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 8S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 16U */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 16S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 32S */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 32F */ {cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo, cv::gpu::convertTo}, /* 64F -> 64F */ {0,0,0,0} } }; CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(dst.depth() <= CV_64F); CV_Assert(src.size() == dst.size() && src.channels() == dst.channels()); if (src.depth() == CV_64F || dst.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16); if (!aligned) { cv::gpu::convertTo(src, dst); return; } const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1]; CV_DbgAssert(func != 0); func(src, dst); } void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta) const { CV_Assert(src.depth() <= CV_64F && src.channels() <= 4); CV_Assert(dst.depth() <= CV_64F); if (src.depth() == CV_64F || dst.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } cv::gpu::convertTo(src, dst, alpha, beta); } void setTo(GpuMat& m, Scalar s, const GpuMat& mask) const { if (mask.empty()) { if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0) { cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) ); return; } if (m.depth() == CV_8U) { int cn = m.channels(); if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3])) { int val = saturate_cast(s[0]); cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) ); return; } } typedef void (*func_t)(GpuMat& src, Scalar s); static const func_t funcs[7][4] = { {NppSet::call, cv::gpu::setTo , cv::gpu::setTo , NppSet::call}, {NppSet::call, NppSet::call, NppSet::call, NppSet::call}, {NppSet::call, NppSet::call, cv::gpu::setTo , NppSet::call}, {NppSet::call, NppSet::call, cv::gpu::setTo , NppSet::call}, {NppSet::call, cv::gpu::setTo , cv::gpu::setTo , NppSet::call}, {NppSet::call, cv::gpu::setTo , cv::gpu::setTo , NppSet::call}, {cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo , cv::gpu::setTo } }; CV_Assert(m.depth() <= CV_64F && m.channels() <= 4); if (m.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } funcs[m.depth()][m.channels() - 1](m, s); } else { typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask); static const func_t funcs[7][4] = { {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo }, {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {NppSetMask::call, cv::gpu::setTo, cv::gpu::setTo, NppSetMask::call}, {cv::gpu::setTo , cv::gpu::setTo, cv::gpu::setTo, cv::gpu::setTo } }; CV_Assert(m.depth() <= CV_64F && m.channels() <= 4); if (m.depth() == CV_64F) { if (!TargetArchs::builtWith(NATIVE_DOUBLE) || !DeviceInfo().supports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } funcs[m.depth()][m.channels() - 1](m, s, mask); } } void mallocPitch(void** devPtr, size_t* step, size_t width, size_t height) const { cudaSafeCall( cudaMallocPitch(devPtr, step, width, height) ); } void free(void* devPtr) const { cudaFree(devPtr); } }; const GpuFuncTable* gpuFuncTable() { static CudaFuncTable funcTable; return &funcTable; } } #endif // HAVE_CUDA void cv::gpu::GpuMat::upload(const Mat& m) { CV_DbgAssert(!m.empty()); create(m.size(), m.type()); gpuFuncTable()->copy(m, *this); } void cv::gpu::GpuMat::download(Mat& m) const { CV_DbgAssert(!empty()); m.create(size(), type()); gpuFuncTable()->copy(*this, m); } void cv::gpu::GpuMat::copyTo(GpuMat& m) const { CV_DbgAssert(!empty()); m.create(size(), type()); gpuFuncTable()->copy(*this, m); } void cv::gpu::GpuMat::copyTo(GpuMat& mat, const GpuMat& mask) const { if (mask.empty()) copyTo(mat); else { mat.create(size(), type()); gpuFuncTable()->copyWithMask(*this, mat, mask); } } void cv::gpu::GpuMat::convertTo(GpuMat& dst, int rtype, double alpha, double beta) const { bool noScale = fabs(alpha - 1) < std::numeric_limits::epsilon() && fabs(beta) < std::numeric_limits::epsilon(); if (rtype < 0) rtype = type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); int sdepth = depth(); int ddepth = CV_MAT_DEPTH(rtype); if (sdepth == ddepth && noScale) { copyTo(dst); return; } GpuMat temp; const GpuMat* psrc = this; if (sdepth != ddepth && psrc == &dst) { temp = *this; psrc = &temp; } dst.create(size(), rtype); if (noScale) gpuFuncTable()->convert(*psrc, dst); else gpuFuncTable()->convert(*psrc, dst, alpha, beta); } GpuMat& cv::gpu::GpuMat::setTo(Scalar s, const GpuMat& mask) { CV_Assert(mask.empty() || mask.type() == CV_8UC1); CV_DbgAssert(!empty()); gpuFuncTable()->setTo(*this, s, mask); return *this; } void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) { _type &= Mat::TYPE_MASK; if (rows == _rows && cols == _cols && type() == _type && data) return; if (data) release(); CV_DbgAssert(_rows >= 0 && _cols >= 0); if (_rows > 0 && _cols > 0) { flags = Mat::MAGIC_VAL + _type; rows = _rows; cols = _cols; size_t esz = elemSize(); void* devPtr; gpuFuncTable()->mallocPitch(&devPtr, &step, esz * cols, rows); // Single row must be continuous if (rows == 1) step = esz * cols; if (esz * cols == step) flags |= Mat::CONTINUOUS_FLAG; int64 _nettosize = static_cast(step) * rows; size_t nettosize = static_cast(_nettosize); datastart = data = static_cast(devPtr); dataend = data + nettosize; refcount = static_cast(fastMalloc(sizeof(*refcount))); *refcount = 1; } } void cv::gpu::GpuMat::release() { if (refcount && CV_XADD(refcount, -1) == 1) { fastFree(refcount); gpuFuncTable()->free(datastart); } data = datastart = dataend = 0; step = rows = cols = 0; refcount = 0; } //////////////////////////////////////////////////////////////////////// // Error handling #ifdef HAVE_CUDA namespace { #define error_entry(entry) { entry, #entry } struct ErrorEntry { int code; const char* str; }; struct ErrorEntryComparer { int code; ErrorEntryComparer(int code_) : code(code_) {} bool operator()(const ErrorEntry& e) const { return e.code == code; } }; const ErrorEntry npp_errors [] = { #if defined (_MSC_VER) error_entry( NPP_NOT_SUFFICIENT_COMPUTE_CAPABILITY ), #endif #if NPP_VERSION < 5500 error_entry( NPP_BAD_ARG_ERROR ), error_entry( NPP_COEFF_ERROR ), error_entry( NPP_RECT_ERROR ), error_entry( NPP_QUAD_ERROR ), error_entry( NPP_MEMFREE_ERR ), error_entry( NPP_MEMSET_ERR ), error_entry( NPP_MEM_ALLOC_ERR ), error_entry( NPP_HISTO_NUMBER_OF_LEVELS_ERROR ), error_entry( NPP_MIRROR_FLIP_ERR ), error_entry( NPP_INVALID_INPUT ), error_entry( NPP_POINTER_ERROR ), error_entry( NPP_WARNING ), error_entry( NPP_ODD_ROI_WARNING ), #else error_entry( NPP_INVALID_HOST_POINTER_ERROR ), error_entry( NPP_INVALID_DEVICE_POINTER_ERROR ), error_entry( NPP_LUT_PALETTE_BITSIZE_ERROR ), error_entry( NPP_ZC_MODE_NOT_SUPPORTED_ERROR ), error_entry( NPP_MEMFREE_ERROR ), error_entry( NPP_MEMSET_ERROR ), error_entry( NPP_QUALITY_INDEX_ERROR ), error_entry( NPP_HISTOGRAM_NUMBER_OF_LEVELS_ERROR ), error_entry( NPP_CHANNEL_ORDER_ERROR ), error_entry( NPP_ZERO_MASK_VALUE_ERROR ), error_entry( NPP_QUADRANGLE_ERROR ), error_entry( NPP_RECTANGLE_ERROR ), error_entry( NPP_COEFFICIENT_ERROR ), error_entry( NPP_NUMBER_OF_CHANNELS_ERROR ), error_entry( NPP_COI_ERROR ), error_entry( NPP_DIVISOR_ERROR ), error_entry( NPP_CHANNEL_ERROR ), error_entry( NPP_STRIDE_ERROR ), error_entry( NPP_ANCHOR_ERROR ), error_entry( NPP_MASK_SIZE_ERROR ), error_entry( NPP_MIRROR_FLIP_ERROR ), error_entry( NPP_MOMENT_00_ZERO_ERROR ), error_entry( NPP_THRESHOLD_NEGATIVE_LEVEL_ERROR ), error_entry( NPP_THRESHOLD_ERROR ), error_entry( NPP_CONTEXT_MATCH_ERROR ), error_entry( NPP_FFT_FLAG_ERROR ), error_entry( NPP_FFT_ORDER_ERROR ), error_entry( NPP_SCALE_RANGE_ERROR ), error_entry( NPP_DATA_TYPE_ERROR ), error_entry( NPP_OUT_OFF_RANGE_ERROR ), error_entry( NPP_DIVIDE_BY_ZERO_ERROR ), error_entry( NPP_MEMORY_ALLOCATION_ERR ), error_entry( NPP_RANGE_ERROR ), error_entry( NPP_BAD_ARGUMENT_ERROR ), error_entry( NPP_NO_MEMORY_ERROR ), error_entry( NPP_ERROR_RESERVED ), error_entry( NPP_NO_OPERATION_WARNING ), error_entry( NPP_DIVIDE_BY_ZERO_WARNING ), error_entry( NPP_WRONG_INTERSECTION_ROI_WARNING ), #endif error_entry( NPP_NOT_SUPPORTED_MODE_ERROR ), error_entry( NPP_ROUND_MODE_NOT_SUPPORTED_ERROR ), error_entry( NPP_RESIZE_NO_OPERATION_ERROR ), error_entry( NPP_LUT_NUMBER_OF_LEVELS_ERROR ), error_entry( NPP_TEXTURE_BIND_ERROR ), error_entry( NPP_WRONG_INTERSECTION_ROI_ERROR ), error_entry( NPP_NOT_EVEN_STEP_ERROR ), error_entry( NPP_INTERPOLATION_ERROR ), error_entry( NPP_RESIZE_FACTOR_ERROR ), error_entry( NPP_HAAR_CLASSIFIER_PIXEL_MATCH_ERROR ), error_entry( NPP_MEMCPY_ERROR ), error_entry( NPP_ALIGNMENT_ERROR ), error_entry( NPP_STEP_ERROR ), error_entry( NPP_SIZE_ERROR ), error_entry( NPP_NULL_POINTER_ERROR ), error_entry( NPP_CUDA_KERNEL_EXECUTION_ERROR ), error_entry( NPP_NOT_IMPLEMENTED_ERROR ), error_entry( NPP_ERROR ), error_entry( NPP_NO_ERROR ), error_entry( NPP_SUCCESS ), error_entry( NPP_WRONG_INTERSECTION_QUAD_WARNING ), error_entry( NPP_MISALIGNED_DST_ROI_WARNING ), error_entry( NPP_AFFINE_QUAD_INCORRECT_WARNING ), error_entry( NPP_DOUBLE_SIZE_WARNING ) }; const size_t npp_error_num = sizeof(npp_errors) / sizeof(npp_errors[0]); const ErrorEntry cu_errors [] = { error_entry( CUDA_SUCCESS ), error_entry( CUDA_ERROR_INVALID_VALUE ), error_entry( CUDA_ERROR_OUT_OF_MEMORY ), error_entry( CUDA_ERROR_NOT_INITIALIZED ), error_entry( CUDA_ERROR_DEINITIALIZED ), error_entry( CUDA_ERROR_PROFILER_DISABLED ), error_entry( CUDA_ERROR_PROFILER_NOT_INITIALIZED ), error_entry( CUDA_ERROR_PROFILER_ALREADY_STARTED ), error_entry( CUDA_ERROR_PROFILER_ALREADY_STOPPED ), error_entry( CUDA_ERROR_NO_DEVICE ), error_entry( CUDA_ERROR_INVALID_DEVICE ), error_entry( CUDA_ERROR_INVALID_IMAGE ), error_entry( CUDA_ERROR_INVALID_CONTEXT ), error_entry( CUDA_ERROR_CONTEXT_ALREADY_CURRENT ), error_entry( CUDA_ERROR_MAP_FAILED ), error_entry( CUDA_ERROR_UNMAP_FAILED ), error_entry( CUDA_ERROR_ARRAY_IS_MAPPED ), error_entry( CUDA_ERROR_ALREADY_MAPPED ), error_entry( CUDA_ERROR_NO_BINARY_FOR_GPU ), error_entry( CUDA_ERROR_ALREADY_ACQUIRED ), error_entry( CUDA_ERROR_NOT_MAPPED ), error_entry( CUDA_ERROR_NOT_MAPPED_AS_ARRAY ), error_entry( CUDA_ERROR_NOT_MAPPED_AS_POINTER ), error_entry( CUDA_ERROR_ECC_UNCORRECTABLE ), error_entry( CUDA_ERROR_UNSUPPORTED_LIMIT ), error_entry( CUDA_ERROR_CONTEXT_ALREADY_IN_USE ), error_entry( CUDA_ERROR_INVALID_SOURCE ), error_entry( CUDA_ERROR_FILE_NOT_FOUND ), error_entry( CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND ), error_entry( CUDA_ERROR_SHARED_OBJECT_INIT_FAILED ), error_entry( CUDA_ERROR_OPERATING_SYSTEM ), error_entry( CUDA_ERROR_INVALID_HANDLE ), error_entry( CUDA_ERROR_NOT_FOUND ), error_entry( CUDA_ERROR_NOT_READY ), error_entry( CUDA_ERROR_LAUNCH_FAILED ), error_entry( CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES ), error_entry( CUDA_ERROR_LAUNCH_TIMEOUT ), error_entry( CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING ), error_entry( CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED ), error_entry( CUDA_ERROR_PEER_ACCESS_NOT_ENABLED ), error_entry( CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE ), error_entry( CUDA_ERROR_CONTEXT_IS_DESTROYED ), error_entry( CUDA_ERROR_ASSERT ), error_entry( CUDA_ERROR_TOO_MANY_PEERS ), error_entry( CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED ), error_entry( CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED ), error_entry( CUDA_ERROR_UNKNOWN ) }; const size_t cu_errors_num = sizeof(cu_errors) / sizeof(cu_errors[0]); cv::String getErrorString(int code, const ErrorEntry* errors, size_t n) { size_t idx = std::find_if(errors, errors + n, ErrorEntryComparer(code)) - errors; const char* msg = (idx != n) ? errors[idx].str : "Unknown error code"; cv::String str = cv::format("%s [Code = %d]", msg, code); return str; } } #endif String cv::gpu::getNppErrorMessage(int code) { #ifndef HAVE_CUDA (void) code; return String(); #else return getErrorString(code, npp_errors, npp_error_num); #endif } String cv::gpu::getCudaDriverApiErrorMessage(int code) { #ifndef HAVE_CUDA (void) code; return String(); #else return getErrorString(code, cu_errors, cu_errors_num); #endif }