/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other GpuMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; using namespace std; #if !defined (HAVE_CUDA) cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, int) { throw_nogpu(); } cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, float, float, float, float, int) { throw_nogpu(); } void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); } #else /* !defined (HAVE_CUDA) */ namespace cv { namespace gpu { namespace csbp { void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp1, const DevMem2D& temp2); void init_data_cost(int rows, int cols, const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels, const cudaStream_t& stream); void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type, int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream); void init_message(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new, const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur, const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur, const DevMem2D& data_cost_selected, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type, int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream); void calc_all_iterations(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected, const DevMem2D& selected_disp_pyr_cur, size_t msg_step, int msg_type, int h, int w, int nr_plane, int iters, const cudaStream_t& stream); void compute_disp(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected, const DevMem2D& disp_selected, size_t msg_step, int msg_type, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream); }}} namespace { const float DEFAULT_MAX_DATA_TERM = 10.0f; const float DEFAULT_DATA_WEIGHT = 0.07f; const float DEFAULT_MAX_DISC_TERM = 1.7f; const float DEFAULT_DISC_SINGLE_JUMP = 1.0f; } cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_), max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT), max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), msg_type(msg_type_) { } cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_) : ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_), max_data_term(max_data_term_), data_weight(data_weight_), max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), msg_type(msg_type_) { } static void stereo_csbp_gpu_operator(int& ndisp, int& iters, int& levels, int& nr_plane, float& max_data_term, float& data_weight, float& max_disc_term, float& disc_single_jump, int& msg_type, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2], GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected, GpuMat& temp1, GpuMat& temp2, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, const cudaStream_t& stream) { CV_DbgAssert(0 < ndisp && 0 < iters && 0 < levels && 0 < nr_plane && (msg_type == CV_32F || msg_type == CV_16S) && left.rows == right.rows && left.cols == right.cols && left.type() == right.type()); CV_Assert(levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3)); const Scalar zero = Scalar::all(0); const float scale = ((msg_type == CV_32F) ? 1.0f : 10.0f); const size_t type_size = ((msg_type == CV_32F) ? sizeof(float) : sizeof(short)); //////////////////////////////////////////////////////////////////////////////////////////// // Init int rows = left.rows; int cols = left.cols; levels = min(levels, int(log((double)ndisp) / log(2.0))); AutoBuffer buf(levels * 4); int* cols_pyr = buf; int* rows_pyr = cols_pyr + levels; int* nr_plane_pyr = rows_pyr + levels; int* step_pyr = nr_plane_pyr + levels; cols_pyr[0] = cols; rows_pyr[0] = rows; nr_plane_pyr[0] = nr_plane; const int n = 64; step_pyr[0] = alignSize(cols * type_size, n) / type_size; for (int i = 1; i < levels; i++) { cols_pyr[i] = (cols_pyr[i-1] + 1) / 2; rows_pyr[i] = (rows_pyr[i-1] + 1) / 2; nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2; step_pyr[i] = alignSize(cols_pyr[i] * type_size, n) / type_size; } Size msg_size(step_pyr[0], rows * nr_plane_pyr[0]); Size data_cost_size(step_pyr[0], rows * nr_plane_pyr[0] * 2); u[0].create(msg_size, msg_type); d[0].create(msg_size, msg_type); l[0].create(msg_size, msg_type); r[0].create(msg_size, msg_type); u[1].create(msg_size, msg_type); d[1].create(msg_size, msg_type); l[1].create(msg_size, msg_type); r[1].create(msg_size, msg_type); disp_selected_pyr[0].create(msg_size, msg_type); disp_selected_pyr[1].create(msg_size, msg_type); data_cost.create(data_cost_size, msg_type); data_cost_selected.create(msg_size, msg_type); step_pyr[0] = data_cost.step / type_size; Size temp_size = data_cost_size; if (data_cost_size.width * data_cost_size.height < static_cast(step_pyr[levels - 1]) * rows_pyr[levels - 1] * ndisp) { temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * ndisp); } temp1.create(temp_size, msg_type); temp2.create(temp_size, msg_type); //////////////////////////////////////////////////////////////////////////// // Compute csbp::load_constants(ndisp, max_data_term, scale * data_weight, scale * max_disc_term, scale * disc_single_jump, left, right, temp1, temp2); l[0] = zero; d[0] = zero; r[0] = zero; u[0] = zero; l[1] = zero; d[1] = zero; r[1] = zero; u[1] = zero; data_cost = zero; data_cost_selected = zero; int cur_idx = 0; for (int i = levels - 1; i >= 0; i--) { if (i == levels - 1) { csbp::init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx], data_cost_selected, step_pyr[i], msg_type, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], ndisp, left.channels(), stream); } else { csbp::compute_data_cost(disp_selected_pyr[cur_idx], data_cost, step_pyr[i], step_pyr[i+1], msg_type, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), stream); int new_idx = (cur_idx + 1) & 1; csbp::init_message(u[new_idx], d[new_idx], l[new_idx], r[new_idx], u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx], disp_selected_pyr[new_idx], disp_selected_pyr[cur_idx], data_cost_selected, data_cost, step_pyr[i], step_pyr[i+1], msg_type, rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], stream); cur_idx = new_idx; } csbp::calc_all_iterations(u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx], data_cost_selected, disp_selected_pyr[cur_idx], step_pyr[i], msg_type, rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], iters, stream); } if (disp.empty()) disp.create(rows, cols, CV_16S); out = ((disp.type() == CV_16S) ? disp : GpuMat(rows, cols, CV_16S)); out = zero; csbp::compute_disp(u[cur_idx], d[cur_idx], l[cur_idx], r[cur_idx], data_cost_selected, disp_selected_pyr[cur_idx], step_pyr[0], msg_type, out, nr_plane_pyr[0], stream); if (disp.type() != CV_16S) out.convertTo(disp, disp.type()); } void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp) { ::stereo_csbp_gpu_operator(ndisp, iters, levels, nr_plane, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp1, temp2, out, left, right, disp, 0); } void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, const Stream& stream) { ::stereo_csbp_gpu_operator(ndisp, iters, levels, nr_plane, max_data_term, data_weight, max_disc_term, disc_single_jump, msg_type, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp1, temp2, out, left, right, disp, StreamAccessor::getStream(stream)); } #endif /* !defined (HAVE_CUDA) */