/* This sample demonstrates working on one piece of data using two GPUs. It splits input into two parts and processes them separately on different GPUs. */ // Disable some warnings which are caused with CUDA headers #pragma warning(disable: 4201 4408 4100) #include #include #include #include #include #if !defined(HAVE_CUDA) || !defined(HAVE_TBB) int main() { #if !defined(HAVE_CUDA) cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n"; #endif #if !defined(HAVE_TBB) cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n"; #endif return 0; } #else #include #include #include "opencv2/core/internal.hpp" // For TBB wrappers using namespace std; using namespace cv; using namespace cv::gpu; struct Worker { void operator()(int device_id) const; }; void destroyContexts(); #define safeCall(code) if (code != CUDA_SUCCESS) { \ cout << "CUDA driver API error: code " << code \ << ", file " << __FILE__ << ", line " << __LINE__ << endl; \ destroyContexts(); \ exit(-1); \ } // Each GPU is associated with its own context CUcontext contexts[2]; void inline contextOn(int id) { safeCall(cuCtxPushCurrent(contexts[id])); } void inline contextOff() { CUcontext prev_context; safeCall(cuCtxPopCurrent(&prev_context)); } // GPUs data GpuMat d_left[2]; GpuMat d_right[2]; StereoBM_GPU* bm[2]; GpuMat d_result[2]; // CPU result Mat result; int main(int argc, char** argv) { if (argc < 3) { cout << "Usage: stereo_multi_gpu \n"; return -1; } int num_devices = getCudaEnabledDeviceCount(); if (num_devices < 2) { cout << "Two or more GPUs are required\n"; return -1; } for (int i = 0; i < num_devices; ++i) { DeviceInfo dev_info(i); if (!dev_info.isCompatible()) { cout << "GPU module isn't built for GPU #" << i << " (" << dev_info.name() << ", CC " << dev_info.majorVersion() << dev_info.minorVersion() << "\n"; return -1; } } // Load input data Mat left = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE); Mat right = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE); if (left.empty()) { cout << "Cannot open '" << argv[1] << "'\n"; return -1; } if (right.empty()) { cout << "Cannot open '" << argv[2] << "'\n"; return -1; } safeCall(cuInit(0)); // Create context for the first GPU CUdevice device; safeCall(cuDeviceGet(&device, 0)); safeCall(cuCtxCreate(&contexts[0], 0, device)); contextOff(); // Create context for the second GPU safeCall(cuDeviceGet(&device, 1)); safeCall(cuCtxCreate(&contexts[1], 0, device)); contextOff(); // Split source images for processing on the first GPU contextOn(0); d_left[0].upload(left.rowRange(0, left.rows / 2)); d_right[0].upload(right.rowRange(0, right.rows / 2)); bm[0] = new StereoBM_GPU(); contextOff(); // Split source images for processing on the second GPU contextOn(1); d_left[1].upload(left.rowRange(left.rows / 2, left.rows)); d_right[1].upload(right.rowRange(right.rows / 2, right.rows)); bm[1] = new StereoBM_GPU(); contextOff(); // Execute calculation in two threads using two GPUs int devices[] = {0, 1}; parallel_do(devices, devices + 2, Worker()); // Release the first GPU resources contextOn(0); imshow("GPU #0 result", Mat(d_result[0])); d_left[0].release(); d_right[0].release(); d_result[0].release(); delete bm[0]; contextOff(); // Release the second GPU resources contextOn(1); imshow("GPU #1 result", Mat(d_result[1])); d_left[1].release(); d_right[1].release(); d_result[1].release(); delete bm[1]; contextOff(); waitKey(); destroyContexts(); return 0; } void Worker::operator()(int device_id) const { contextOn(device_id); bm[device_id]->operator()(d_left[device_id], d_right[device_id], d_result[device_id]); cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): finished\n"; contextOff(); } void destroyContexts() { safeCall(cuCtxDestroy(contexts[0])); safeCall(cuCtxDestroy(contexts[1])); } #endif