/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" void cv::Canny( InputArray _src, OutputArray _dst, double low_thresh, double high_thresh, int aperture_size, bool L2gradient ) { Mat src = _src.getMat(); CV_Assert( src.depth() == CV_8U ); _dst.create(src.size(), CV_8U); Mat dst = _dst.getMat(); #ifdef HAVE_TEGRA_OPTIMIZATION if (tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient)) return; #endif if( low_thresh > high_thresh ) std::swap(low_thresh, high_thresh); if( (aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)) ) CV_Error( CV_StsBadFlag, "" ); Mat dx, dy; Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, BORDER_REFLECT_101); Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, BORDER_REFLECT_101); int low, high; if( L2gradient ) { Cv32suf ul, uh; ul.f = (float)low_thresh; uh.f = (float)high_thresh; low = ul.i; high = uh.i; } else { low = cvFloor( low_thresh ); high = cvFloor( high_thresh ); } Size size = src.size(); int i, j, k, mstep = size.width + 2, cn = src.channels(); Mat mask(size.height + 2, mstep, CV_8U); memset( mask.ptr(0), 1, mstep ); memset( mask.ptr(size.height+1), 1, mstep ); Mat mag(6+cn, mstep, CV_32S); mag = Scalar::all(0); int* mag_buf[3] = { mag.ptr(0), mag.ptr(1), mag.ptr(2) }; short* dxybuf[3] = { (short*)mag.ptr(3), (short*)mag.ptr(4), (short*)mag.ptr(5) }; int* mbuf = mag.ptr(6); int maxsize = MAX( 1 << 10, size.width*size.height/10 ); std::vector stack( maxsize ); uchar **stack_top, **stack_bottom; stack_top = stack_bottom = &stack[0]; /* sector numbers (Top-Left Origin) 1 2 3 * * * * * * 0*******0 * * * * * * 3 2 1 */ #define CANNY_PUSH(d) *(d) = (uchar)2, *stack_top++ = (d) #define CANNY_POP(d) (d) = *--stack_top // calculate magnitude and angle of gradient, perform non-maxima supression. // fill the map with one of the following values: // 0 - the pixel might belong to an edge // 1 - the pixel can not belong to an edge // 2 - the pixel does belong to an edge for( i = 0; i <= size.height; i++ ) { int *_mag = mag_buf[(i > 0) + 1] + 1; float* _magf = (float*)_mag; const short *_dx, *_dy; short *_ddx, *_ddy; uchar* _map; int x, y; ptrdiff_t magstep1, magstep2; int prev_flag = 0; if( i < size.height ) { _dx = dx.ptr(i); _dy = dy.ptr(i); _ddx = dxybuf[(i > 0) + 1]; _ddy = _ddx + size.width; if( cn > 1 ) { _mag = mbuf; _magf = (float*)_mag; } if( !L2gradient ) for( j = 0; j < size.width*cn; j++ ) _mag[j] = std::abs(_dx[j]) + std::abs(_dy[j]); else { for( j = 0; j < size.width*cn; j++ ) { x = _dx[j]; y = _dy[j]; _magf[j] = sqrtf((float)x*x + (float)y*y); } } if( cn > 1 ) { _mag = mag_buf[(i > 0) + 1] + 1; for( j = 0; j < size.width; j++ ) { _mag[j] = mbuf[(j+1)*cn]; _ddx[j] = _dx[j*cn]; _ddy[j] = _dy[j*cn]; } for( k = 1; k < cn; k++ ) { for( j = 0; j < size.width; j++ ) if( mbuf[(j+1)*cn + k] > _mag[j] ) { _mag[j] = mbuf[(j+1)*cn + k]; _ddx[j] = _dx[j*cn + k]; _ddy[j] = _dy[j*cn + k]; } } } else { for( j = 0; j < size.width; j++ ) _ddx[j] = _dx[j]; _ddy[j] = _dy[j]; } _mag[-1] = _mag[size.width] = 0; } else memset( _mag-1, 0, (size.width + 2)*sizeof(_mag[0]) ); // at the very beginning we do not have a complete ring // buffer of 3 magnitude rows for non-maxima suppression if( i == 0 ) continue; _map = &mask.at(i, 1); _map[-1] = _map[size.width] = 1; _mag = mag_buf[1] + 1; // take the central row _dx = dxybuf[1]; _dy = _dx + size.width; magstep1 = mag_buf[2] - mag_buf[1]; magstep2 = mag_buf[0] - mag_buf[1]; if( (stack_top - stack_bottom) + size.width > maxsize ) { int sz = (int)(stack_top - stack_bottom); maxsize = MAX( maxsize * 3/2, maxsize + size.width ); stack.resize(maxsize); stack_bottom = &stack[0]; stack_top = stack_bottom + sz; } for( j = 0; j < size.width; j++ ) { #define CANNY_SHIFT 15 #define TG22 (int)(0.4142135623730950488016887242097*(1< low ) { int tg22x = x * TG22; int tg67x = tg22x + ((x + x) << CANNY_SHIFT); y <<= CANNY_SHIFT; if( y < tg22x ) { if( m > _mag[j-1] && m >= _mag[j+1] ) { if( m > high && !prev_flag && _map[j-mstep] != 2 ) { CANNY_PUSH( _map + j ); prev_flag = 1; } else _map[j] = (uchar)0; continue; } } else if( y > tg67x ) { if( m > _mag[j+magstep2] && m >= _mag[j+magstep1] ) { if( m > high && !prev_flag && _map[j-mstep] != 2 ) { CANNY_PUSH( _map + j ); prev_flag = 1; } else _map[j] = (uchar)0; continue; } } else { s = s < 0 ? -1 : 1; if( m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s] ) { if( m > high && !prev_flag && _map[j-mstep] != 2 ) { CANNY_PUSH( _map + j ); prev_flag = 1; } else _map[j] = (uchar)0; continue; } } } prev_flag = 0; _map[j] = (uchar)1; } // scroll the ring buffers _mag = mag_buf[0]; mag_buf[0] = mag_buf[1]; mag_buf[1] = mag_buf[2]; mag_buf[2] = _mag; _ddx = dxybuf[0]; dxybuf[0] = dxybuf[1]; dxybuf[1] = dxybuf[2]; dxybuf[2] = _ddx; } // now track the edges (hysteresis thresholding) while( stack_top > stack_bottom ) { uchar* m; if( (stack_top - stack_bottom) + 8 > maxsize ) { int sz = (int)(stack_top - stack_bottom); maxsize = MAX( maxsize * 3/2, maxsize + 8 ); stack.resize(maxsize); stack_bottom = &stack[0]; stack_top = stack_bottom + sz; } CANNY_POP(m); if( !m[-1] ) CANNY_PUSH( m - 1 ); if( !m[1] ) CANNY_PUSH( m + 1 ); if( !m[-mstep-1] ) CANNY_PUSH( m - mstep - 1 ); if( !m[-mstep] ) CANNY_PUSH( m - mstep ); if( !m[-mstep+1] ) CANNY_PUSH( m - mstep + 1 ); if( !m[mstep-1] ) CANNY_PUSH( m + mstep - 1 ); if( !m[mstep] ) CANNY_PUSH( m + mstep ); if( !m[mstep+1] ) CANNY_PUSH( m + mstep + 1 ); } // the final pass, form the final image for( i = 0; i < size.height; i++ ) { const uchar* _map = mask.ptr(i+1) + 1; uchar* _dst = dst.ptr(i); for( j = 0; j < size.width; j++ ) _dst[j] = (uchar)-(_map[j] >> 1); } } void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size ) { cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges); CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U ); cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255, (aperture_size & CV_CANNY_L2_GRADIENT) != 0); } /* End of file. */