#include #include #include #include using namespace cv; using namespace std; inline Point2f applyHomography( const Mat_& H, const Point2f& pt ) { double w = 1./(H(2,0)*pt.x + H(2,1)*pt.y + H(2,2)); return Point2f( (float)((H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w), (float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w) ); } void drawCorrespondences( const Mat& img1, const Mat& img2, const Mat& transfMtr, const vector& keypoints1, const vector& keypoints2, const vector& matches, float maxDist, Mat& drawImg ) { Scalar RED = CV_RGB(255, 0, 0); Scalar PINK = CV_RGB(255,130,230); Scalar GREEN = CV_RGB(0, 255, 0); Scalar BLUE = CV_RGB(0, 0, 255); /* Output: red point - point without corresponding point; grean point - point having correct corresponding point; pink point - point having incorrect corresponding point, but excised by threshold of distance; blue point - point having incorrect corresponding point; */ Size size(img1.cols + img2.cols, MAX(img1.rows, img2.rows)); drawImg.create(size, CV_MAKETYPE(img1.depth(), 3)); Mat drawImg1 = drawImg(Rect(0, 0, img1.cols, img1.rows)); cvtColor(img1, drawImg1, CV_GRAY2RGB); Mat drawImg2 = drawImg(Rect(img1.cols, 0, img2.cols, img2.rows)); cvtColor(img2, drawImg2, CV_GRAY2RGB); for(vector::const_iterator it = keypoints1.begin(); it < keypoints1.end(); ++it ) { circle(drawImg, it->pt, 3, RED); } for(vector::const_iterator it = keypoints2.begin(); it < keypoints2.end(); ++it ) { Point p = it->pt; circle(drawImg, Point2f(p.x+img1.cols, p.y), 3, RED); } Mat vec1(3, 1, CV_32FC1), vec2; float err = 3; vector::const_iterator mit = matches.begin(); assert( matches.size() == keypoints1.size() ); for( int i1 = 0; mit < matches.end(); ++mit, i1++ ) { Point2f pt1 = keypoints1[i1].pt, pt2 = keypoints2[*mit].pt; Point2f diff = applyHomography(transfMtr, pt1) - pt2; if( norm(diff) < err ) { circle(drawImg, pt1, 3, GREEN); circle(drawImg, Point2f(pt2.x+img1.cols, pt2.y), 3, GREEN); line(drawImg, pt1, Point2f(pt2.x+img1.cols, pt2.y), GREEN); } else { /*if( *dit > maxDist ) { circle(drawImg, pt1, 3, PINK); circle(drawImg, Point2f(pt2.x+img1.cols, pt2.y), 3, PINK); } // TODO add key point filter else*/ { circle(drawImg, pt1, 3, BLUE); circle(drawImg, Point2f(pt2.x+img1.cols, pt2.y), 3, BLUE); line(drawImg, pt1, Point2f(pt2.x+img1.cols, pt2.y), BLUE); } } } } FeatureDetector* createDetector( const string& detectorType ) { FeatureDetector* fd = 0; if( !detectorType.compare( "FAST" ) ) { fd = new FastFeatureDetector( 1/*threshold*/, true/*nonmax_suppression*/ ); } else if( !detectorType.compare( "STAR" ) ) { fd = new StarFeatureDetector( 16/*max_size*/, 30/*response_threshold*/, 10/*line_threshold_projected*/, 8/*line_threshold_binarized*/, 5/*suppress_nonmax_size*/ ); } else if( !detectorType.compare( "SIFT" ) ) { fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(), SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD()); } else if( !detectorType.compare( "SURF" ) ) { fd = new SurfFeatureDetector( 400./*hessian_threshold*/, 3 /*octaves*/, 4/*octave_layers*/ ); } else if( !detectorType.compare( "MSER" ) ) { fd = new MserFeatureDetector( 5/*delta*/, 60/*min_area*/, 14400/*_max_area*/, 0.25f/*max_variation*/, 0.2/*min_diversity*/, 200/*max_evolution*/, 1.01/*area_threshold*/, 0.003/*min_margin*/, 5/*edge_blur_size*/ ); } else if( !detectorType.compare( "GFTT" ) ) { fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/, 3/*int _blockSize*/, true/*useHarrisDetector*/, 0.04/*k*/ ); } else fd = 0; return fd; } DescriptorExtractor* createDescExtractor( const string& descriptorType ) { DescriptorExtractor* de = 0; if( !descriptorType.compare( "CALONDER" ) ) { assert(0); //de = new CalonderDescriptorExtractor(""); } else if( !descriptorType.compare( "SURF" ) ) { de = new SurfDescriptorExtractor( 3/*octaves*/, 4/*octave_layers*/, false/*extended*/ ); } else de = 0; return de; } DescriptorMatcher* createDescMatcher( const string& matherType = string() ) { return new BruteForceMatcher >(); } const string DETECTOR_TYPE_STR = "detector_type"; const string DESCRIPTOR_TYPE_STR = "descriptor_type"; const string winName = "correspondences"; void iter( Ptr detector, Ptr descriptor, const Mat& img1, float maxDist, Mat& transfMtr, RNG* rng = 0 ) { if( transfMtr.empty() ) transfMtr = Mat::eye(3, 3, CV_32FC1); if( rng ) { transfMtr.at(0,0) = rng->uniform( 0.7f, 1.3f); transfMtr.at(0,1) = rng->uniform(-0.2f, 0.2f); transfMtr.at(0,2) = rng->uniform(-0.1f, 0.1f)*img1.cols; transfMtr.at(1,0) = rng->uniform(-0.2f, 0.2f); transfMtr.at(1,1) = rng->uniform( 0.7f, 1.3f); transfMtr.at(1,2) = rng->uniform(-0.1f, 0.3f)*img1.rows; transfMtr.at(2,0) = rng->uniform( -1e-4f, 1e-4f); transfMtr.at(2,1) = rng->uniform( -1e-4f, 1e-4f); transfMtr.at(2,2) = rng->uniform( 0.7f, 1.3f); } Mat img2; warpPerspective( img1, img2, transfMtr, img1.size() ); cout << endl << "< Extracting keypoints... "; vector keypoints1, keypoints2; detector->detect( img1, keypoints1 ); detector->detect( img2, keypoints2 ); cout << keypoints1.size() << " from first image and " << keypoints2.size() << " from second image >" << endl; if( keypoints1.empty() || keypoints2.empty() ) cout << "end" << endl; cout << "< Computing descriptors... "; Mat descs1, descs2; if( keypoints1.size()>0 && keypoints2.size()>0 ) { descriptor->compute( img1, keypoints1, descs1 ); descriptor->compute( img2, keypoints2, descs2 ); } cout << ">" << endl; cout << "< Matching keypoints by descriptors... "; vector matches; Ptr matcher = createDescMatcher(); matcher->add( descs2 ); matcher->match( descs1, matches ); cout << ">" << endl; // TODO time Mat drawImg; drawCorrespondences( img1, img2, transfMtr, keypoints1, keypoints2, matches, maxDist, drawImg ); imshow( winName, drawImg); } Ptr detector; Ptr descriptor; Mat img1; Mat transfMtr; RNG rng; const float maxDistScale = 0.01f; int maxDist; void onMaxDistChange( int maxDist, void* ) { float realMaxDist = maxDist*maxDistScale; cout << "maxDist " << realMaxDist << endl; iter( detector, descriptor, img1, realMaxDist, transfMtr ); } int main(int argc, char** argv) { if( argc != 4 ) { cout << "Format:" << endl; cout << "./" << argv[0] << " [detector_type] [descriptor_type] [image]" << endl; return 0; } cout << "< Creating detector, descriptor and matcher... "; detector = createDetector(argv[1]); descriptor = createDescExtractor(argv[2]); //Ptr matcher = createDescMatcher(argv[3]); cout << ">" << endl; if( detector.empty() || descriptor.empty()/* || matcher.empty() */ ) { cout << "Can not create detector or descriptor or matcher of given types" << endl; return 0; } cout << "< Reading the image... "; img1 = imread( argv[3], CV_LOAD_IMAGE_GRAYSCALE); cout << ">" << endl; if( img1.empty() ) { cout << "Can not read image" << endl; return 0; } namedWindow(winName, 1); maxDist = 12; createTrackbar( "maxDist", winName, &maxDist, 100, onMaxDistChange ); onMaxDistChange(maxDist, 0); for(;;) { char c = (char)cvWaitKey(0); if( c == '\x1b' ) // esc { cout << "Exiting ..." << endl; return 0; } else if( c == 'n' ) iter(detector, descriptor, img1, maxDist*maxDistScale, transfMtr, &rng); } waitKey(0); }