/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Shengen Yan, yanshengen@gmail.com // Jiang Liyuan, lyuan001.good@163.com // Rock Li, Rock.Li@amd.com // Zailong Wu, bullet@yeah.net // Xu Pang, pangxu010@163.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #ifdef HAVE_OPENCL using namespace cvtest; using namespace testing; using namespace std; MatType nulltype = -1; #define ONE_TYPE(type) testing::ValuesIn(typeVector(type)) #define NULL_TYPE testing::ValuesIn(typeVector(nulltype)) vector typeVector(MatType type) { vector v; v.push_back(type); return v; } PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bool) { int type1, type2, type3, type4, type5; cv::Scalar val; // set up roi int roicols; int roirows; int src1x; int src1y; int src2x; int src2y; int dstx; int dsty; int dst1x; int dst1y; int maskx; int masky; //mat cv::Mat mat1; cv::Mat mat2; cv::Mat mask; cv::Mat dst; cv::Mat dst1; //bak, for two outputs //mat with roi cv::Mat mat1_roi; cv::Mat mat2_roi; cv::Mat mask_roi; cv::Mat dst_roi; cv::Mat dst1_roi; //bak //std::vector oclinfo; //ocl mat cv::ocl::oclMat clmat1; cv::ocl::oclMat clmat2; cv::ocl::oclMat clmask; cv::ocl::oclMat cldst; cv::ocl::oclMat cldst1; //bak //ocl mat with roi cv::ocl::oclMat clmat1_roi; cv::ocl::oclMat clmat2_roi; cv::ocl::oclMat clmask_roi; cv::ocl::oclMat cldst_roi; cv::ocl::oclMat cldst1_roi; virtual void SetUp() { type1 = GET_PARAM(0); type2 = GET_PARAM(1); type3 = GET_PARAM(2); type4 = GET_PARAM(3); type5 = GET_PARAM(4); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); double min = 1, max = 20; //int devnums = getDevice(oclinfo); //CV_Assert(devnums>0); ////if you want to use undefault device, set it here ////setDevice(oclinfo[0]); //cv::ocl::setBinpath(CLBINPATH); if(type1 != nulltype) { mat1 = randomMat(rng, size, type1, min, max, false); clmat1 = mat1; } if(type2 != nulltype) { mat2 = randomMat(rng, size, type2, min, max, false); clmat2 = mat2; } if(type3 != nulltype) { dst = randomMat(rng, size, type3, min, max, false); cldst = dst; } if(type4 != nulltype) { dst1 = randomMat(rng, size, type4, min, max, false); cldst1 = dst1; } if(type5 != nulltype) { mask = randomMat(rng, size, CV_8UC1, 0, 2, false); cv::threshold(mask, mask, 0.5, 255., type5); clmask = mask; } val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0)); } void Has_roi(int b) { //cv::RNG& rng = TS::ptr()->get_rng(); if(b) { //randomize ROI roicols = mat1.cols - 1; //start roirows = mat1.rows - 1; src1x = 1; src2x = 1; src1y = 1; src2y = 1; dstx = 1; dsty = 1; dst1x = 1; dst1y = 1; maskx = 1; masky = 1; } else { roicols = mat1.cols; roirows = mat1.rows; src1x = 0; src2x = 0; src1y = 0; src2y = 0; dstx = 0; dsty = 0; dst1x = 0; dst1y = 0; maskx = 0; masky = 0; }; if(type1 != nulltype) { mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); //clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows)); } if(type2 != nulltype) { mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows)); //clmat2_roi = clmat2(Rect(src2x,src2y,roicols,roirows)); } if(type3 != nulltype) { dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); //cldst_roi = cldst(Rect(dstx,dsty,roicols,roirows)); } if(type4 != nulltype) { dst1_roi = dst1(Rect(dst1x, dst1y, roicols, roirows)); //cldst1_roi = cldst1(Rect(dst1x,dst1y,roicols,roirows)); } if(type5 != nulltype) { mask_roi = mask(Rect(maskx, masky, roicols, roirows)); //clmask_roi = clmask(Rect(maskx,masky,roicols,roirows)); } } void random_roi() { cv::RNG &rng = TS::ptr()->get_rng(); //randomize ROI roicols = rng.uniform(1, mat1.cols); roirows = rng.uniform(1, mat1.rows); src1x = rng.uniform(0, mat1.cols - roicols); src1y = rng.uniform(0, mat1.rows - roirows); src2x = rng.uniform(0, mat2.cols - roicols); src2y = rng.uniform(0, mat2.rows - roirows); dstx = rng.uniform(0, dst.cols - roicols); dsty = rng.uniform(0, dst.rows - roirows); dst1x = rng.uniform(0, dst1.cols - roicols); dst1y = rng.uniform(0, dst1.rows - roirows); maskx = rng.uniform(0, mask.cols - roicols); masky = rng.uniform(0, mask.rows - roirows); if(type1 != nulltype) { mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); //clmat1_roi = clmat1(Rect(src1x,src1y,roicols,roirows)); } if(type2 != nulltype) { mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows)); //clmat2_roi = clmat2(Rect(src2x,src2y,roicols,roirows)); } if(type3 != nulltype) { dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); //cldst_roi = cldst(Rect(dstx,dsty,roicols,roirows)); } if(type4 != nulltype) { dst1_roi = dst1(Rect(dst1x, dst1y, roicols, roirows)); //cldst1_roi = cldst1(Rect(dst1x,dst1y,roicols,roirows)); } if(type5 != nulltype) { mask_roi = mask(Rect(maskx, masky, roicols, roirows)); //clmask_roi = clmask(Rect(maskx,masky,roicols,roirows)); } } }; ////////////////////////////////equalizeHist////////////////////////////////////////// struct equalizeHist : ImgprocTestBase {}; TEST_P(equalizeHist, MatType) { if (mat1.type() != CV_8UC1 || mat1.type() != dst.type()) { cout << "Unsupported type" << endl; EXPECT_DOUBLE_EQ(0.0, 0.0); } else { #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t0 = (double)cvGetTickCount();//cpu start cv::equalizeHist(mat1_roi, dst_roi); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); } cldst_roi = cldst(Rect(dstx, dsty, roicols, roirows)); t2 = (double)cvGetTickCount(); //kernel cv::ocl::equalizeHist(clmat1_roi, cldst_roi); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_cldst; //cldst.download(cpu_cldst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); } if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::equalizeHist(clmat1_roi, cldst_roi); }; #endif } } ////////////////////////////////bilateralFilter//////////////////////////////////////////// struct bilateralFilter : ImgprocTestBase {}; TEST_P(bilateralFilter, Mat) { double sigmacolor = 50.0; int radius = 9; int d = 2 * radius + 1; double sigmaspace = 20.0; int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE/*,cv::BORDER_REFLECT,cv::BORDER_WRAP,cv::BORDER_REFLECT_101*/}; const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/}; if (mat1.depth() != CV_8U || mat1.type() != dst.type()) { cout << "Unsupported type" << endl; EXPECT_DOUBLE_EQ(0.0, 0.0); } else { for(int i = 0; i < sizeof(bordertype) / sizeof(int); i++) { cout << borderstr[i] << endl; #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); if(((bordertype[i] != cv::BORDER_CONSTANT) && (bordertype[i] != cv::BORDER_REPLICATE)) && (mat1_roi.cols <= radius) || (mat1_roi.cols <= radius) || (mat1_roi.rows <= radius) || (mat1_roi.rows <= radius)) { continue; } t0 = (double)cvGetTickCount();//cpu start cv::bilateralFilter(mat1_roi, dst_roi, d, sigmacolor, sigmaspace, bordertype[i]); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); } t2 = (double)cvGetTickCount(); //kernel cv::ocl::bilateralFilter(clmat1_roi, cldst_roi, d, sigmacolor, sigmaspace, bordertype[i]); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_cldst; cldst.download(cpu_cldst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); }; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::bilateralFilter(clmat1_roi, cldst_roi, d, sigmacolor, sigmaspace, bordertype[i]); }; #endif }; } } ////////////////////////////////copyMakeBorder//////////////////////////////////////////// struct CopyMakeBorder : ImgprocTestBase {}; TEST_P(CopyMakeBorder, Mat) { int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT_101}; //const char* borderstr[]={"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/}; int top = 5; int bottom = 5; int left = 6; int right = 6; if (mat1.type() != dst.type()) { cout << "Unsupported type" << endl; EXPECT_DOUBLE_EQ(0.0, 0.0); } else { for(int i = 0; i < sizeof(bordertype) / sizeof(int); i++) { #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < 1; k++) //don't support roi perf test { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t0 = (double)cvGetTickCount();//cpu start cv::copyMakeBorder(mat1_roi, dst_roi, top, bottom, left, right, bordertype[i] | cv::BORDER_ISOLATED, cv::Scalar(1.0)); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); } t2 = (double)cvGetTickCount(); //kernel cv::ocl::copyMakeBorder(clmat1_roi, cldst_roi, top, bottom, left, right, bordertype[i] | cv::BORDER_ISOLATED, cv::Scalar(1.0)); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_cldst; cldst.download(cpu_cldst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); }; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::copyMakeBorder(clmat1_roi, cldst_roi, top, bottom, left, right, bordertype[i] | cv::BORDER_ISOLATED, cv::Scalar(1.0)); }; #endif }; } } ////////////////////////////////cornerMinEigenVal////////////////////////////////////////// struct cornerMinEigenVal : ImgprocTestBase {}; TEST_P(cornerMinEigenVal, Mat) { #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); int blockSize = 7, apertureSize = 3; //1 + 2 * (rand() % 4); int borderType = cv::BORDER_REFLECT; t0 = (double)cvGetTickCount();//cpu start cv::cornerMinEigenVal(mat1_roi, dst_roi, blockSize, apertureSize, borderType); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); } t2 = (double)cvGetTickCount(); //kernel cv::ocl::cornerMinEigenVal(clmat1_roi, cldst_roi, blockSize, apertureSize, borderType); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_cldst; cldst.download(cpu_cldst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); int blockSize = 7, apertureSize = 1 + 2 * (rand() % 4); int borderType = cv::BORDER_REFLECT; if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); }; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::cornerMinEigenVal(clmat1_roi, cldst_roi, blockSize, apertureSize, borderType); }; #endif } ////////////////////////////////cornerHarris////////////////////////////////////////// struct cornerHarris : ImgprocTestBase {}; TEST_P(cornerHarris, Mat) { #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); int blockSize = 7, apertureSize = 3; int borderType = cv::BORDER_REFLECT; double kk = 2; t0 = (double)cvGetTickCount();//cpu start cv::cornerHarris(mat1_roi, dst_roi, blockSize, apertureSize, kk, borderType); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); } t2 = (double)cvGetTickCount(); //kernel cv::ocl::cornerHarris(clmat1_roi, cldst_roi, blockSize, apertureSize, kk, borderType); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_cldst; cldst.download(cpu_cldst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); double kk = 2; int blockSize = 7, apertureSize = 3; int borderType = cv::BORDER_REFLECT; if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); }; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::cornerHarris(clmat1_roi, cldst_roi, blockSize, apertureSize, kk, borderType); }; #endif } ////////////////////////////////integral///////////////////////////////////////////////// struct integral : ImgprocTestBase {}; TEST_P(integral, Mat) { #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t0 = (double)cvGetTickCount();//cpu start cv::integral(mat1_roi, dst_roi, dst1_roi); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); } t2 = (double)cvGetTickCount(); //kernel cv::ocl::integral(clmat1_roi, cldst_roi, cldst1_roi); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_cldst; cv::Mat cpu_cldst1; cldst.download(cpu_cldst);//download cldst1.download(cpu_cldst1); t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); if(type1 != nulltype) { clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); }; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::integral(clmat1_roi, cldst_roi, cldst1_roi); }; #endif } ///////////////////////////////////////////////////////////////////////////////////////////////// // warpAffine & warpPerspective PARAM_TEST_CASE(WarpTestBase, MatType, int) { int type; cv::Size size; int interpolation; //src mat cv::Mat mat1; cv::Mat dst; // set up roi int src_roicols; int src_roirows; int dst_roicols; int dst_roirows; int src1x; int src1y; int dstx; int dsty; //src mat with roi cv::Mat mat1_roi; cv::Mat dst_roi; //std::vector oclinfo; //ocl dst mat for testing cv::ocl::oclMat gdst_whole; //ocl mat with roi cv::ocl::oclMat gmat1; cv::ocl::oclMat gdst; virtual void SetUp() { type = GET_PARAM(0); //dsize = GET_PARAM(1); interpolation = GET_PARAM(1); cv::RNG &rng = TS::ptr()->get_rng(); size = cv::Size(MWIDTH, MHEIGHT); mat1 = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, size, type, 5, 16, false); //int devnums = getDevice(oclinfo); //CV_Assert(devnums > 0); ////if you want to use undefault device, set it here ////setDevice(oclinfo[0]); //cv::ocl::setBinpath(CLBINPATH); } void Has_roi(int b) { //cv::RNG& rng = TS::ptr()->get_rng(); if(b) { //randomize ROI src_roicols = mat1.cols - 1; //start src_roirows = mat1.rows - 1; dst_roicols = dst.cols - 1; dst_roirows = dst.rows - 1; src1x = 1; src1y = 1; dstx = 1; dsty = 1; } else { src_roicols = mat1.cols; src_roirows = mat1.rows; dst_roicols = dst.cols; dst_roirows = dst.rows; src1x = 0; src1y = 0; dstx = 0; dsty = 0; }; mat1_roi = mat1(Rect(src1x, src1y, src_roicols, src_roirows)); dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); } }; /////warpAffine struct WarpAffine : WarpTestBase {}; TEST_P(WarpAffine, Mat) { static const double coeffs[2][3] = { {cos(3.14 / 6), -sin(3.14 / 6), 100.0}, {sin(3.14 / 6), cos(3.14 / 6), -100.0} }; Mat M(2, 3, CV_64F, (void *)coeffs); #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t0 = (double)cvGetTickCount();//cpu start cv::warpAffine(mat1_roi, dst_roi, M, size, interpolation); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); gmat1 = mat1_roi; t2 = (double)cvGetTickCount(); //kernel cv::ocl::warpAffine(gmat1, gdst, M, size, interpolation); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_dst; gdst_whole.download (cpu_dst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); gmat1 = mat1_roi; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::warpAffine(gmat1, gdst, M, size, interpolation); }; #endif } // warpPerspective struct WarpPerspective : WarpTestBase {}; TEST_P(WarpPerspective, Mat) { static const double coeffs[3][3] = { {cos(3.14 / 6), -sin(3.14 / 6), 100.0}, {sin(3.14 / 6), cos(3.14 / 6), -100.0}, {0.0, 0.0, 1.0} }; Mat M(3, 3, CV_64F, (void *)coeffs); #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t0 = (double)cvGetTickCount();//cpu start cv::warpPerspective(mat1_roi, dst_roi, M, size, interpolation); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); gmat1 = mat1_roi; t2 = (double)cvGetTickCount(); //kernel cv::ocl::warpPerspective(gmat1, gdst, M, size, interpolation); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_dst; gdst_whole.download (cpu_dst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); gmat1 = mat1_roi; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::warpPerspective(gmat1, gdst, M, size, interpolation); }; #endif } ///////////////////////////////////////////////////////////////////////////////////////////////// // remap ////////////////////////////////////////////////////////////////////////////////////////////////// PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int) { int srcType; int map1Type; int map2Type; cv::Scalar val; int interpolation; int bordertype; cv::Mat src; cv::Mat dst; cv::Mat map1; cv::Mat map2; int src_roicols; int src_roirows; int dst_roicols; int dst_roirows; int map1_roicols; int map1_roirows; int map2_roicols; int map2_roirows; int srcx; int srcy; int dstx; int dsty; int map1x; int map1y; int map2x; int map2y; cv::Mat src_roi; cv::Mat dst_roi; cv::Mat map1_roi; cv::Mat map2_roi; //ocl mat for testing cv::ocl::oclMat gdst; //ocl mat with roi cv::ocl::oclMat gsrc_roi; cv::ocl::oclMat gdst_roi; cv::ocl::oclMat gmap1_roi; cv::ocl::oclMat gmap2_roi; virtual void SetUp() { srcType = GET_PARAM(0); map1Type = GET_PARAM(1); map2Type = GET_PARAM(2); interpolation = GET_PARAM(3); bordertype = GET_PARAM(4); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size srcSize = cv::Size(MWIDTH, MHEIGHT); cv::Size dstSize = cv::Size(MWIDTH, MHEIGHT); cv::Size map1Size = cv::Size(MWIDTH, MHEIGHT); double min = 5, max = 16; if(srcType != nulltype) { src = randomMat(rng, srcSize, srcType, min, max, false); } if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype)) { map1 = randomMat(rng, map1Size, map1Type, min, max, false); } else if (map1Type == CV_32FC1 && map2Type == CV_32FC1) { map1 = randomMat(rng, map1Size, map1Type, min, max, false); map2 = randomMat(rng, map1Size, map1Type, min, max, false); } else cout << "The wrong input type" << endl; dst = randomMat(rng, map1Size, srcType, min, max, false); switch (src.channels()) { case 1: val = cv::Scalar(rng.uniform(0.0, 10.0), 0, 0, 0); break; case 2: val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), 0, 0); break; case 3: val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), 0); break; case 4: val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0)); break; } //int devnums = getDevice(oclinfo); //CV_Assert(devnums > 0); //if you want to use undefault device, set it here //setDevice(oclinfo[0]); //cv::ocl::setBinpath(CLBINPATH); } void Has_roi(int b) { if(b) { //randomize ROI dst_roicols = dst.cols - 1; dst_roirows = dst.rows - 1; src_roicols = src.cols - 1; src_roirows = src.rows - 1; srcx = 1; srcy = 1; dstx = 1; dsty = 1; } else { dst_roicols = dst.cols; dst_roirows = dst.rows; src_roicols = src.cols; src_roirows = src.rows; srcx = 0; srcy = 0; dstx = 0; dsty = 0; } map1_roicols = dst_roicols; map1_roirows = dst_roirows; map2_roicols = dst_roicols; map2_roirows = dst_roirows; map1x = dstx; map1y = dsty; map2x = dstx; map2y = dsty; if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype)) { map1_roi = map1(Rect(map1x, map1y, map1_roicols, map1_roirows)); gmap1_roi = map1_roi; } else if (map1Type == CV_32FC1 && map2Type == CV_32FC1) { map1_roi = map1(Rect(map1x, map1y, map1_roicols, map1_roirows)); map2_roi = map2(Rect(map2x, map2y, map2_roicols, map2_roirows)); gmap1_roi = map1_roi; gmap2_roi = map2_roi; } dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); src_roi = dst(Rect(srcx, srcy, src_roicols, src_roirows)); } }; TEST_P(Remap, Mat) { if((interpolation == 1 && map1Type == CV_16SC2) || (map1Type == CV_32FC1 && map2Type == nulltype) || (map1Type == CV_16SC2 && map2Type == CV_32FC1) || (map1Type == CV_32FC2 && map2Type == CV_32FC1)) { cout << "LINEAR don't support the map1Type and map2Type" << endl; return; } int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE/*,BORDER_REFLECT,BORDER_WRAP,BORDER_REFLECT_101*/}; const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/}; #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = 0; k < 2; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j++) { Has_roi(k); t0 = (double)cvGetTickCount();//cpu start cv::remap(src_roi, dst_roi, map1_roi, map2_roi, interpolation, bordertype[0], val); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start gsrc_roi = src_roi; gdst = dst; gdst_roi = gdst(Rect(dstx, dsty, dst_roicols, dst_roirows)); t2 = (double)cvGetTickCount();//kernel cv::ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, interpolation, bordertype[0], val); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_dst; gdst.download(cpu_dst); t1 = (double)cvGetTickCount() - t1;//gpu end if (j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = 0; j < 2; j ++) { Has_roi(j); gdst = dst; gdst_roi = gdst(Rect(dstx, dsty, dst_roicols, dst_roirows)); gsrc_roi = src_roi; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, interpolation, bordertype[0], val); }; #endif } ///////////////////////////////////////////////////////////////////////////////////////////////// // resize PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int) { int type; cv::Size dsize; double fx, fy; int interpolation; //src mat cv::Mat mat1; cv::Mat dst; // set up roi int src_roicols; int src_roirows; int dst_roicols; int dst_roirows; int src1x; int src1y; int dstx; int dsty; //src mat with roi cv::Mat mat1_roi; cv::Mat dst_roi; //std::vector oclinfo; //ocl dst mat for testing cv::ocl::oclMat gdst_whole; //ocl mat with roi cv::ocl::oclMat gmat1; cv::ocl::oclMat gdst; virtual void SetUp() { type = GET_PARAM(0); dsize = GET_PARAM(1); fx = GET_PARAM(2); fy = GET_PARAM(3); interpolation = GET_PARAM(4); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); if(dsize == cv::Size() && !(fx > 0 && fy > 0)) { cout << "invalid dsize and fx fy" << endl; return; } if(dsize == cv::Size()) { dsize.width = (int)(size.width * fx); dsize.height = (int)(size.height * fy); } mat1 = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, dsize, type, 5, 16, false); //int devnums = getDevice(oclinfo); //CV_Assert(devnums > 0); ////if you want to use undefault device, set it here ////setDevice(oclinfo[0]); //cv::ocl::setBinpath(CLBINPATH); } void Has_roi(int b) { //cv::RNG& rng = TS::ptr()->get_rng(); if(b) { //randomize ROI src_roicols = mat1.cols - 1; //start src_roirows = mat1.rows - 1; dst_roicols = dst.cols - 1; dst_roirows = dst.rows - 1; src1x = 1; src1y = 1; dstx = 1; dsty = 1; } else { src_roicols = mat1.cols; src_roirows = mat1.rows; dst_roicols = dst.cols; dst_roirows = dst.rows; src1x = 0; src1y = 0; dstx = 0; dsty = 0; }; mat1_roi = mat1(Rect(src1x, src1y, src_roicols, src_roirows)); dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); } }; TEST_P(Resize, Mat) { #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t0 = (double)cvGetTickCount();//cpu start cv::resize(mat1_roi, dst_roi, dsize, fx, fy, interpolation); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); gmat1 = mat1_roi; t2 = (double)cvGetTickCount(); //kernel cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_dst; gdst_whole.download (cpu_dst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); gmat1 = mat1_roi; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation); }; #endif } ///////////////////////////////////////////////////////////////////////////////////////////////// //threshold PARAM_TEST_CASE(Threshold, MatType, ThreshOp) { int type; int threshOp; //src mat cv::Mat mat1; cv::Mat dst; // set up roi int roicols; int roirows; int src1x; int src1y; int dstx; int dsty; //src mat with roi cv::Mat mat1_roi; cv::Mat dst_roi; //std::vector oclinfo; //ocl dst mat for testing cv::ocl::oclMat gdst_whole; //ocl mat with roi cv::ocl::oclMat gmat1; cv::ocl::oclMat gdst; virtual void SetUp() { type = GET_PARAM(0); threshOp = GET_PARAM(1); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); mat1 = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, size, type, 5, 16, false); //int devnums = getDevice(oclinfo); //CV_Assert(devnums > 0); ////if you want to use undefault device, set it here ////setDevice(oclinfo[0]); //cv::ocl::setBinpath(CLBINPATH); } void Has_roi(int b) { //cv::RNG& rng = TS::ptr()->get_rng(); if(b) { //randomize ROI roicols = mat1.cols - 1; //start roirows = mat1.rows - 1; src1x = 1; src1y = 1; dstx = 1; dsty = 1; } else { roicols = mat1.cols; roirows = mat1.rows; src1x = 0; src1y = 0; dstx = 0; dsty = 0; }; mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); } }; TEST_P(Threshold, Mat) { #ifndef PRINT_KERNEL_RUN_TIME double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; double t0 = 0; double t1 = 0; double t2 = 0; for(int k = LOOPROISTART; k < LOOPROIEND; k++) { totalcputick = 0; totalgputick = 0; totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); double maxVal = randomDouble(20.0, 127.0); double thresh = randomDouble(0.0, maxVal); t0 = (double)cvGetTickCount();//cpu start cv::threshold(mat1_roi, dst_roi, thresh, maxVal, threshOp); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); gmat1 = mat1_roi; t2 = (double)cvGetTickCount(); //kernel cv::ocl::threshold(gmat1, gdst, thresh, maxVal, threshOp); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_dst; gdst_whole.download (cpu_dst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalcputick = t0 + totalcputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); double maxVal = randomDouble(20.0, 127.0); double thresh = randomDouble(0.0, maxVal); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); gmat1 = mat1_roi; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::threshold(gmat1, gdst, thresh, maxVal, threshOp); }; #endif } /////////////////////////////////////////////////////////////////////////////////////////////////// //meanShift PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria) { int type, typeCoor; int sp, sr; cv::TermCriteria crit; //src mat cv::Mat src; cv::Mat dst; cv::Mat dstCoor; //set up roi int roicols; int roirows; int srcx; int srcy; int dstx; int dsty; //src mat with roi cv::Mat src_roi; cv::Mat dst_roi; cv::Mat dstCoor_roi; //ocl dst mat cv::ocl::oclMat gdst; cv::ocl::oclMat gdstCoor; //std::vector oclinfo; //ocl mat with roi cv::ocl::oclMat gsrc_roi; cv::ocl::oclMat gdst_roi; cv::ocl::oclMat gdstCoor_roi; virtual void SetUp() { type = GET_PARAM(0); typeCoor = GET_PARAM(1); sp = GET_PARAM(2); sr = GET_PARAM(3); crit = GET_PARAM(4); cv::RNG &rng = TS::ptr()->get_rng(); // MWIDTH=256, MHEIGHT=256. defined in utility.hpp cv::Size size = cv::Size(MWIDTH, MHEIGHT); src = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, size, type, 5, 16, false); dstCoor = randomMat(rng, size, typeCoor, 5, 16, false); //int devnums = getDevice(oclinfo); //CV_Assert(devnums > 0); ////if you want to use undefault device, set it here ////setDevice(oclinfo[0]); //cv::ocl::setBinpath(CLBINPATH); } void Has_roi(int b) { if(b) { //randomize ROI roicols = src.cols - 1; roirows = src.rows - 1; srcx = 1; srcy = 1; dstx = 1; dsty = 1; } else { roicols = src.cols; roirows = src.rows; srcx = 0; srcy = 0; dstx = 0; dsty = 0; }; src_roi = src(Rect(srcx, srcy, roicols, roirows)); dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); dstCoor_roi = dstCoor(Rect(dstx, dsty, roicols, roirows)); gdst = dst; gdstCoor = dstCoor; } }; /////////////////////////meanShiftFiltering///////////////////////////// struct meanShiftFiltering : meanShiftTestBase {}; TEST_P(meanShiftFiltering, Mat) { #ifndef PRINT_KERNEL_RUN_TIME double t1 = 0; double t2 = 0; for(int k = 0; k < 2; k++) { double totalgputick = 0; double totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t1 = (double)cvGetTickCount();//gpu start1 gsrc_roi = src_roi; gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi t2 = (double)cvGetTickCount(); //kernel cv::ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_gdst; gdst.download(cpu_gdst);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); gsrc_roi = src_roi; gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit); }; #endif } ///////////////////////////meanShiftProc////////////////////////////////// struct meanShiftProc : meanShiftTestBase {}; TEST_P(meanShiftProc, Mat) { #ifndef PRINT_KERNEL_RUN_TIME double t1 = 0; double t2 = 0; for(int k = 0; k < 2; k++) { double totalgputick = 0; double totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t1 = (double)cvGetTickCount();//gpu start1 gsrc_roi = src_roi; gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi gdstCoor_roi = gdstCoor(Rect(dstx, dsty, roicols, roirows)); t2 = (double)cvGetTickCount(); //kernel cv::ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_gdstCoor; gdstCoor.download(cpu_gdstCoor);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalgputick = t1 + totalgputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = LOOPROISTART; j < LOOPROIEND; j ++) { Has_roi(j); gsrc_roi = src_roi; gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi gdstCoor_roi = gdstCoor(Rect(dstx, dsty, roicols, roirows)); if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit); }; #endif } /////////////////////////////////////////////////////////////////////////////////////////// //hist void calcHistGold(const cv::Mat &src, cv::Mat &hist) { hist.create(1, 256, CV_32SC1); hist.setTo(cv::Scalar::all(0)); int *hist_row = hist.ptr(); for (int y = 0; y < src.rows; ++y) { const uchar *src_row = src.ptr(y); for (int x = 0; x < src.cols; ++x) ++hist_row[src_row[x]]; } } PARAM_TEST_CASE(histTestBase, MatType, MatType) { int type_src; //src mat cv::Mat src; cv::Mat dst_hist; //set up roi int roicols; int roirows; int srcx; int srcy; //src mat with roi cv::Mat src_roi; //ocl dst mat, dst_hist and gdst_hist don't have roi cv::ocl::oclMat gdst_hist; //ocl mat with roi cv::ocl::oclMat gsrc_roi; // std::vector oclinfo; virtual void SetUp() { type_src = GET_PARAM(0); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size = cv::Size(MWIDTH, MHEIGHT); src = randomMat(rng, size, type_src, 0, 256, false); // int devnums = getDevice(oclinfo); // CV_Assert(devnums > 0); //if you want to use undefault device, set it here //setDevice(oclinfo[0]); } void Has_roi(int b) { if(b) { //randomize ROI roicols = src.cols - 1; roirows = src.rows - 1; srcx = 1; srcy = 1; } else { roicols = src.cols; roirows = src.rows; srcx = 0; srcy = 0; }; src_roi = src(Rect(srcx, srcy, roicols, roirows)); } }; ///////////////////////////calcHist/////////////////////////////////////// struct calcHist : histTestBase {}; TEST_P(calcHist, Mat) { #ifndef PRINT_KERNEL_RUN_TIME double t0 = 0; double t1 = 0; double t2 = 0; for(int k = 0; k < 2; k++) { double totalcputick = 0; double totalgputick = 0; double totalgputick_kernel = 0; for(int j = 0; j < LOOP_TIMES + 1; j ++) { Has_roi(k); t0 = (double)cvGetTickCount();//cpu start calcHistGold(src_roi, dst_hist); t0 = (double)cvGetTickCount() - t0;//cpu end t1 = (double)cvGetTickCount();//gpu start1 gsrc_roi = src_roi; t2 = (double)cvGetTickCount(); //kernel cv::ocl::calcHist(gsrc_roi, gdst_hist); t2 = (double)cvGetTickCount() - t2;//kernel cv::Mat cpu_hist; gdst_hist.download(cpu_hist);//download t1 = (double)cvGetTickCount() - t1;//gpu end1 if(j == 0) continue; totalcputick = t0 + totalcputick; totalgputick = t1 + totalgputick; totalgputick_kernel = t2 + totalgputick_kernel; } if(k == 0) { cout << "no roi\n"; } else { cout << "with roi\n"; }; cout << "average cpu runtime is " << totalcputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime is " << totalgputick / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; cout << "average gpu runtime without data transfer is " << totalgputick_kernel / ((double)cvGetTickFrequency()* LOOP_TIMES * 1000.) << "ms" << endl; } #else for(int j = 0; j < 2; j ++) { Has_roi(j); gsrc_roi = src_roi; if(j == 0) { cout << "no roi:"; } else { cout << "\nwith roi:"; }; cv::ocl::calcHist(gsrc_roi, gdst_hist); }; #endif } //************test******************* INSTANTIATE_TEST_CASE_P(ImgprocTestBase, equalizeHist, Combine( ONE_TYPE(CV_8UC1), NULL_TYPE, ONE_TYPE(CV_8UC1), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, bilateralFilter, Combine( Values(CV_8UC1, CV_8UC3), NULL_TYPE, Values(CV_8UC1, CV_8UC3), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, CopyMakeBorder, Combine( Values(CV_8UC1, CV_8UC4/*, CV_32SC1*/), NULL_TYPE, Values(CV_8UC1, CV_8UC4/*,CV_32SC1*/), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerMinEigenVal, Combine( Values(CV_8UC1, CV_32FC1), NULL_TYPE, ONE_TYPE(CV_32FC1), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerHarris, Combine( Values(CV_8UC1, CV_32FC1), NULL_TYPE, ONE_TYPE(CV_32FC1), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, integral, Combine( ONE_TYPE(CV_8UC1), NULL_TYPE, ONE_TYPE(CV_32SC1), ONE_TYPE(CV_32FC1), NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Imgproc, WarpAffine, Combine( Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR, (MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP)))); INSTANTIATE_TEST_CASE_P(Imgproc, WarpPerspective, Combine (Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR, (MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP)))); INSTANTIATE_TEST_CASE_P(Imgproc, Resize, Combine( Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(cv::Size()), Values(0.5/*, 1.5, 2*/), Values(0.5/*, 1.5, 2*/), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR))); INSTANTIATE_TEST_CASE_P(Imgproc, Threshold, Combine( Values(CV_8UC1, CV_32FC1), Values(ThreshOp(cv::THRESH_BINARY), ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC), ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV)))); INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftFiltering, Combine( ONE_TYPE(CV_8UC4), ONE_TYPE(CV_16SC2),//it is no use in meanShiftFiltering Values(5), Values(6), Values(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1)) )); INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftProc, Combine( ONE_TYPE(CV_8UC4), ONE_TYPE(CV_16SC2), Values(5), Values(6), Values(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1)) )); INSTANTIATE_TEST_CASE_P(Imgproc, Remap, Combine( Values(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), Values(CV_32FC1, CV_16SC2, CV_32FC2), Values(-1, CV_32FC1), Values((int)cv::INTER_NEAREST, (int)cv::INTER_LINEAR), Values((int)cv::BORDER_CONSTANT))); INSTANTIATE_TEST_CASE_P(histTestBase, calcHist, Combine( ONE_TYPE(CV_8UC1), ONE_TYPE(CV_32SC1) //no use )); #endif // HAVE_OPENCL