#include #include "blenders.hpp" #include "util.hpp" using namespace std; using namespace cv; static const float WEIGHT_EPS = 1e-5f; Ptr Blender::createDefault(int type) { if (type == NO) return new Blender(); if (type == FEATHER) return new FeatherBlender(); if (type == MULTI_BAND) return new MultiBandBlender(); CV_Error(CV_StsBadArg, "unsupported blending method"); return NULL; } Point Blender::operator ()(const vector &src, const vector &corners, const vector &masks, Mat& dst) { Mat dst_mask; return (*this)(src, corners, masks, dst, dst_mask); } Point Blender::operator ()(const vector &src, const vector &corners, const vector &masks, Mat &dst, Mat &dst_mask) { Point dst_tl = blend(src, corners, masks, dst, dst_mask); dst.setTo(Scalar::all(0), dst_mask == 0); return dst_tl; } Point Blender::blend(const vector &src, const vector &corners, const vector &masks, Mat &dst, Mat &dst_mask) { for (size_t i = 0; i < src.size(); ++i) { CV_Assert(src[i].type() == CV_32FC3); CV_Assert(masks[i].type() == CV_8U); } const int image_type = src[0].type(); Rect dst_roi = resultRoi(src, corners); dst.create(dst_roi.size(), image_type); dst.setTo(Scalar::all(0)); dst_mask.create(dst_roi.size(), CV_8U); dst_mask.setTo(Scalar::all(0)); for (size_t i = 0; i < src.size(); ++i) { int dx = corners[i].x - dst_roi.x; int dy = corners[i].y - dst_roi.y; for (int y = 0; y < src[i].rows; ++y) { const Point3f *src_row = src[i].ptr(y); Point3f *dst_row = dst.ptr(dy + y); const uchar *mask_row = masks[i].ptr(y); uchar *dst_mask_row = dst_mask.ptr(dy + y); for (int x = 0; x < src[i].cols; ++x) { if (mask_row[x]) dst_row[dx + x] = src_row[x]; dst_mask_row[dx + x] |= mask_row[x]; } } } return dst_roi.tl(); } Point FeatherBlender::blend(const vector &src, const vector &corners, const vector &masks, Mat &dst, Mat &dst_mask) { vector weights(masks.size()); for (size_t i = 0; i < weights.size(); ++i) createWeightMap(masks[i], sharpness_, weights[i]); Mat dst_weight; Point dst_tl = blendLinear(src, corners, weights, dst, dst_weight); dst_mask = dst_weight > WEIGHT_EPS; return dst_tl; } Point MultiBandBlender::blend(const vector &src, const vector &corners, const vector &masks, Mat &dst, Mat &dst_mask) { CV_Assert(src.size() == corners.size() && src.size() == masks.size()); const int num_images = src.size(); Rect dst_roi = resultRoi(src, corners); vector src_(num_images); vector corners_(num_images); vector masks_(num_images); // TODO avoid creating extra border for (int i = 0; i < num_images; ++i) { copyMakeBorder(src[i], src_[i], corners[i].y - dst_roi.y, dst_roi.br().y - corners[i].y - src[i].rows, corners[i].x - dst_roi.x, dst_roi.br().x - corners[i].x - src[i].cols, BORDER_REFLECT); copyMakeBorder(masks[i], masks_[i], corners[i].y - dst_roi.y, dst_roi.br().y - corners[i].y - src[i].rows, corners[i].x - dst_roi.x, dst_roi.br().x - corners[i].x - src[i].cols, BORDER_CONSTANT); corners_[i] = Point(0, 0); } Mat weight_map; vector src_pyr_gauss; vector< vector > src_pyr_laplace(num_images); vector< vector > weight_pyr_gauss(num_images); // Compute all pyramids for (int i = 0; i < num_images; ++i) { createGaussPyr(src_[i], num_bands_, src_pyr_gauss); createLaplacePyr(src_pyr_gauss, src_pyr_laplace[i]); masks_[i].convertTo(weight_map, CV_32F, 1. / 255.); createGaussPyr(weight_map, num_bands_, weight_pyr_gauss[i]); } computeResultMask(masks, corners, dst_mask); Mat dst_level_weight; vector dst_pyr_laplace(num_bands_ + 1); vector src_pyr_slice(num_images); vector weight_pyr_slice(num_images); // Blend pyramids for (int level_id = 0; level_id <= num_bands_; ++level_id) { for (int i = 0; i < num_images; ++i) { src_pyr_slice[i] = src_pyr_laplace[i][level_id]; weight_pyr_slice[i] = weight_pyr_gauss[i][level_id]; } blendLinear(src_pyr_slice, corners_, weight_pyr_slice, dst_pyr_laplace[level_id], dst_level_weight); } restoreImageFromLaplacePyr(dst_pyr_laplace); dst = dst_pyr_laplace[0]; return dst_roi.tl(); } ////////////////////////////////////////////////////////////////////////////// // Auxiliary functions Rect resultRoi(const vector &src, const vector &corners) { Point tl(numeric_limits::max(), numeric_limits::max()); Point br(numeric_limits::min(), numeric_limits::min()); CV_Assert(src.size() == corners.size()); for (size_t i = 0; i < src.size(); ++i) { tl.x = min(tl.x, corners[i].x); tl.y = min(tl.y, corners[i].y); br.x = max(br.x, corners[i].x + src[i].cols); br.y = max(br.y, corners[i].y + src[i].rows); } return Rect(tl, br); } Point computeResultMask(const vector &masks, const vector &corners, Mat &dst_mask) { Rect dst_roi = resultRoi(masks, corners); dst_mask.create(dst_roi.size(), CV_8U); dst_mask.setTo(Scalar::all(0)); for (size_t i = 0; i < masks.size(); ++i) { int dx = corners[i].x - dst_roi.x; int dy = corners[i].y - dst_roi.y; for (int y = 0; y < masks[i].rows; ++y) { const uchar *mask_row = masks[i].ptr(y); uchar *dst_mask_row = dst_mask.ptr(dy + y); for (int x = 0; x < masks[i].cols; ++x) dst_mask_row[dx + x] |= mask_row[x]; } } return dst_roi.tl(); } Point blendLinear(const vector &src, const vector &corners, const vector &weights, Mat &dst, Mat& dst_weight) { for (size_t i = 0; i < src.size(); ++i) { CV_Assert(src[i].type() == CV_32FC3); CV_Assert(weights[i].type() == CV_32F); } const int image_type = src[0].type(); Rect dst_roi = resultRoi(src, corners); dst.create(dst_roi.size(), image_type); dst.setTo(Scalar::all(0)); dst_weight.create(dst_roi.size(), CV_32F); dst_weight.setTo(Scalar::all(0)); // Compute colors sums and weights for (size_t i = 0; i < src.size(); ++i) { int dx = corners[i].x - dst_roi.x; int dy = corners[i].y - dst_roi.y; for (int y = 0; y < src[i].rows; ++y) { const Point3f *src_row = src[i].ptr(y); Point3f *dst_row = dst.ptr(dy + y); const float *weight_row = weights[i].ptr(y); float *dst_weight_row = dst_weight.ptr(dy + y); for (int x = 0; x < src[i].cols; ++x) { dst_row[dx + x] += src_row[x] * weight_row[x]; dst_weight_row[dx + x] += weight_row[x]; } } } // Normalize sums for (int y = 0; y < dst.rows; ++y) { Point3f *dst_row = dst.ptr(y); float *dst_weight_row = dst_weight.ptr(y); for (int x = 0; x < dst.cols; ++x) { dst_weight_row[x] += WEIGHT_EPS; dst_row[x] *= 1.f / dst_weight_row[x]; } } return dst_roi.tl(); } void createWeightMap(const Mat &mask, float sharpness, Mat &weight) { CV_Assert(mask.type() == CV_8U); distanceTransform(mask, weight, CV_DIST_L1, 3); threshold(weight * sharpness, weight, 1.f, 1.f, THRESH_TRUNC); } void createGaussPyr(const Mat &img, int num_layers, vector &pyr) { pyr.resize(num_layers + 1); pyr[0] = img.clone(); for (int i = 0; i < num_layers; ++i) pyrDown(pyr[i], pyr[i + 1]); } void createLaplacePyr(const vector &pyr_gauss, vector &pyr_laplace) { if (pyr_gauss.size() == 0) return; pyr_laplace.resize(pyr_gauss.size()); Mat tmp; for (size_t i = 0; i < pyr_laplace.size() - 1; ++i) { pyrUp(pyr_gauss[i + 1], tmp, pyr_gauss[i].size()); pyr_laplace[i] = pyr_gauss[i] - tmp; } pyr_laplace[pyr_laplace.size() - 1] = pyr_gauss[pyr_laplace.size() - 1].clone(); } void restoreImageFromLaplacePyr(vector &pyr) { if (pyr.size() == 0) return; Mat tmp; for (size_t i = pyr.size() - 1; i > 0; --i) { pyrUp(pyr[i], tmp, pyr[i - 1].size()); pyr[i - 1] += tmp; } }